Computational Challenges in Geological Storage of Carbon Dioxide

Michael A. Celia
Princeton University

Jan Nordbotten (U. Bergen and Princeton U.)
Sarah Gasda (U. North Carolina)
Mark Dobossy (Princeton U.)
Stefan Bachu (Alberta Research Council)
Three Main Points

1. CCS is necessary for 'Clean Coal'
2. CCS simulations controlled by computational limitations.
3. Large parametric uncertainties dominate the problem.
Outline

• Overview of the Carbon Problem
• Geological Storage and Leakage Estimation
• Computational limitations and model simplifications
• Example Application
• Conclusions
The Carbon Problem

>650,000 years
CO₂ Emissions

Current Global Emissions: ~30 Gt CO₂/yr ≈ 8 Gt C/yr
Projected Emissions (2059): ~60 Gt CO₂/yr ≈16 Gt C/yr
Stabilization Wedges

Billions of Tons Carbon Dioxide Emitted per Year

1 Wedge = 25 Gt C

Interim Goal

16 GtC/y

Eight “wedges”

How to Achieve One Wedge

1. Increase fuel efficiency of 2 billion cars from 30 mpg to 60 mpg.
2. Replace 1,400 large-scale coal power plants with natural gas plants.
3. Add twice today’s nuclear power, replacing coal.
4. Install CCS at 800 large-scale coal power plants.
5. Drive 2 billion cars on Ethanol, using one-sixth of cropland worldwide.
7. Increase Wind Power 25-fold, displacing coal.
How to Achieve One Wedge

1. Increase fuel efficiency of 2 billion cars from 30 mpg to 60 mpg.
2. Replace 1,400 large-scale coal power plants with natural gas plants.
3. Add twice today’s nuclear power, replacing coal.
4. Install CCS at 800 large-scale coal power plants.

"We conclude that CO₂ capture and sequestration (CCS) is the critical enabling technology that would reduce CO₂ emissions significantly while also allowing coal to meet the world's pressing energy needs." (The Future of Coal, MIT, 2007)
Carbon Capture and Storage

- Current Number of Coal Plants Worldwide: 2,200

- Rate of building in China: 1-2 per week.

- Rate of building in US: <10 per year

- Potential number of wedges from CCS: 3 to 5.

- All projections of carbon reductions include a significant fraction from CCS.

- We need to understand the many aspects of CCS.
Storage in Deep Saline Aquifers

- Injected Supercritical CO$_2$:
 - Slightly miscible with brine (*solubility limit* ~4%)
 - Less dense than brine (*density ratio* 0.25 to 0.75)
 - Less viscous than brine (*viscosity ratio* 0.2 to 0.02)
 - Water can evaporate into (dry) CO$_2$.

- Geochemistry, Geomechanics, Nonisothermal, …
Standard Governing Equations

- Mass balance for component \(i \) in phase \(\alpha \):

\[
\frac{\partial}{\partial t} \left(\rho_\alpha \varphi S^\alpha \omega_i^\alpha \right) + \nabla \cdot \left(\rho_\alpha \mathbf{q}_\alpha \omega_i^\alpha \right) - \nabla \cdot \rho_\alpha \varphi \mathbf{D}_i^\alpha \cdot \nabla \omega_i^\alpha = F_i^\alpha
\]

- Geochemical Reactions:

\[
\begin{align*}
CO_2(g) & \leftrightarrow CO_2(aq) \\
CO_2(aq) + H_2O & \leftrightarrow H_2CO_3(aq) \\
H_2CO_3(aq) & \leftrightarrow H^+(aq) + HCO_3^-(aq) \\
HCO_3^-(aq) & \leftrightarrow H^+(aq) + CO_3^{2-}(aq)
\end{align*}
\]

- Geomechanics

- Non-isothermal Effects

- Monitoring, Inverse Problems, …
Equations of State

\[\omega_{CO_2}^B = \omega_{CO_2}^B \left(p_\alpha, T_\alpha, \omega_{salt}^B \right) \]

\[\mu_\alpha = \mu_\alpha \left(p_\alpha, T_\alpha, \omega_i^\alpha \right) \]

\[\rho_\alpha = \rho_\alpha \left(p_\alpha, T_\alpha, \omega_i^\alpha \right) \]
Plume of Injected CO$_2$
Worldwide Density of Oil and Gas Wells

Number of Wells Drilled per ~10,000 km²

1 - 100 100 - 300 300 - 1,000 1,000 - 4,400 4,400 - 23,400 23,400 - 61,000 No Wells/Data

From IPCC SRCCS, 2005
Injection and Leakage

- How to model this system?
- Domain Size: 1,000 km²
- Leakage Pathways: 0.001 m².
- Flow Properties along well highly uncertain.
- Possible Material Degradation.

