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Abstract We present a revised form of the energy balance for the coupled thermodynamics of
liquid water flowing in porous media and give examples of situations where a commonly used
formulation based on transport of enthalpy leads to erroneous results. Assuming negligible
contribution from kinetic energy as well as sources and sinks such as energy from radioactive
decay, total energy conservation is reduced to a balance between changes in internal energy,
enthalpy, conductive heat flux, and gravitational potential energy. The Joule–Thomson coef-
ficient is defined as the change in temperature with respect to an increase in pressure at
constant enthalpy. Because liquid water has a negative Joule–Thomson coefficient at low
temperatures, at a constant gravitational potential water cools as it compresses and heats
as it expands. If one ignores the gravitational energy, transport of enthalpy alone leads to
water heating by 2◦C per kilometer as it is brought up from depth. The corrected energy
balance transports methalpy, which is enthalpy plus gravitational potential energy. Although
the simpler form leads to small changes in the temperature profile for typical simulations,
there are several instances where this effect may prove to be important. The most important
impact of the erroneous form is probably in the field of geothermal energy production, where
the creation of a few degrees of heat in a simulation could lead to miscalculation of power
plant efficiencies.
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1 Introduction

Advances in numerical modeling and computing speed over the past three decades have
allowed the earth science community to explore many complex systems involving cou-
pled heat and mass transfer in geologic systems. Examples include modeling of convection
in oceanic crust [Fisher et al. (1990), Fisher and Hounslow (1990), Rees and Storesletten
(1995)], groundwater flow near nuclear waste repositories (Pruess et al. 1990), geothermal
energy [Hanano (1998), Weir (1994), Dempsey et al. (2012)], geyser behavior (Ingebritsen
and Rojstaczer 1993), thermal development of oil fields, large scale lateral flow as found in
both continental basins (Person et al. 1996) and submarine accretionary systems (Stauffer
and Bekins 2001), planetary hydrologic studies [Travis et al. (2003), Travis et al. (2013),
Palguta et al. (2010), Barnhart et al. (2010), Travis and Schubert (2005)], and geologic CO2

storage (Deng et al. 2012).
The increased feasibility of coupled modeling and a wealth of applications have led to a

proliferation of coupled heat and mass transfer codes formulated as finite difference or finite
element/volume schemes. These codes generally account for the conservation of fluid energy
in one of two ways. The first approach, which has been standard since the dawn of coupled
heat and mass transfer modeling [Tsang (1999), Straus and Schubert (1977), Voss (1984)],
avoids explicit use of internal energy or enthalpy in the energy balance equation by replacing
these terms with approximate expressions involving the temperature.

The second approach is to write the energy balance in terms of fluid enthalpy and employs
steam table data (Haar et al. 1984) to evaluate enthalpy as a function of both pressure and
temperature [Lewis and Lowell (2009), Zyvoloski (2007), Travis et al. (1991), Hayba and
Ingebritsen (1994)]. The enthalpy formulation more accurately captures the thermodynamic
behavior of water. Moreover, enthalpy is often employed (together with fluid pressure) as a
primary variable in two-phase problems involving pure water, because the temperature alone
is insufficient to specify the amounts of steam and liquid water in thermodynamic equilibrium
at a given pressure. However, the choice of pressure and enthalpy as primary variables may not
extend easily to more general systems, for which it may be preferable to employ temperature,
pressure, and volume saturation as primary. Either way, the inclusion of enthalpy in the energy
balance is an improvement over using temperature alone. The enthalpy-based approach is
especially valid in large scale models where large variation in the state variables leads to
noticeable differences in fluid energy calculated by the enthalpy versus temperature-only
approaches. While the enthalpy approach is completely valid for lateral flow systems, for
vertical flow the method fails to account for changes in the gravitational potential energy of
the water.

The issue concerning the effect of gravitational potential energy on fluid flow is not a
new one, but it is severely underrepresented in the literature. One of the few discussions of
which the authors are aware occurred when M.H. Dodson (1971) criticized D.R. Waldbaum
(1971) inadvertant neglect of this term in the context of mantle convection. Recently, Manga
and Kirchner (2004) noted the importance of including gravitational potential energy in their
simulations of cold water springs.

