Bend but don’t break: Prospects for resilience without recovery in algorithms for hyperbolic systems

2015 Salishan Conference on High-Speed Computing
28 April 2015

J. A. F. Hittinger and J. Loffeld
Don’t perform CPR (Check-Point Restart) if you don’t have too!

- Scalable *Detect and Rollback* strategies are necessary for some types of faults
 - Node failures
 - Soft faults leading to segfaults, kernel panics, unrecoverable corruption in data
- Some Silent Data Corruptions (SDC) allow for more nuanced responses
 - Local re-computation may be more efficient
 - Masked errors may need no correction

Let’s consider SDC resulting from transient errors in computations

Credit: Ilin Sergey/Shutterstock
Some iterative solver algorithms can compute through Silent Data Corruptions

- Fault-tolerant variants of iterative solvers such as FT-GMRES [1] and Algebraic Multigrid (AMG) [2] provide “eventual” convergence
- Suitable for parabolic (diffusion) and elliptic (equilibrium) problems

Can we just “compute through” SDCs with algorithms for hyperbolic problems?

Hyperbolic systems of equations describe wave propagation phenomena.

We will consider hyperbolic systems of conservation laws (HSCL) that admit shocks.
Hyperbolic systems have a different character – and require different algorithms

Parabolic
- Dissipative – “to slump”
- *Infinite* wave speeds
- Global coupling
- Advanced *implicitly*
- Discretization leads to *coupled system* of algebraic equations
- Requires nonlinear and linear solvers *for the system*
- Solvers are often *iterative*

\[M u^{n+1} = N u^n \]

Hyperbolic
- Non-dissipative
- *Finite* wave speeds
- *Finite* domain of dependence/influence
- Advanced *explicitly*
- Discretization leads to *local* update equations
- Nonlinear or linear solver use is strictly local (if at all)
- Solvers are *direct*

\[u^{n+1} = N u^n \]

We can’t rely on iteration to control SDCs for hyperbolic systems
However, shock-capturing algorithms have potentially useful features

- **Artificial dissipation**
 - Nonlinearity pumps energy into higher wavenumbers
 - Eventually, these wavenumbers cannot be resolved on a fixed grid
 - Strongly damp anything not well-resolved

- **Smoothness detection**
 - Higher-order schemes produce unphysical oscillations at shocks
 - Preserve monotonicity at shocks by dropping order
 - Requires detecting the smoothness of the solution

\[u_t + uu_x = 0 \]
\[u(x, 0) = 2 + \cos(\pi x) \]

How can we take advantage of these existing techniques?
Standard shock-capturing algorithms already provide some robustness against SDC

- **Godunov method with Van Leer limited slope reconstruction (MUSCL)**
- $O(1)$ spike added to single flux near $x = 0$ every 30 time steps
- Solution remains stable
- Spike is mostly damped in a dozen time steps
- Solution shows some permanent distortion

Can we fortify these methods to deal with SDC more effectively?
Physical simulations *always* have error

Remember that all models are wrong; the practical question is how wrong do they have to be to not be useful.

What’s one more error among friends?

Emel Ataç Tunaboylu, Dreamstime.com
We can use the fact that many approximations are made to simulate physical systems.

$$u(x, t) = u^n_i + \epsilon_T + \epsilon_R + \epsilon_F$$

- **Truncation Error**
- **Iteration Error**
- **Roundoff Error**

Mathematical Model ➔ **Discrete Approximation** ➔ **Approximate solvers** ➔ **Finite-precision arithmetic**

We don’t care about SDCs if they are smaller than the other (controlled) errors in our approximation.

