Towards Programming Hierarchical-Heterogeneous Memory based Extreme-Scale Systems
Manjunath Gorentla Venkata and Ferrol Aderholdt

Goals
- Simple, usable, and portable abstraction for hierarchical-heterogeneous memory
- Unified programming constructs for Big-Compute and Big-Data applications
- Native support for data-centric abstractions
- Portability across diverse (GPU-based and Xeon-Phi) memory hierarchy systems

Approach
- Data-structure based and data-centric programming construct to support
 - Various views of the data, including global and local view
 - Data resiliency, sharing, locality and affinity
 - Uniform interface across hierarchical and heterogenous memory
- Unified memory abstraction that manages data across various hierarchical and heterogenous memory
 - User-friendly posix-like memory management interfaces and semantics

Implementation
- Library-based API and implementation
- Supports locality-aware memory management on various memories types including DDRAM, HBM, and Persistent Memory
- Supports SharP Arrays and Hash tables
- Interoperable with MPI, OpenSHMEM, and OpenMP

Evaluation: Big Compute and Big Data
- QMCPack using data that is stored in NVRAM (simulated NVRAM)
- Memaslap evaluation of SharP Hash and Memcached
- Stencil completion on Xeon-Phi with HBM configured in Flat mode