In this paper, we review the appropriate form of the energy balance to use in conjunction
with the fully coupled thermodynamics. Next, we present results obtained using gravitational
corrected and uncorrected energy balances. Finally, we discuss broad implications of the fully
coupled approach.
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2 Theory

2.1 The Energy Equation for a Pure Fluid

The total energy balance for a volume of pure fluid in an Eulerian frame can be expressed as
follows:

∂

∂t

∫
V

(
1

2
ρv2 + ρgz + ρu

)
dV = −

∫
S

(
1

2
ρv2 + ρgz + ρu

)
v · n̂d S

−
∫

S
q · n̂d S −

∫
S

pv · n̂d S −
∫

S
(τv) · n̂d S, (1)

where ρ is the fluid density, v is the velocity, u is the specific internal energy, q is the
conductive heat flux, p is the pressure, τ is the deviatoric stress tensor (i.e., the total stress

tensor with the pressure subtracted from the diagonal), g is the gravitational acceleration,
and the direction of increasing z coordinate is taken as positive upward. See Table 1 for a list

Table 1 Symbols employed, in
order of their appearance in the
text

Symbol Meaning Unit
t Time s

dV Element of volume m3

ρ Density kg/m3

v Speed m/s

v Velocity m/s

g Gravitational acceleration m/s2

z Height m

u Specific internal energy J/kg

dS Element of surface area m2

n̂ Unit normal none

q Heat flux J/m2s

p Pressure Pa

τ Deviatoric stress tensor Pa

h Specific enthalpy J/kg

θ Specific methalpy J/kg

λ̃ Bulk thermal conductivity W/m◦C

T Temperature ◦C

φ Porosity none

k Permeability m2

μ Dynamic viscosity Pa·s
μJT Joule–Thomson coefficient ◦C/Pa

α Thermal expansivity /◦C

cp Specific heat (const. p) J/kg◦C

	 Defined as gz m2/s2

s Specific entropy J/kg◦C

d Depth km

D Scale depth km
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of all the symbols employed in this paper together with their meanings and associated units.
In words, Eq. (1) states that the rate of increase of the total energy (kinetic plus potential
plus internal) of fluid in a volume V equals the rate at which the same quantity is added
to the volume via convection, plus the rate at which heat is transferred to the volume via
conduction, plus the rate at which volume work and viscous work are done on the fluid in
V by the surrounding fluid. Even though in the Eulerian framework the volume considered
remains stationary, the kinetic energy of the fluid within it may increase because the velocity
of the fluid increases or because the density increases. Similarly, the potential energy will
increase if the density of the fluid increases. Equation (1) can be shown to be equivalent to
Eq. (11.1–7) from Bird et al. (1984) (see Appendix A for a derivation).

Eq. (1) can be written in terms of the quantity

θ ≡ h + 1

2
v2 + gz, (2)

where h is the specific enthalpy. θ is referred to as the specific “methalpy” and, when multi-
plied by ρ, represents the enthalpy plus the kinetic and potential energies, all per unit volume.
If we combine the term containing pv · n with the first term on the right hand side of (1) and
use the fact that

u = h − p

ρ
, (3)

we obtain
∂

∂t

∫
V

(ρθ − p) dV = −
∫

S
(ρθ) v · n̂dS −

∫
S

q · n̂dS −
∫

S
(τv) · n̂dS. (4)

Using the divergence theorem to convert the surface integrals into volume integrals, the
differential form of this equation is readily shown to be

∂(ρθ − p)

∂t
+ ∇ · (ρvθ) = −∇ · q − ∇ · [

τv
]
. (5)

This equation represents energy balance in terms of methalpy. If the gravitational and kinetic
energy terms are neglected, (5) becomes

∂(ρh − p)

∂t
+ ∇ · (ρvh) = −∇ · q − ∇ · [

τv
]
. (6)

Although we have chosen to cast the energy balance in terms of enthalpy or methalpy, we
emphasize two points. First, the use of these equations does not imply that enthalpy or
methalpy need be chosen as primary variables. Second, we note that other approaches are
possible. For example, by combining the energy equation with the Navier–Stokes equation,
it is possible to cast the energy balance in terms of entropy (see Landau and Lifshitz (1987),
pp. 193–194), which may carry an advantage in some situations [e.g., Kieffer and Delaney
(1979) and Lu and Kieffer (2009)]; a correction for the gravitational potential energy could
still be included.