(From Duguid, 2006)
Numerical Modeling

Standard Simulations
- Need grid refinement around each well
- Need vertical resolution for multiple layers
- Minimum of hundreds of millions of grid cells.

Computational Options
- Upscale parameters in grid blocks with wells (*Gasda and Celia, 2005*)
- Local grid refinement / Local time stepping (*Gasda, 2007*)
- Dual-media approach around wells (*Gasda, 2007*)
- Simplified governing equations (*Nordbotten, Celia, …*)
Possible Simplifications

1. Macroscopic Sharp Interface
2. Vertical Equilibrium (structured vertical velocity)
3. Separation of Time Scales (focus on early time)
 a) Ignore bulk geochemistry
 b) Ignore non-isothermal effects

$$\phi(1 - S^\text{res}_B) \frac{\partial h}{\partial t} + \frac{\partial}{\partial x}\left[\bar{q}^C_x\right] + \frac{\partial}{\partial y}\left[\bar{q}^C_y\right] = -q^C_{\text{leak}}$$

$$\phi(1 - S^\text{res}_B) \frac{\partial (H-h)}{\partial t} + \frac{\partial}{\partial x}\left[\bar{q}^B_x\right] + \frac{\partial}{\partial y}\left[\bar{q}^B_y\right] = q^B_{\text{leak}}$$

$$\bar{q}^C = -h \frac{k k_{rel}^C (1 - S^\text{res}_B)}{\mu_C} \left(\nabla p_{\text{bot}} - \rho_B g \nabla H - (\Delta \rho) g \nabla h + \rho_C g \nabla z_{\text{top}}\right)$$

$$\bar{q}^B = -(H-h) \frac{k}{\mu_B} \left(\nabla p_{\text{bot}} + \rho_B g \nabla z_{\text{bot}}\right)$$
Numerical Solutions

Solve for $p(x,y,t)$, $h(x,y,t)$
Possible Simplifications

4. Locally constant fluid properties
5. Large-scale layering and concentrated leakage pathways dominate
6. Parameter uncertainty is important
7. Formations are horizontal and homogeneous
Analytical Solution

\[\Gamma \equiv \frac{2\pi \Delta \rho g k \lambda_w H^2}{Q_{in}} \]
\[\tau \equiv \frac{Q_{in} t}{2\pi H \phi (1 - S_{res})} \]
\[\lambda_1 \equiv \frac{\lambda_c}{\lambda_w}, \quad \lambda_2 \equiv \frac{\lambda_{cw}}{\lambda_w}, \quad \vartheta \equiv \frac{\rho_{cw} - \rho_c}{\rho_w - \rho_{cw}} \]
\[h' \equiv \frac{h}{H}, \quad i' \equiv \frac{i}{H} \]
\[\chi \equiv \frac{r^2}{\tau} \]

(From Nordbotten and Celia, *JFM*, 2006; See Celia and Nordbotten, 2009)
Similarity Solution: Simplified

When $\Gamma < 0.5$:

$$h'(\chi) = \frac{h(\chi)}{H} = \frac{1}{\lambda - 1} \left(\sqrt{\frac{2\lambda}{\chi}} - 1 \right)$$

$$\chi_{\text{min}} = \frac{2}{\lambda}$$

$$\chi_{\text{max}} = 2\lambda$$

(From Nordbotten and Celia, *JFM*, 2006)
A Semi-analytical Model

1. Injection Plume, Secondary Plumes and Pressure Fields: Similarity Solution (*Nordbotten and Celia, JFM, 2006*)

2. Leakage Dynamics: Multi-phase Darcy Flow along Leaky Well Segments (*Nordbotten et al., ES&T, 2005, 2008*)

3. Upconing around Leaky Wells (*Nordbotten and Celia, WRR, 2006*)

4. Grid-free solutions: We can now solve 50 years of injection over 2,500 km², 12 layers, and 1,200 wells in about 10 minutes.

