Energy Smart High Performance Computing

April 27-30, 2009

The Salishan Conference on High-Speed Computing

Moe A. Khaleel¹, Andrés Márquez¹, Landon Sego¹, Steve Elbert¹, Tahir Cader², Rashawn Knapp³, Karen Karavanic³

1. Pacific Northwest National Laboratory
2. Hewlett-Packard
3. Portland State University
Overview

- **Power Consumption Trends for Data Centers and HPC: The white elephant in the room**

- The Energy Smart Data Center (ESDC) at PNNL

- **Selected Research Topics at ESDC**
 - Advanced Cooling Solutions
 - Metrics
 - Power Aware Computing
National Challenge

- Current efficiency trends estimate energy use in data centers could double by 2011 from a 2006 baseline.

- A combination of improved operations, best practices and state of the art technologies could reduce electricity use by up to 55% compared to 2006 efficiency trends.

EPA Report to Congress on Server and Data Center Energy Efficiency
Released On August 2, 2007 and in response to Public Law 109-431

Proudly Operated by Battelle Since 1965
Excessive heat and insufficient power: Biggest concerns for data center managers

Source: AFCOM 2006. Five Bold Predictions For The Data Center Industry That Will Change Your Future [Keynote Slides]. AFCOM Data Center Institute
Top500 Power Consumption

- **TOP10 System**
 - Average power draw: 1.32 MW
 - Average power efficiency: 248 Mflop/s/W

- **TOP50 System**
 - Average power draw: 908 kW
 - Average power efficiency: 193 Mflop/s/W

- **TOP500 System**
 - Average power draw: 257 kW
 - Average power efficiency: 122 Mflop/s/W

Source: http://www.top500.org/lists/2008/06/highlights/power
Overview

- Power Consumption Trends for Data Centers and HPC: The white elephant in the room

- The Energy Smart Data Center (ESDC) at PNNL

- Selected Research Topics at ESDC
 - Advanced Cooling Solutions
 - Metrics
 - Power Aware Computing
Energy Smart Data Center

- Fully observable, almost fully controllable 700 sf Data Center
- Data Center integrated in a mixed used facility, sharing power distribution and cooling provisioning
- Over 1000 sensors providing data at the chip, server, rack, room and facility level.

http://esdc.pnl.gov
Device Under Test (Hardware): NW-ICE

- 192 servers, each with two 2.3 GHz Intel (quad-core) Clovertown, 16 GB DDR2 FBDIMM memory, 160 GB SATA local scratch, DDR2 Infiniband NIC
- Five racks with evaporative cooling at processors
- Two racks completely air cooled
- Lustre Global File System
 - 34TB mounted
 - 49TB provisioned
Measurement Harness

- Over 1000 sensors at the chip, server, rack, room and facility-level measuring air/liquid temperatures, humidity ratios flows, pressure differences and electric currents

- FRED software to monitor environmental data; based on in-house developed industrial strength supervision and diagnostic tool DSOM
Contributors to Power Consumption:

Power Distribution:
- Transformers
- Rectifiers
- UPS
- Inverters

Data Center:
- Power Management Modules
- Power Supply Units
- Voltage Regulators
Contributors to Power Consumption: Cooling Chain

Machine Plant:
- Pumps
- Chillers
- Cooling Towers
- Economizers

Data Center:
- Air Handlers
- Closely Coupled Cooling Systems
- HVAC
Power and Water Temperature Signatures
Overview

- Power Consumption Trends for Data Centers and HPC: The white elephant in the room
- The Energy Smart Data Center (ESDC) at PNNL

Selected Research Topics at ESDC

- Advanced Cooling Solutions
- Metrics
- Power Aware Computing
Advanced Cooling Solutions

► Challenges: evaluating existing cooling solutions for HPC
 - Are existing cooling solutions energy efficient?
 - Are best practices applied?
 - Do existing cooling solutions scale with high density racks?