NB: Stability means that the solution process does not amplify errors.
Each time step for a Hyperbolic System of Conservation Laws has three main components:

1. **Exact conservative update**

 $$\overline{u}_j^{n+1} = \overline{u}_j^n - \frac{\Delta t}{\Delta x} \left[\hat{f}_{j+1/2} - \hat{f}_{j-1/2} \right]$$

2. **Approximate interface flux**

 $$\hat{f}_{j+1/2} = g_{j+1/2}(\overline{u}_j^n) + \mathcal{O}(\Delta x^p) + \mathcal{O}(\Delta t^q)$$

3. **HSCL in flux-divergence form**

 $$u_t + \nabla \cdot f(u) = 0$$

The algorithm:

```
while t ≤ t_{final} do
    Compute approximate fluxes
    Compute conservative update
    Compute next time step
end
```

Where most cost is incurred:

- Changes solution state
- Important to make progress

Protecting each of these ensures protection of entire step.
The growth of time steps is already limited

Time Step Algorithm

for each cell
 - Compute Δt_j
 - if $\Delta t_{\text{stable}} > \Delta t_j$
 - $\Delta t_{\text{stable}} := \Delta t_j$
 - end if
end for

$\Delta t^{n+1} := \min(\sigma \Delta t_{\text{stable}}, (1+\beta) \Delta t^n)$

- Time steps are constrained globally by local *linear* stability:
 $$\Delta t_j = C \Delta x / \lambda_j$$
 $$\Delta t_{\text{stable}} = \min_j \Delta t_j$$
 $\lambda_j : \text{max wave speed in cell } j$

- Too large a time step will cause (detectable) blow-up

Only a fraction of the stable time step is taken
$\sigma \approx 0.9$

Relative time step growth is clamped
$\beta \approx 0.1$

The real concern is to protect against overly severe time step restrictions
Time steps can be protected by using history information and piecewise smoothness

- Too small a time step limits progress
- Use a floor to detect sudden reductions

\[\Delta t_{\text{stable}} \leq (1 - \alpha) \Delta t^n \]

Detect and Correct

- Store location of minimum \(\Delta t \)
- On detection, recompute minimum \(\Delta t \)
- If value not repeated, redo full \(\Delta t \) computation

Detect and Defer

- Store previous time step \(\Delta t^{n-1} \)
- Log detection on step \(n \)
- If time step recovers, use smaller of \(\Delta t^{n-1} \) and \(\Delta t^{n+1} \)
- Cost is extra update step(s)

<table>
<thead>
<tr>
<th>Box Length</th>
<th>Total Cost per Step (s)</th>
<th>Total Cost to Compute (\Delta t) (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16x16</td>
<td>0.74</td>
<td>0.004</td>
</tr>
<tr>
<td>256x256</td>
<td>123.6</td>
<td>0.96</td>
</tr>
</tbody>
</table>

Measurements from Chombo 2D PPM Gas Dynamics code

- Can afford loose criteria since cost of detection is very small
- Cost to recompute is less than 1% of a full update step

Detect and Correct is preferable
Conservation properties of the solution are local checksums that can protect the update.

Discrete Conservation means (1D):

\[
\sum_{j=1}^{N} \tilde{u}_{j}^{n+1} = \sum_{j=1}^{N} \tilde{u}_{j}^{n} - \frac{\Delta t}{\Delta x} \left(\hat{f}_{N+1/2} - \hat{f}_{1/2} \right)
\]

- During update, compute net fluxes
- After update, compute new net conserved value
- Compare to old net value
- On failure, redo check and/or step
- Cost of check is negligible

<table>
<thead>
<tr>
<th>Box Length</th>
<th>Total Cost per Step (s)</th>
<th>Cost to check (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16x16</td>
<td>0.74</td>
<td>0.005</td>
</tr>
<tr>
<td>32x32</td>
<td>2.32</td>
<td>0.014</td>
</tr>
<tr>
<td>64x64</td>
<td>8.47</td>
<td>0.04</td>
</tr>
<tr>
<td>128x128</td>
<td>32.6</td>
<td>0.16</td>
</tr>
<tr>
<td>256x256</td>
<td>123.6</td>
<td>0.62</td>
</tr>
</tbody>
</table>