In the Results section below, we will compare the accuracies of (5) and (6) in the context
of flow in a porous medium, and relate our results to those of the classical Joule–Thomson
experiment. Toward this end, in the next section, we derive the porous medium forms of these
equations.

2.2 The Porous Flow Energy Equation

To derive the porous medium form of (5), we consider again Eq. (1), but now over a volume
containing both fluid and solid phases. We assume that the solid phase is rigid, is not moving

123



Joule–Thomson Effects on the Flow of Liquid Water

as a whole, and is in thermodynamic equilibrium with the fluid. Furthermore, we neglect the
work done by viscous forces internal to the fluid in comparison with other forms of work.
Under these conditions, the energy balance may be written as

∂

∂t

∫
V f

(
1

2
ρ f v

2
f + ρ f gz + ρ f u f

)
dV f + ∂

∂t

∫
Vs

ρsusdVs

= −
∫

S f

(
1

2
ρv2

f + ρ f gz + ρ f u f

)
v f · n̂d S f −

∫
S

q · n̂dS −
∫

S f

p f v f · n̂dS f , (7)

where the subscripts f and s refer to the fluid and solid phases. S f refers to the part of the
surface encompassing V that is in contact with fluid, while S refers to the whole surface
enclosing the volume V . We assume that the heat flux is given by Fourier’s law of heat
conduction

q = −λ̃∇T, (8)

where T is the temperature, λ̃ is the bulk thermal conductivity of the solid plus fluid mixture,
commonly given by (see Jorand et al. (2011) for other formulations)

λ̃ = φλ f + (1 − φ)λs, (9)

and φ is the porosity, defined as

φ = dV f

dV f + dVs
= dV f

dV
. (10)

Furthermore, we use (10) to re-write all of the integrals in (7) over the total volume and
surface area as

∂

∂t

∫
V

(
1

2
ρ f v

2
f + ρ f gz + ρ f u f

)
φdV + ∂

∂t

∫
V

ρsus(1 − φ)dV

= −
∫

S

(
1

2
ρ f v

2
f + ρ f gz + ρ f u f

)
v f · n̂φdS +

∫
S
λ̃∇T · n̂dS −

∫
S

p f v f · n̂φdS,(11)

where we have assumed that, just as dV f = φdV , we have d S f = φd S. Because the solid
phase is assumed to do no work, we may set us approximately equal to cps T , where cps

is the specific heat at constant pressure of the solid phase. The quantity φv f represents the
volumetric flux of the fluid phase, which we will denote ṽ f . Replacing φv f with ṽ f , us with
cps T , and subjecting the terms in (11) to the the same steps that lead from (1) to (5) results
in

∂(φρ f θ f − φp f )

∂t
+ ∂[(1 − φ)ρscps T ]

∂t
+ ∇ · (ρṽ f θ f ) = ∇ · (λ̃∇T ). (12)

Equation (5) takes this form for flow in a porous medium. The equation corresponding to (6)
is thus

∂(φρ f h f − φp f )

∂t
+ ∂[(1 − φ)ρscps T ]

∂t
+ ∇ · (ρṽ f h f ) = ∇ · (λ̃∇T ). (13)

We will assume that the volumetric flux is governed by Darcy’s law:

ṽ f = − ks

μ f
(∇ p + g · ∇z) , (14)

where ks is the permeability and μ f is the dynamic viscosity. We note that the velocity in θ

is still the fluid velocity, and not the volumetric flux ṽ f , and also that our energy balances
for the porous media case are less general than those derived above for a pure fluid. We have
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made three primary assumptions. First, we have assumed that there are no heat sources such
as radioactive substances or sources of electromagnetic radiation (when we used Fourier’s
law of conduction to replace q). Second, we have assumed a rigid solid matrix. Third, we
have neglected viscous work in comparison with other forms of work done by the fluid.

