

Roadrunner and hybrid computing

Ken Koch & Andy White

Roadrunner Project Los Alamos National Laboratory

Salishan Conference on High-Speed Computing

April 26, 2007

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

LA-UR-07-2919

Salishan Roadrunner 1

Outline

- 1. Cell & Hybrid
- 2. Roadrunner Architecture (original & improved)
- 3. Programming & Applications

Cell & Hybrid

Cell Chip

- Cell Broadband Engine[™] * (Cell BE)
 - Developed under Sony-Toshiba-IBM efforts
 - Current Cell chip is used in the Sony PlayStation 3
- An 8-way heterogeneous parallel engine

Each of the 8 SPEs are 128 bit (e.g. 2-way DP-FP) vector engines w/ 256KB of Local Store (LS) memory & a DMA engine.

- They can operate together or independently (SPMD or MPMD).
- ~200 GF/s single precision
- ~ 15 GF/s double precision (current chip)

* Trademark of Sony Computer Entertainment, Inc.

Cell Broadband Engine

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

NATIONAL LABORATORY

Salishan Roadrunner 5

Cell Broadband Engine Architecture™

Technology Competitive Roadmap

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Cell Broadband Engine™ Blade

The first in a line of planned offerings using Cell Broadband Engine technology

EST 1943

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Salishan Roadrunner 7

The times they are a changin Bob Dylan (1964)

Microprocessor trends are changing

- Moore's law still holds but is now being realized differently
 - Clock frequency, chip power, & instruction-levelparallelism (ILP) have all plateaued
 - Multi-core is here today and manycore (≥ 32) looks to be the future
 - Complexity of shared memory and cache coherency for multi-core designs is likely not scalable to manycore designs
 - Memory bandwidth and memory capacity per core are headed downward (predominantly caused by increased core counts)
 - Key findings of Jan. 2007 IDC Study: "Next Phase in HPC"
 - new ways of dealing with parallelism will be required
 - must focus more heavily on bandwidth (flow of data) and less on processor
- References:
 - IDC report #205025, January 2007
 - UC Berkeley UCB/EECS-2006-183
 - LASCI-06 Burton Smith keynote "Reinventing Computing"

Accelerators are outperforming CPUs

Before Roadrunner ...

- Floating Point Systems FPS Array Processors (AP-120B, FPS-164/264) (circa 1976-1982)
 - <u>http://en.wikipedia.org/wiki/Floating_Point_Systems</u>
- Deep Blue for chess (IBM SP-2: 30 RS6K + 480 chess chips) (circa 1997)
 <u>http://en.wikipedia.org/wiki/Deep_Blue</u>
- Grape-6 for stellar dynamics w/ custom chips) (circa 2000-2004)
 - <u>http://grape.astron.s.u-tokyo.ac.jp/~makino/grape6.html</u>
- Various FPGA supercomputers from system vendors:
 - SRC-6 (w/ MAP)
 - Cray XD1 (w/ Application Acceleration)
 - SGI Altix (w/ RASC)
- Titech TSUBAME (w/ some Clearspeed) (2006)
 - <u>http://www.gsic.titech.ac.jp/English/Publication/pressrelease.html.en</u>
- RIKEN MDGrape-3 "Protein Explorer" (w/ custom chips) (2006)
 - <u>http://mdgrape.gsc.riken.jp/modules/tinyd0/index.php</u>
- Terra Soft's Cell E.coli/Amoeba PS3 Cluster (cluster of 1U PlayStation 3 development systems) (2007)
 - <u>http://www.hpcwire.com/hpc/967146.html</u>

Hybrid computing is here to stay

- Highly multi-core: 8, 16, 32, ...
 - IBM Cell, AMD Fusion, Intel Polaris, NVidia G8800
 - Distributed memory at core level
- Co-processors & accelerators
 - FPGAs, GPGPU, Clearspeed CSX600, IBM Cell, XtremeData XD1000, Nvidia G80, AMD Stream Processor
- Connection standards
 - AMD Torrenza, Intel/IBM Geneseo, AMD HyperTransport Initiative
- Programming
 - IBM Roadrunner ALF & DaCS libraries, RapidMind, Peakstream, Impulse C, Standford's Sequoia, NVidia CUDA, Clearspeed C, Mercury MFC, stream programming
- Heterogeneous architectures
 - within processor itself (e.g. <u>Cell</u>)
 - at the board level (e.g. <u>AMD</u>'s <u>Torrenza</u>)
 - on the same bus (e.g. CPU+<u>GPUs</u>, Intel's <u>Geneseo</u>)
 - within a node (e.g. <u>Roadrunner</u>)

Roadrunner

Roadrunner project is a partnership with IBM

 Contract contract signed September 8, 2006 with

- Critical component of stockpile stewardship
 - Phase 1 (Base system) supports near-term mission deliverables
 - Phase 2 (Cell up-grade) supports pre-Final assessment
 - Phase 3 (Hybrid final system)
 - Achieves PetaFlops level of performance
 - Demonstrates new paradigm for high performance computing
- Accelerated vision of the future
 - New programming paradigm
 - Faster processors
 - Still leveraging the marketplace

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Cell processor (2007, 100 GF)

CM-5 board (1994, 1 GF)

Roadrunner Hierarchy (Phase 1 Base)

Multiple Cluster Base System

Roadrunner Hierarchy (Phase 3)

Final System with Cell Blade Accelerators

Planned Roadrunner Phase 3 (Final System)

Planned Hybrid Compute Node

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Salishan Roadrunner 18

Planned Hybrid Compute Node

New Improved Roadrunner final system is better

- Keep current base system
 - 70 TF capacity resource in secure
 - Fully available for stockpile stewardship
 - No restabilization after Cells added
- "Next generation" PetaFlop system on same schedule
 - Still based on existing technology
 - Better performance
 - PetaFlop/s demo earlier
 - "Science runs" in open now possible