► Our answers:
 - Evaluate advanced cooling solutions that act close to heat sources
 - Explore hybrid cooling solutions, e.g., air and spray
Krell Institute Study: Energy Efficient HPC Data Center Infrastructure Issues

John Ziebarth, Gary Johnson

Projected Heat-Flux W/cm^2

Critical Heat-Flux W/cm^2

$T_{\text{chip}} = 85^\circ\text{C}$

$T_{\text{inlet}} = 25^\circ\text{C}$
Two-Phase Cooling Regime

Mixture of liquid and gaseous droplets

Heated Surface

Heat Flux

Nozzle
Spray Spot Cooling: Server Conversion

- Standard fan heatsink
- SprayModule™ Kit
- Retrofitted Server
Revising Processor Air-Cooling with Spraycooling (study conducted with HP)

- **CRAHs at 100% of max**
- **CRAHs at 80% of max**
- **SprayCool - CRAHs at 60% of max**

- **Poor cold aisle provisioning at this CRAH setting**
- **Ideal CRAH setting for SprayCool is approx 70% of max**

Inlet View from this direction

R1C1 to R1C13 expanded inlet view

R1C2 max = 28.7°C
How Much Airflow is Required?

100% CRAH Utilization (air-cooling)

80% CRAH Utilization (SprayCool)

70% CRAH Utilization (SprayCool)
Air-cooled facility’s blowers use 82% more power.
Overview

- Power Consumption Trends for Data Centers and HPC: The white elephant in the room
- The Energy Smart Data Center (ESDC) at PNNL
- Selected Research Topics at ESDC
 - Advanced Cooling Solutions
 - Metrics
 - Power Aware Computing
Metrics

Challenges: evaluating usability of existing metrics for HPC

▶ Do existing metrics penalize HPC?
 - Not considering space/density
 - Not considering output: product (as in time-to-solution).

Our answers:

▶ Introduce productivity metrics in conjunction with The Green Grid

▶ Establish realistic test cases.
Metrics: Why important

We need metrics to measure power efficiency

Why should we care about existing metrics?

- Recognized and accepted by a large community
- Use to drive
 - Next-generation of HW/SW and infrastructure development
 - Regulation and mandates in energy efficiency.
Popular Data Center Metrics: Infrastructure Efficiency

PUE (Power Usage Efficiency)

- Total Facility Power
 - Computer Power
 - Range: 1 - ∞

- No productivity measured
 - Computer could be idling

- No space considered
 - Computer could be a distributed web server farm

- Ratio can be misleading
 - Computer could be drawing large power

- Scope of “Total Facility Power”, “Computer Power” may not be consistent

DCiE (Data Center Infrastructure Efficiency)

- Computer Power
 - Total Facility Power
 - Range: 0 - 1

Office of Science
U.S. DEPARTMENT OF ENERGY

Proudly Operated by Battelle Since 1965
Motivation: DCP and DCeP

Existing scientific computing metrics do not adequately address the total energy cost of producing a computational result:

▶ Metrics such as MegaFLOPs/W ignore the power delivery and cooling energy costs

▶ Data center energy-efficiency metrics such as PUE/DCiE focus only on the efficiency of equipment in the data center used to deliver conditioned power and eliminate heat generated by the computing equipment

▶ These metrics are not designed to quantify the useful work output of a data center in relationship to the total energy cost of the facility.

Source: The Green Grid
Motivation: DCP and DCeP (contd)

- DCeP looks at energy consumption of the whole facility, not just the computing equipment.

- Provides a means to benchmark computational energy productivity.
 - Specific changes to workload mix or facility configuration can be assessed in terms of their overall effect on the energy productivity of the facility.

- PNNL is an early adopter of this new productivity metric.
The Green Grid’s DCP and DCeP

A family of metrics:

Data Center Productivity (DCP)

\[
\frac{\text{Useful Work Produced}}{\text{Total Quantity of Resource Consumed Producing this Work}}
\]

Range: 0 - ∞

Data Center Energy Productivity (DCeP)

\[
\frac{\text{Useful Work Produced}}{\text{Total Data Center Energy Consumed Producing this Work}}
\]

Range: 0 - ∞

A particular metric that fits well our model A:

We interpret Data Center to include the computer and the supporting power/cooling equipment in the facility.