2.3 The Joule–Thomson Coefficient

In the following sections, we will discuss simulation results in terms of the Joule–Thomson
coefficient,

μJT ≡
(

dT

d p

)
h
, (15)

which can also be expressed as

μJT = (T α − 1)
1

ρcp
. (16)

Formula (16) follows from the derivation in Appendix B when g is set to zero. Here α is
the thermal expansivity at constant pressure and cp is the specific heat at constant pressure
(Pippard 1957). For water, μJT is negative at temperatures below approximately 250◦C,
which implies an increase in temperature of approximately 2.2 ◦C per 10 MPa drop in
pressure at 20 ◦C for a constant enthalpy process. Wood and Spera (1984) highlight the
importance of the same effect in connection with adiabatic decompression of certain geologic
aqueous fluids. For example, they show that for salt water the increase in temperature with
decreasing pressure can be even more pronounced. Figure 1 shows the magnitude of the
Joule–Thomson coefficient as a function of temperature at four different pressures, generated
from the NIST/ASME Steam properties database version 2.2 (2002). We note also that for
the non-ideal gases hydrogen and helium (where α does not equal 1/T), μJT is negative at
room temperature, causing decompressing hydrogen to heat (Kestin 1979).

Fig. 1 Increase in the
Joule–Thomson coefficient as a
function of temperature and
pressure
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3 Examples and Discussion

The need to include gravitational potential energy in certain fluid flow calculations was exem-
plified by an error in the authors’ own code. Oceanic bottom water is quite near the freezing
point, so that neglecting the potential energy and thus miscalculating the pressure/temperature
relationship of sinking fluid can lead to water spuriously freezing as it flows into the crust
from the seafloor. Fluid freezing caused the finite-element code FEHMN (Zyvoloski 2007) to
crash as the temperature went beyond the expected limits of the fluid property lookup tables.

In this section, we present simple simulations that clearly show the differences in solution
behavior when the corrected (12) versus the uncorrected (13) energy balances are employed.
Simulations are run using FEHMN and the integrated finite-difference code MAGHNUM
[Travis et al. (1991), Travis et al. (2003), Travis et al. (2012)] with modifications to explore
the effects of using different formulations of the energy balance. The unmodified codes use
the enthalpy formulation (13); to incorporate (12), we add the gz term in the appropriate
subroutine. In both cases, the enthalpy is calculated using a lookup table in which fluid
enthalpy is given as a function of temperature and pressure.

The first important case involves the rapid removal of water from depth in geothermal
energy production simulations. Simulations employing only the enthalpy formulation of the
energy balance (13) could add more than 2◦C per kilometer in the extracted water relative
to simulations using the methalpy formulation, leading to overestimates of energy efficien-
cies for a geothermal power plant. Such overestimation could have potentially devastating
consequences for the economic feasibility of such installations.

We model upward flow driven by a fixed pressure gradient. The domain is a two-
dimensional box, 1,000 m on each side, composed of a homogeneous porous medium. The
computational grid consists of 2500 nodes with a spacing of approximately 4 m in both the
horizontal and vertical directions. The bottom of the domain (z = 0) is fixed at 11.5 MPa and
2 0◦C, while the top of the domain (z = 1,000 m) is fixed at 1.0 MPa and 20 ◦C. The sides
of the system are subject to zero heat and zero mass flux boundary conditions. Permeability is
set to 10−10 m2, porosity is set to 0.2, and thermal conductivity is set to 0.1 W/(m K) to limit
thermal conduction effects. Via Darcy’s law these parameters generate a one-dimensional
upward volume flux of q = 6.3 × 10−5 m/s. With this reference setup, we run simulations
with FEHM using the enthalpy formulation (13) and again using the methalpy formulation
(12). For an inter-code comparison, the simulations are repeated using MAGHNUM. In these
simulations, we neglect the kinetic energy part of θ . This is justified because the relevant
velocities are small, and thus the velocity squared is of second order smallness. On the other
hand, the potential energy term remains non-negligible. The results of these simulations are
shown in Fig. 2.