400+ GFlop/s Performance

Still one Cell chip per Opteron core

New Improved Roadrunner Phase 3

Roadrunner metrics for success

- Provide a large "capacity-mode" computing resource using "base" machine for LANL weapons simulations in FY07
 - Unclassified prep work on system & available codes is done
 - Couple of weeks away from classified operation
- Provide a petascale-class architecture in FY08
 - Performance
 - Future workload
 - Faster simulations
 - Better simulations
 - Expected Linpack ≥ 1.0 PF sustained
 - Usability and manageability
 - System management and integration at scale
 - API for programming hybrid system
 - Technology

- Delivery of advanced technology

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Assessment Review in October 2007 for Phase 3

Programming Roadrunner

Roadrunner Hybrid Environment & APIs

Accelerator Library Framework & Data and Communications & Synchronization Library

- Designed by IBM & LANL to be HW agnostic
 - multicore/GPU/Cell, interconnect, even possibly cluster-wide
 - desire technical community participation to extend range
- ALF for Cell is out in SDK 2.1; DaCS in a future SDK

Programming Approach

- MPI for cluster-wide message passing still used at node level
 - Global Arrays, IPC, UPC,GAS languages, etc. also remain possible choices
- Split off computationally intense operation(s) for Cell acceleration
 - This is equivalent to function offload
 - Amdal's law applies for speedup! You can't ignore it.
 - Create many-way parallel work units for SPMD on the SPEs
 - MPMD, RPCs, streaming, etc. are also possible
 - Opteron would typically block, but could do concurrent work
 - Embedded MPI communications are possible via "relay" approach

Considerable flexibility and opportunities exist Los Alamos AtioNAL LABORATORY

MPI programs can evolve

- Key concepts:
 - Pair one Cell core with one Opteron core

- Move node-level large-grain compute-intensive function/algorithm & associated data onto Cell PPE
 - Similar to client-server, RPC, function offload, etc.
 - Can be implemented one function/package at a time
- Identify & expose many-way fine-grain parallelism for SPEs
 - Add tiling, work decomposition, etc. (good for multicore as well)
 - Design for overlapped memory transfers (prefetch/write-behind) while computing (work queues)
 - Enable 128-bit wide vector processing & alignments (similar to SSE)
- Retain main code control, I/O and MPI communications on host CPUs
 - Use "message relay" to/from Cells to cluster-wide MPI on host CPUs

Accelerated logic pictorial

If no MPI communications are needed during Cell computation

Accelerated logic pictorial

With MPI message during Cell computations

Add "relay" of DaCS ⇔ MPI messages

Programming a hybrid computer

- Decomposition of an application for Cell-acceleration
 - 1. Opteron code
 - Runs non-accelerated parts of application
 - Participates in usual cluster parallel computations
 - Controls and communicates with Cell PPC code for the accelerated portions
 - 2. Cell PPC code
 - Works with Opteron code on accelerated portions of application
 - Allocates Cell common memory
 - Communicates with Opteron code
 - Controls and works with its 8 SPEs
 - 3. Cell SPE code (8-way parallel)
 - Runs on each SPE (SPMD) (MPMD also possible)
 - Shares Cell common memory with PPC code
 - Manages its Local Store (LS), transferring data blocks in/out as necessary
 - Performs vector computations from its LS data

And what about applications

Radiative Heat Transfer on GPU ⇒ 30x faster

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Salishan Roadrunner 33

Ocean Simulation on GPU ⇒ 30 - 50x faster

- shallow water equations
 - standard form of Navier-Stokes equations used for atmospheric and oceanographic processes
 - 14 variables per grid point, 9-point stencil, non-linear
 - 2000 x 1000 grid 45 time-steps/sec
 - NVIDIA Quadro FX 4500 30x-50x faster than 3.4 GHz Xeon EM64T

Initial target LANL applications for Roadrunner

- Transport
 - PARTISN (neutron transport via Sn)
 - Sweep3D
 - Sparse solver (PCG)
 - MILAGRO (IMC)
- Particle methods
 - Molecular dynamics (SPaSM)
 - Data parallel CM-5 implementation
 - Particle-in-cell (VPIC)
- Eulerian hydro
 - Direct Numerical Simulation
- Linear algebra
 - LINPACK
 - Preconditioned Conjugate Gradient (PCG)

Initial Cell results are very encouraging

- Transport
 - neutron transport via S_n (PARTISN)
 - Sweep3D 5x speedup on Cell
 - sparse linear solver (PCG)
 - radiation transport via implicit Monte Carlo (MILAGRO)
 - 10x speedup for opacity calculation on Cell
- Particle methods
 - Molecular Dynamics (e.g. SPaSM)
 - 7x speedup on Cell
 - Particle-in-cell (plasma)

Effect of new hybrid node should be dramatic

Sweep3D (POR RR)

 Performance gain of Cell-HPC chip may not help

Sweep3D (improved RR)

- Overlapped communication & computation
- Faster with (same) current Cell chip
- Performance gain of Cell-HPC chip can be utilized

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

EST. 1943

Scientific understanding enabled by RR in 2008

Example: multi-scale validation of ICF NIF implosion

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Salishan Roadrunner 38

LANL Roadrunner home page

More information is available at: http://www.lanl.gov/roadrunner/

Roadrunner Architecture Other Roadrunner talks Computing Trends Related Internet links

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Salishan Roadrunner 39

Silent Data Corruption (Side Note)

A sustained PetaFlop-year is ≈10²² or 2⁷³ operations!

A PF for 8hrs is still ${\approx}10^{19}~or~2^{63}$

Reliability of a single compute node only represents the tip of an iceberg.

