Spartan/Augustus Overview: Simplified Spherical Harmonics and Diffusion for Unstructured Hexahedral Lagrangian Meshes

Michael L. Hall
Transport Methods Group
Unstructured Mesh Radiation Transport Team
Los Alamos National Laboratory
Email: hall@lanl.gov

Presentation to the Shavano Working Group
4 / 22 / 98

Outline

• Code Package Description

• Method Overview, Mesh Description

• SP_N

 – Equation Set

 – Properties

 – Solution Strategy

• Diffusion (P_1)

 – Equation Set

 – Properties

 – Solution Strategy

• Diffusion Results

• Future Work
Spartan/Augustus Code
Package Description

Spartan: SP_N, 2 T + Multi-Group, Even-Parity Photon Transport Package with v/c corrections

Augustus: P_1 (Diffusion) Package

JTpack: Krylov Subspace Iterative Solver Package (by John Turner, ex-LANL)

UMFPACK: Unstructured Multifrontal Solver Package (an Incomplete Direct Method by Tim Davis, U of FL)

LINPACK: Direct Dense Linear Equation Solver Package

BLAS: Basic Linear Algebra Subprograms
Spartan/Augustus Code Size

Included files counted only once:

<table>
<thead>
<tr>
<th></th>
<th>Lines</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spartan</td>
<td>10213</td>
<td>57%</td>
</tr>
<tr>
<td>Augustus</td>
<td>12872</td>
<td>60%</td>
</tr>
<tr>
<td>JTpack</td>
<td>14167</td>
<td>54%</td>
</tr>
<tr>
<td>UMFPACK</td>
<td>15393</td>
<td>58%</td>
</tr>
<tr>
<td>BLAS</td>
<td>7467</td>
<td>48%</td>
</tr>
<tr>
<td>LINPACK</td>
<td>6926</td>
<td>52%</td>
</tr>
<tr>
<td>Total</td>
<td>67038</td>
<td>56%</td>
</tr>
</tbody>
</table>

With includes:

<table>
<thead>
<tr>
<th></th>
<th>Lines</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spartan</td>
<td>14080</td>
<td>71%</td>
</tr>
<tr>
<td>Augustus</td>
<td>31595</td>
<td>78%</td>
</tr>
<tr>
<td>JTpack</td>
<td>36009</td>
<td>73%</td>
</tr>
<tr>
<td>UMFPACK</td>
<td>15393</td>
<td>58%</td>
</tr>
<tr>
<td>BLAS</td>
<td>7467</td>
<td>48%</td>
</tr>
<tr>
<td>LINPACK</td>
<td>6926</td>
<td>52%</td>
</tr>
<tr>
<td>Total</td>
<td>111470</td>
<td>73%</td>
</tr>
</tbody>
</table>
Method Overview: Spartan

- Energy/Temperature Discretization
 - Solves $2T + \text{Multi-Group Even-Parity Equations}$
 - Can yoke T_e and T_i together to make $1T$
 - Can use a single-group radiation treatment to make $3T$

- Angular Discretization
 - Uses Simplified Spherical Harmonics — SP_N
 - Can do a P_1 (diffusion-like) solution

- Spatial Discretization
 - SP_N decouples equations into many diffusion equations
 - Diffusion equations are solved by Augustus

- Temporal Discretization
 - Linearized implicit discretization
 - Equivalent to one pass of a Newton solve
 - Iteration strategy:
 * Source iteration
 * DSA acceleration
 * LMFG acceleration
Method Overview: Augustus

• Spatial Discretization
 – Morel-Hall asymmetric diffusion discretization
 – Support Operator symmetric diffusion discretization
 – Hall symmetric diffusion discretization (2-D, x-y only)