To understand these results, we note that (13) takes the approximate form

∂(ρvh)

∂z
≈ 0, (17)

because the initial temperature and pressure profiles are already steady state solutions of the
mass and energy balance equations. Equation (17) implies that the enthalpy is approximately
constant throughout the column, as the volumetric flux is constant and the liquid density
is approximately constant. The constancy of the enthalpy implies that the Joule–Thomson
coefficient can be used to calculate the temperature difference between the bottom and top of
the system. An average value of μJT for this system is about −0.22 ◦C/MPa, which combined
with a decrease in pressure of about 10 MPa should result in a temperature increase of about
2.2 ◦C. This increase is evident in Fig. 2 for the simulations using the enthalpy-based energy
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Fig. 2 Temperatures with
elevation in simulations of
upflow in a 1 km stack of porous
material

balance. In contrast, Eq. (12) takes the approximate form

∂(ρvθ)

∂z
≈ 0, (18)

and a similar argument to that above shows that θ is approximately constant throughout
the column. Therefore, in this case, the relevant quantity for calculating the increase in
temperature from the bottom to the top is

(
∂T

∂p

)
θ

= μJ T − g

cp

(
d p

dz

)−1

. (19)

We prove this relation in Appendix B, and for brevity refer in general to those parts of
fluid temperature changes represented by (16) or (19) as “Joule–Thomson effects.” For the
parameters in our simulations, the term in (19) involving gravity almost exactly cancels μJ T ,
explaining why the temperature is constant in the column when the methalpy formulation
is employed. Finally, because both of the above simulations are focused on the steady state,
we note that the results are not sensitive to different permeabilities or pressure gradients
(as long as the pressure does not vary over such a large range that the density is no longer
approximately constant in the column).

For the second case, we made a comparison between the enthalpy versus methalpy for-
mulations for a thermal convection simulation. This particular simulation is from a study of a
hypothetical aquifer on Mars (Travis et al. 2003). Apart from reduced gravity, similar condi-
tions could be found on Earth (for much shallower systems). The Martian aquifer simulation
is ideal for testing differences between the two formulations because of the low temperature
gradient that exists over a large vertical distance. A 2-D geometry, 10 km wide and 10 km
deep, with depth-dependent permeability and porosity is subjected to a constant bottom heat
flux of 30 mW/m2, while the surface temperature is maintained at 10 ◦C.

123



Joule–Thomson Effects on the Flow of Liquid Water

Fig. 3 Comparision of kinetic energy versus time in a 10 km × 10 km convection cell, enthalpy versus
methalpy formulations

The porosity and permeability in the Martian subsurface are assumed to decrease expo-
nentially with depth, as is observed in Earth systems, dropping from that of loose soil at
the surface to that of unfractured igneous and metamorphic rock at 10 km depth. Following
a model widely used in the planetary science community, the permeability is taken to vary
according to

k = k0e−3d/D, (20)

where D is a scale depth of 2.8 km, d is depth in km, and the naught subscript refers to the
surface value; similarly, porosity varies as

φ = φ0e−d/D . (21)

Travis et al. (2003) perform a parameter study in which permeability and porosity are varied
along with other variables. For the following example, we use a surface permeability of 10−10

m2 (corresponding to sand/sandy gravel) and a surface porosity of 35 %. The permeability
decreases to about 2 × 10−15 m2 and the porosity to slightly less than 1 % by 10 km depth.
The average permeability over the total depth is about 2.4 × 10−14 m2, while the average
porosity is about 5 %.