Source: The Green Grid
Device Under Test (Software): Typical Production PNNL HPC Workload Mix

WRF

- **Initialization:** 1° Global Forecast System analysis from National Weather Service
- **Decomposition:** 480x480 Cartesian grid (15km) with 45 levels
- **Solver:** Horizontal: Explicit High-Order Runge-Kutta; Vertical: Implicit
- **Output:** Asynchronous 2.3GB netCDF every 3 model-hours per forecast

Multiple concurrent basic 4.5 days weather forecasts for North & Central America

CP2K

- **Initialization:** Standard slab geometry (15x15x71Å³)
- **Decomposition:** 215 H₂O with single hydroxide ion
- **Solver:** Density Functional Theory with dual basis set (Gaussian & Plane-Wave) in conjunction with molecular dynamics and umbrella sampling
- **Output:** Synchronous 75MB per 20k 0.5fs model-steps (MD time step)

Multiple concurrent liquid-vapor interface model simulations
Completely randomized block design with a 2^2 factorial treatment structure:

- **Treatment 1:** application’s machine load:
 - 75% WRF, 25% WRF

- **Treatment 2:** number of cores per server:
 - full-core, half-core

- **Block:** day of the week and time of run:
 - weekday, weekend, day, night

Each treatment produces Useful Computational Units (UCU) extracted from a stable, ~1.5 hour long assessment window.
Energy Use in kWh

![Graph showing energy use in kWh across different blocks for 75% and 25% WRF with AllCore and HalfCore configurations.](image-url)
Useful Work = $\sum V_i T_i$

$T_i = 1$ if task completed in assessment window, 0 otherwise

$V_i = 0.10$ for CP2k, $V_i = 1$ for WRF

(normalized to same sampling rate, same weight)
Summary of Experimental Results

- DCeP *can* be used to distinguish between different operational states in a data center and guide load balancing.

- Full core implementations use more energy than half core, but are also more efficient (regardless of weighting scheme).

- Treatments with 25% WRF load are more efficient than 75% (given weighting scheme where each CP2K unit is with 10% of a WRF unit).
Overview

- Power Consumption Trends for Data Centers and HPC: The white elephant in the room
- The Energy Smart Data Center (ESDC) at PNNL

Selected Research Topics at ESDC
- Advanced Cooling Solutions
- Metrics
- Power Aware Computing
Challenges: combining two disparate worlds of tools and data

- Infrastructure for collecting, storing and analyzing data
 - combine data from the application and room environment perspectives
 - Ex. “What was the rack temperature during this run?”

Our answers:

- PerfTrack performance database extended to hold room data
- Job placement study currently being conducted at ESDC facility
 - “Can we save $ on cooling by changing job placement within the cluster?”
 - “Is it more efficient to use one rack, or use them all?”
Thermal Profiles of Running Applications

Goal: use integrated data to inform job scheduler

- **“High Density” Placement**
- 224 processes on 1 rack
- (8 processes per node)
- CPU temperatures stay above 120°F

- **“Low Density” Placement**
- 224 processes on 4 racks
- (2 processes per node)
- CPU temperatures stay below 110°F
Summary

- Power Consumption trends for Data Centers and HPC: The white elephant in the room
 - Energy use is an increasingly acute problem
 - At the national level
 - At the data center level
 - As HPC user

- The Energy Smart Data Center (ESDC) at PNNL
 - Provides the building blocks to conduct energy efficiency studies by providing monitoring and control tools
 - At the mechanical side
 - Advanced Cooling solutions
 - Advanced Power Distribution
 - At the software side
 - Sensible HPC Metrics
 - Power Aware Computing
Questions?

Energy Smart Data Center Research