\[
Q_{well} \propto K_{well} k(S_\alpha)(\frac{p_1 - p_2}{H} - \rho \alpha g)
\]
Study Area around Edmonton – Wabamun Lake
Leakage: Nordegg Formation

![Leakage: Nordegg Formation](image)
Recent Developments

- High-performance Implementation (Elsa)
 - Complete re-implementation of code in C++
 - Highly modular, very efficient

- Expanded Physics in Semi-analytical Model
 - Diffuse leakage of brine through caprock formations
 - Improved similarity solutions for low flow rates

- User-friendly Interfaces
 - Web-based interface for simple systems
 - Multiple formats for input

- Separate numerical sharp-interface code (VESA)
- Hybrid numerical-analytical multi-scale models.
Concluding Remarks

• Simplified models can be reasonable because:
 – Buoyancy provides strong vertical segregation
 – Risk of leakage is maximum during injection period
 – Large uncertainties in critical leakage parameters limit utility of detailed fine-scale simulation

• Fully coupled detailed models are appropriate for:
 – Fine resolution along critical leakage pathways
 – Computational upscaling for bulk parameters
 – Basic Science

• Important practical questions require practical models \(\Rightarrow\) Hybrid multi-scale models.
Thank You!

Layer Properties

<table>
<thead>
<tr>
<th>Aquifer Name</th>
<th>Depth [m]</th>
<th>Thickness [m]</th>
<th>Permeability [mD]</th>
<th># Wells</th>
<th>Max Inj Rate [Mt/year]</th>
<th>Wells reached by CO₂ plume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belly River</td>
<td>729</td>
<td>56</td>
<td>86</td>
<td>1237</td>
<td>2.8</td>
<td>197</td>
</tr>
<tr>
<td>Cardium</td>
<td>1052</td>
<td>15</td>
<td>7</td>
<td>1155</td>
<td>0.1</td>
<td>23</td>
</tr>
<tr>
<td>Viking</td>
<td>1288</td>
<td>30</td>
<td>53</td>
<td>900</td>
<td>1.7</td>
<td>200</td>
</tr>
<tr>
<td>Mannville</td>
<td>1462</td>
<td>65</td>
<td>7</td>
<td>895</td>
<td>1.0</td>
<td>43</td>
</tr>
<tr>
<td>Nordegg/Banff</td>
<td>1538</td>
<td>80</td>
<td>4</td>
<td>733</td>
<td>0.7</td>
<td>13</td>
</tr>
<tr>
<td>Wabamun</td>
<td>1629</td>
<td>160</td>
<td>4</td>
<td>138</td>
<td>1.1</td>
<td>1</td>
</tr>
<tr>
<td>Nisku</td>
<td>1882</td>
<td>72</td>
<td>170</td>
<td>39</td>
<td>21.4</td>
<td>31</td>
</tr>
<tr>
<td>Keg River</td>
<td>2507</td>
<td>22</td>
<td>3.5</td>
<td>11</td>
<td>0.2</td>
<td>0</td>
</tr>
<tr>
<td>Pika</td>
<td>2845</td>
<td>14</td>
<td>16</td>
<td>2</td>
<td>0.6</td>
<td>0</td>
</tr>
<tr>
<td>Basal Sandstone</td>
<td>2965</td>
<td>38</td>
<td>23</td>
<td>1</td>
<td>2.6</td>
<td>1</td>
</tr>
</tbody>
</table>
Effective Well Permeability

- **Fully Random:**
 - Bi-modal lognormal distribution
 - Vertical correlation structure

- **Soft Data and Well Scoring System:**
 - Watson and Bachu (2008) well scores
 - Conditional probability distribution

- **Direct Measurements:**
 - Approach of Gasda et al. (2008) and Crow et al. (2008)
 - We are beginning to integrate these into our modeling framework
Leakage: Basal Sandstone

Baseline sandstone

\[\log_{10} \text{fractional mass to surface} \]
Leakage: Nisku Formation

![Graph showing distribution of log10 fractional mass to surface for Nisku Formation. The graph has two modes, indicated by different colors, showing the distribution of data points.]