The simulations based on the enthalpy and methalpy formulations differ in noticeable
ways. Figure 3 shows the total system kinetic energy versus time. After an initial strong over-
turn, both formulations exhibit oscillations. For the methalpy formulation, the oscillations
follow a regular period, while for the enthalpy formulation, the oscillations are not charac-
teristic of a single frequency. The average magnitude is about the same in both formulations;
however, the two formulations are out of phase by the end of the simulation time (1.89 Ma).
Figure 4 shows the horizontally averaged temperature versus depth after 1.89 Ma of simula-
tion time for the two formulations with significant differences apparent. The methalpy case
is generally warmer, with a higher average basement temperature. The enthalpy formulation
curve is 3–4 ◦C cooler throughout the interior region. Figure 5 shows color-coded plots of
the temperature distribution after 2 Ma of simulation time for the two cases, with the color
range representing 8◦C (violet) to 60 ◦C (red). The patterns are not identical, and these plots
corroborate the information in the kinetic energy plots that show the two cases are not in
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Fig. 4 Comparison of the horizontally averaged temperature in 10 km × 10 km convection cell at 1.89 Ma,
enthalpy versus methalpy

Fig. 5 Temperature contours in a 10 km × 10 km convection cell at 1.89 Ma, enthalpy versus methalpy
formulations

the same phase after 1.89 Ma of simulation time. The warmer interior and basement for the
methalpy formulation are again evident.

We now derive a criterion that is sufficient to determine when the gravitational energy can
be neglected in the energy balance. Subtracting the left hand side of (6) from that of (5) gives
the remainder

∂(ρgz)

∂t
+ ∇ · (ρgzv), (22)

and gravitational energy can be neglected if these terms are small compared to the corre-
sponding terms
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∂

∂t

(
ρh + 1

2
ρv2

)
+ ∇ ·

[(
ρh + 1

2
ρv2

)
v
]

. (23)

Let 
ρ, 
(ρh), and 
(ρv2) be the largest changes in these quantities over either the char-
acteristic temporal or spatial scales involved in a problem. Then the gravitational potential
energy can be neglected if

gz
ρ


(ρh) + 1
2
(ρv2)

= gz

(ρh)


ρ
+ 1

2

(ρv2)


ρ

� 1. (24)

As expected, this relation will not hold if z or the gravitational acceleration is too large,
though the domain over which z may vary is increased if either of the fractional terms in the
denominator is large.

In addition to the cases presented above, the following examples highlight areas that may
be of further interest:

• Lateral flow driven by large horizontal pressure gradients arising from plate tectonics
could lead to water heating as it flows from high to low pressure regions. This process
may help to explain high temperatures found in fluids in the toe regions of accretionary
prisms (Fisher and Hounslow 1990).

• Flow in overpressured hydrocarbon traps.
• Flows impacting the stability of seafloor methane hydrates.
• Geologic CO2 sequestration (Pruess 2008), especially industrial-scale CO2 storage (Deng

et al. 2012).
• Flows that occur near a phase transition.
• Flows that include chemical and biological reactions (biogeochemical reactions are gen-

erally very sensitive to temperature).

We have shown that there are important situations where geoscientists must be aware of Joule–
Thomson effects and be able to knowledgeably model conservation of energy. Because of the
non-linear relationship between pressure, temperature, and the Joule–Thomson coefficient
combined with competing effects of thermal conductivity and flow rate, we suggest that
simulations performed with an incorrect energy balance should be examined on a case-by-
case basis to determine the significance of the correction.

As shown in the examples, the addition of a gravity term to the conservation of energy
equation can produce significantly different results when, during a simulation, fluid travels
large distances vertically. The term is easy to add to an existing simulator by including the
gravity × height term immediately after the enthalpy of any fluid is calculated. The same term
must also be added to any energy boundary conditions, but only for conditions that produce
inflow. Because the added term is constant in time and never depends on any independent
variable, performance of any iterative solution method (e.g., Newton–Raphson) is unaffected.
Similarly, extension of our approach to 3D should pose no new problems; investigations of
3D effects due to inclusion of the gravitational potential in the energy balance may be worthy
of future study.

