Scalable Network Simulations

Nalini Kumar
Graduate Student, University of Florida
PSAAP II Center for Compressible Multiphase Turbulence (CCMT)
NSF Center for High-Performance Reconfigurable Computing (CHREC)

2015 Salishan Random Access Session
CCMT Center Goals

- To radically advance the field of CMT*
- To advance predictive simulation science on current and near-future computing platforms with uncertainty budget as backbone
- To advance a co-design strategy that combines exascale emulation, exascale algorithms, exascale CS
- To educate students and postdocs in exascale simulation science

* Compressible Multiphase Turbulence

Slide courtesy T.L. Jackson, Technical Manager, CCMT
Early conversations in our meetings

- Developing scalable software
 - What programming model do we use?
 - What is the measurable benefit of switching from MPI-only application to MPI+X?
 - Will we have to develop and optimize key kernels for each platform?
 - What affect will the future memory technologies have on our application? How can we better decompose the app to maximize the benefit from next-gen memories?

- Optimizing app for high performance and low energy consumption
 - We don’t have the devices for experimentation, we don’t have the time to do cycle-accurate simulations, do we have analytical performance and energy models?

What we need is a tool that allows fast, scalable, reasonably accurate multi-objective simulation of architectures that are not available yet!

... and preferably we do not need to write a lot of code before doing this exploration.
Co-Design Using Behavioral Emulation

Application Design-space Exploration

CMT-bone

Key
CMT-bone kernels & comm patterns

Architecture Design-space Exploration

Future-gen Systems & Notional Architectures

Notional systems exploration

Systems & Architectures

(system (macro-scale))

(node (meso-scale))

device (micro-scale)

Behavioral simulation (SW) or emulation (HW) experimentation

Testbed benchmarking & experimentation

Application BEOs*
AppBEOs

Architecture BEOs*
ArchBEOs

Simulation Emulation Platform

init (device);
mem_init (A);
mem_init (B);
broadcast (A,comm_grp);
scatter (B,B*,comm_grp);
compute (dot_product,A,B*);

* BEO – Behavioral Emulation Object
Behavioral Emulation

- Multi-scale, coarse-grained, component-based simulation methodology
 - We have a functional PDES which allows exploration *using plug-and play models*
 - A key concern is to allow *model calibration from any source* – testbeds, detailed simulations, analytical models etc.
 - One advantage of working in a multi-disciplinary center is the focus on verification and validation of simulations – *device-level simulation results on my poster*

- Developing a highly-scalable simulator is a big-task, probably not the best thing to spend our time doing
 - Can we leverage existing simulators but use our approach to modeling?
 - Reduce development and support effort, and possibly leverage existing models developed by other users of the tool
We are looking at SST* for supporting scalable network simulation

1. Develop abstract end-point models ‘motifs’ for the various communication routines used in CMT-Nek
 - Identified routines: Nearest-neighbor communication using pairwise exchange, all-to-all using crystal routing, allreduce, bcast etc.

2. Of course we need to validate the simulation results:
 - Full application is too complex and cumbersome to do targeted study, so we developed a mini-app ‘CMTBone’ for in-house use

3. Understand the sensitivity of simulations to the various model parameters
 - Our hope is to reduce the number of component models, parameters, and events being simulated
 - It has to be good enough to provide a first-order approximation of performance which can enable application developers to do some early design space exploration

* Structural Simulation Toolkit