Measurements from Chombo 2D PPM Gas Dynamics code

NB: Conservation is insufficient to ensure convergence to the correct solution!
Protecting computationally intensive flux calculations ensures consistency

\[\hat{f}_{j+1/2} = g_{j+1/2}(\bar{u}^n) + O(\Delta x^p) + O(\Delta t^q) \]

- Limited high-order corrections using local smoothness of solution:

 - Nonlinear solution reconstruction (MUSCL, PPM, ENO/WENO) alters stencil or falls back to first-order

 - Nonlinear blending of first- and high-order fluxes (FCT) falls back to first-order

- Determination of the flux at each interface often involves (approximate) solution of a Riemann problem

\[du_j = \bar{u}_j - \bar{u}_{j-1} \]
\[\tilde{du}_j = \text{minmod} (du_j, du_{j+1}) \]
We can use similar detectors to identify possibly incorrect fluxes

- Fluxes are piecewise continuous
- Use changes in local curvature to detect possible “glitches” in fluxes
- Curvature:
 \[d^2g_{i+1/2} = g_{i+3/2} - 2g_{i+1/2} + g_{i-1/2} \]
 Possible “glitch” if curvature changes sign twice over three successive points
- If flux is not between fluxes evaluated at left and right bounding states, it is an extrema or corrupted
- In this case, replace flux with low-cost first-order flux, e.g. HLLE

This “hides” large corruptions beneath an ordered error
Any remaining corruptions will be bounded by at least by first-order errors

\[f(\bar{u}_j) \leq g_{j+1/2} \leq f(\bar{u}_{j+1}) \]
\[\Rightarrow \quad O(\Delta x) \leq g_{j+1/2} - \hat{f}_{j+1/2} \leq O(\Delta x) \]

- We can do better!
- Continuity of the flux implies that the average value based on neighbors will be a second-order approximation
- Improve bounded candidate flux if it is closer to a bound than to the average
- In this case, replace with the average

\[g_{j+1/2}^{\text{avg}} = \frac{1}{2} \left[g_{j-1/2} + g_{j+3/2} \right] \]

This “hides” bounded corruptions beneath an ordered error
Preliminary results indicate the flux correction process is effective for Burgers’ equation.

- One error injected at $t \approx 1.1/\pi$
- Both $O(1)$ and $O(\Delta f)$ size errors
- Total verification cost will be lower for more complex flux functions
- Number of critical points is fixed, so % cost decreases with increasing N

<table>
<thead>
<tr>
<th>N</th>
<th>Avg Flux Calc Cost (s)</th>
<th>Cost to verify (s)</th>
<th>% of Flux cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>1.6e-04</td>
<td>2.4e-04</td>
<td>150</td>
</tr>
<tr>
<td>100</td>
<td>3.0e-04</td>
<td>1.6e-04</td>
<td>53</td>
</tr>
<tr>
<td>200</td>
<td>5.9e-04</td>
<td>7.9e-05</td>
<td>13</td>
</tr>
<tr>
<td>400</td>
<td>1.1e-03</td>
<td>8.3e-05</td>
<td>7.5</td>
</tr>
<tr>
<td>800</td>
<td>2.2e-03</td>
<td>1.1e-04</td>
<td>5</td>
</tr>
</tbody>
</table>

Roughly 100x decrease in max error with verification.
The prospect for making algorithms for hyperbolic systems tolerant to SDCs is good

- Complete elimination of SDCs is not necessary!
 - Don’t restart, even locally, if you don’t have to
 - Sacrifice some accuracy for robustness: mask faults with controllable numerical errors
 - Let stabilizing aspects of schemes control masked SDCs
Acknowledgments

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Applied Mathematics program as part of the Resilient Extreme-Scale Solvers initiative, Karen Pao, program manager.

Image sources on slide 4:
[a] NASA, ESA, CXC, SAO, the Hubble Heritage Team (STScI/AURA), and J. Hughes (Rutgers University), http://hubblesite.org/gallery/album/entire/pr2010027c/
[b] BBC, http://newsimg.bbc.co.uk/media/images/47480000/jpg/_47480955_explosion1_copy.jpg