4 Conclusions

We have presented the correct form of the energy balance to use when modeling the fully
coupled thermodynamics of liquid water, and shown that this formulation involves methalpy
in place of enthalpy, the methalpy including a term for gravitational potential energy. Further-
more, we have shown that there are important situations where geoscientists must be aware

123



P. H. Stauffer et al.

of Joule–Thomson effects and be able to correctly model conservation of energy. Without
the correction for gravitational potential energy, models can exhibit strange behavior due to
spurious Joule–Thomson effects. Oceanic bottom water being drawn down into a fractured
system will cool by approximately 2 ◦C per kilometer and simulations of focused convec-
tion into the seafloor may lead to freezing, a result that is not physically realistic. More
importantly, miscalculation of withdraw temperatures for geothermal power plants using an
incorrect form of the energy balance may impact calculated operating efficiencies. Addi-
tionally, Martian groundwater convection simulations were used to compare enthalpy- and
methalpy-based energy balances in an environment that helps to accentuate the differences
between the two formulations. The comparison shows that the methalpy formulation can lead
to noticeably different results, including the temperature distribution within the domain and
the character of long-term oscillations in the total kinetic energy of the system.

The corrected energy balance does exhibit Joule–Thomson effects in both vertical and hor-
izontal fluid flow. These effects may be important for understanding heat flow in accretionary
prisms or continental collision zones. Simulations of fluid flow and chemical transport near
overpressured oil reservoirs may also be affected by Joule–Thomson effects.

Finally, the non-linear relationship between pressure, temperature, and the Joule–Thomson
coefficient combined with competing effects of thermal conductivity and flow rate lead us to
suggest that simulations performed with an incorrect energy balance should be examined on
a case-by-case basis to determine the significance of the correction.
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Appendix A

Equation (11.1-7) from Bird et al. (1984) is, in our notation,

∂

∂t

[
ρ

(
u + 1

2
v2

)]
= −∇ ·

[
ρv

(
u + 1

2
v2

)]
−∇ ·q−∇· (pv)−∇ · (τv)+ρ(v ·g). (25)

If we define
	 ≡ gz (26)

then the term ρ(v · g) can be written as

ρ(v · g) = −ρv · ∇	 = −∇ · (ρv	) + 	∇ · (ρv). (27)

On the other hand, the mass balance equation for the fluid is

∂ρ

∂t
+ ∇ · (ρv) = 0. (28)

Solving (28) for ∇ · (ρv) and substituting the result into the rightmost term in (27) yields

ρ(v · g) = −∇ · (ρv	) − 	
∂ρ

∂t
= −∇ · (ρv	) − ∂(	ρ)

∂t
. (29)

Substituting (29) into (25) and rearranging yields

∂

∂t

[
ρ

(
u + 1

2
v2 + 	

)]
= −∇ ·

[
ρv

(
u + 1

2
v2 + 	

)]
−∇ ·q−∇· (pv)−∇ ·(τv). (30)
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Integrating this equation over a volume V and using the divergence theorem on all terms
involving ∇ results in (1).

Appendix B

From Eq. (2), and neglecting the kinetic energy term, the differential of θ is

dθ = dh + gdz. (31)

Using the definition h ≡ u + p/ρ, it is easy to show that

dh = T ds + 1

ρ
d p, (32)

where s is the specific entropy. Moreover, considering s as a function of temperature and
pressure leads to

ds =
(

∂s

∂T

)
p

dT +
(

∂s

∂p

)
T

d p (33)

Combining (31), (32), and (33) results in

dθ = T

(
∂s

∂T

)
p

dT +
[

T

(
∂s

∂p

)
T

+ 1

ρ

]
d p + gdz. (34)

Using the identity

T

(
∂s

∂T

)
p

=
( –dQ

dT

)
p

≡ cp, (35)

and the Maxwell relation

αρ ≡
(

∂ρ

∂T

)
p

= −
(

∂s

∂p

)
T

, (36)

equation (34) becomes

dθ = cpdT + (1 − αT )
d p

ρ
+ gdz. (37)

Hence, for a constant methalpy process we have
(

∂T

∂p

)
θ

= (T α − 1)
1

ρcp
−

(
g

cp

d p

dz

)−1

≡ μJ T − g

cp

(
dp

dz

)−1

. (38)
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