Memory Management Extensions for OpenMP 5.0

2017 CoE Performance Portability Meeting
Denver, Colorado, USA
August 21, 2017

Stephen Olivier
Center for Computing Research, SNL-NM
Outline

- Core features (near completion)
 - OpenMP allocators
 - `allocate` directive and clause
 - `omp_alloc()` and `omp_free()` API routines for C/C++
 - Default allocator
 - declare alloc directive and `omp_alloc.h`

- Additional features (less mature)
 - Memory spaces and traits
 - User-defined custom allocators
 - Fallback
OpenMP Allocators

- **Fundamental concept:** object that fulfills allocation requests

- **Initially, choice of predefined allocators only:**
 - Default
 - High capacity
 - Constant (read-only)
 - High bandwidth
 - Low latency
 - Team local

- **Mapping** to actual system resources by the implementation
 - E.g., may map all or most to DDR
allocate Directive and Clause

- Specifies that the OpenMP implementation will perform the memory allocation and indicates which allocator to use

- **Directive** may be used either by itself or with an associated base language allocation statement
 - Syntax: `#pragma omp allocate(var-list) \ [allocator(predef_allocator)]`

- **Clause** may be used on parallel, task, target, and worksharing (e.g., loop) directives

- **deallocate** directive for deallocation
C/C++ API Routines

- `omp_alloc()` call to allocate memory
 - Specify size and which allocator to use

- `omp_free()` call to deallocate memory

- Strong resemblance to `malloc()` and `free()`
Default Allocator

- *Default allocator* used when an allocator is not specified on an allocation directive, clause, or API routine call

- Separate *target default allocator* used only when the allocate clause appears on the target directive
 - Allows a different default for non-host allocations

- **API routines**: `set/get_omp_default_allocator()` and `set/get_omp_target_default_allocator()`

- **Environment variables**: `OMP_ALLOCATOR` and `OMP_TARGET_ALLOCATOR`
declare alloc

- Registers existing allocation functions with OpenMP

- Specifies how to interpret the behavior of the function, its arguments, and its return value:
 - Allocation, reallocation, or deallocation behaviors
 - Size of allocation, pointer to allocation, error code

- Example:
 - Given the function `void* special_alloc(size_t size);`
 - `#pragma omp declare alloc (special_alloc) \ allocate(omp_return) size(omp_args[0])`
omp_alloc.h header file

- **New header file** to be delivered by implementations

- Registers popular allocation functions with OpenMP using `declare alloc` directives:
 - `malloc()`
 - `posix_memalign()`
 - `calloc()`
 - `aligned_alloc()`
 - `realloc()`
 - `free()`
Future Features: Memory Spaces

- Define memory spaces based on combinations of traits

- Memory space traits span various dimensions, for example:
 - Location (core, socket, device)
 - Capacity and page size
 - Permissions (read, write, both)
 - Bandwidth, latency, or capacity

- Example: device, read-only, low latency memory
Future Features: Custom Allocators

- User-defined allocators express desired set of memory space traits

- Implementation finds the memory space that best matches

- Allocators have traits too:
 - Alignment
 - Pinning
 - Shared/exclusive thread model
 - Fallback
Future Features: Fallback

- **Fallback allocator trait** specifies what to do when a memory request cannot be satisfied

- **Fallback allocator trait options:**
 - Return 0
 - Abort the program
 - Delegate to another specified allocator
 - Try in the default memory space
Other Future Features

- Better support for C++
- Explicit optimization for NUMA
- Resource querying
- Special code generation, as required on some new memories
- Static (compile-time) allocator mappings
Other Contributors

- Alex Duran (Intel) – Proposal Lead
- Christian Terboven (RWTH Aachen) – OpenMP Affinity Chair
- Deepak Eachempati and Jeff Sandoval (Cray)
- Kelvin Li and Alex Eichenberger (IBM)
- Alex Rico and Jonathan Beard (ARM)
- John Pennycook, Jason Sewall, Xinmin Tian (Intel)
- Ian Karlin, Tom Scogland, and Bronis de Supinski (LLNL)
- Helen He and Alice Koniges (LBNL)
- Kent Milfeld and Lars Koesterke (TACC)
- <Your name here> -- Really, please give us feedback!