PERF PORTABILITY VENDOR PANEL

CJ Newburn, Principal HPC Architect, Compute SW
SPECIALIZATION
Use the right tool for the right job

• Absolute performance: throughput and latency cores
• Performance/Watt: dense nodes

• Deep learning
• Graphics and video
INFRASTRUCTURE FOR RETARGETABILITY

Support diversity within a common software architecture

- Common software architecture
- Common scheduler
- Common set of primitives

- Allow for diversity and specialization by managing complexity
- Enable per-target implementations and data layouts
CONVERGENCE
Synergy, new usage models

- Cloud
 - Easy deployment, provisioning
 - Apps as a service, downloaded as containers from a registry and orchestrated
- HPC
 - Makes good use of dense nodes and hetero resources with retargetable frameworks
 - Broadens and refines programming models, pushes language standards
 - Pushes absolute perf and perf/W
- AI
 - Highly-tuned libraries and frameworks, fast collectives
Transformation
HPC + AI couple simulation with live data in real time detection/control system

Experimental/simulated data is used to train a NN that is used to for detection/control of an experiment or clinical delivery system in real time. The NN is improved continuously as new simulated / live data is acquired

Augmentation
HPC + AI combined to improve simulation time to science > orders of magnitude

Experimental/simulated data is used to train a NN that is used to replace all or significant runtime portions of a conventional simulation. The NN is improved continuously as new simulated / live data is acquired

Modulation
HPC + AI combined to reduce the number of runs needed for a parameter sweep

Experimental/simulated data used to train a NN which steers simulation/experiment between runs. The steering NN can be trained continuously as new simulated / live data is acquired

Potential for Breakthroughs in Scientific Insight
PROVIDING ACCESS TO PERFORMANCE
Meeting our customers where they are, offering a path forward

- % lines of code gains, ROI

Aggressive tuning for the target platform
- Exposing maximal parallelism
- Extreme scaling
- Tailored abstractions

Limited effort
- Standard interfaces
 - C++, OpenMP, OpenACC, MPI, LLVM, ...
- Libraries: BLAS, FFT, DNN, ...

New/revised code
Old code