• Temporal Discretization
 – Backwards Euler implicit discretization

• Matrix Solution
 – Krylov Subspace Iterative Methods
 * JTpack: GMRES, BCGS, TFQMR
 * Preconditioners:
 • JTpack: Jacobi, SSOR, ILU
 • Low-order version of Morel-Hall discretization that is a smaller, symmetric system and is solved by CG with SSOR (from JTpack)
 – Incomplete Direct Method - UMFPACK
Mesh Description

Multi-Dimensional Mesh:

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Geometries</th>
<th>Type of Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-D</td>
<td>spherical, cylindrical or cartesian</td>
<td>line segments</td>
</tr>
<tr>
<td>2-D</td>
<td>cylindrical or cartesian</td>
<td>quadrilaterals or triangles</td>
</tr>
<tr>
<td>3-D</td>
<td>cartesian</td>
<td>hexahedra or degenerate hexahedra (tetrahedra, prisms, pyramids)</td>
</tr>
</tbody>
</table>

all with an unstructured (arbitrarily connected) format.

This presentation will assume a 3-D mesh.
Simplified Spherical Harmonics (SP_N)
Even-Parity Equation Set

Radiation transport equations:

$$\frac{1}{c} \frac{\partial}{\partial t} \xi_{m,g} + \nabla \cdot \Gamma_{m,g} + \sigma_t \xi_{m,g} = \sigma_s \phi_g + \sigma_e B_g + C_g,$$

$$\frac{1}{c} \frac{\partial}{\partial t} \Gamma_{m,g} + \mu_m^2 \nabla \xi_{m,g} + \sigma_t \Gamma_{m,g} = \mathcal{C}_m g$$

for $m = 1, M$, and $g = 1, G$.

Temperature equations:

$$C_{vi} \frac{\partial T_i}{\partial t} = \alpha (T_e - T_i) + Q_i,$$

$$C_{ve} \frac{\partial T_e}{\partial t} = \alpha (T_i - T_e) + Q_e + \sum_{g=1}^{G} \left(\sigma_a \phi_g^{(0)} - \sigma_e B_g \right),$$

where

$$\xi_{m,g} = \text{Even-parity pseudo-angular energy intensity},$$

$$\Gamma_{m,g} = \text{Even-parity pseudo-angular energy current},$$
Simplified Spherical Harmonics \((SP_N)\)
Even-Parity Equation Set (cont)

\[
\mathcal{C}^s_g = \left(\sigma^a_g - \sigma^s_g\right) \vec{F}^{(0)}_g \cdot \frac{\vec{v}}{c},
\]

\[
\mathcal{C}^v_{m,g} = 3\mu^2_m \sigma^t_g (P_g + \phi_g) \frac{\vec{v}}{c},
\]

\[
\phi_g = \sum_{m=1}^{M} \xi_{m,g} w_m,
\]

\[
P_g = \sum_{m=1}^{M} \xi_{m,g} \mu^2_m w_m,
\]

\[
\vec{F}^v_g = \sum_{m=1}^{M} \vec{\Gamma}_{m,g} w_m,
\]

\[
\phi_g^{(0)} = \phi_g - 2 \vec{F}^{(0)}_g \cdot \frac{\vec{v}}{c},
\]

\[
\vec{F}^{(0)}_g = \vec{F}_g - (P_g + \phi_g) \frac{\vec{v}}{c},
\]

\[
M = (N + 1) / 2.
\]
Simplified Spherical Harmonics (SP_N) Properties

- SP_1 and P_1 equations are identical.

- SP_N and P_N equations are identical in 1-D slab geometry.

- Rotationally invariant \rightarrow no ray effects.

- SP_N is a non-convergent method. It is an asymptotic approximation associated with the diffusion limit. As $N \rightarrow \infty$, the solution doesn’t necessarily converge to the true answer.

- SP_N has almost the same accuracy for lower orders as S_N if the solution is approximately locally 1-D, but is much cheaper.
Simplified Spherical Harmonics (SP_N) Properties (cont)

- With DSA and LMFG acceleration, SP_N costs $MG + G + 1$ diffusion solutions for every outer iteration.

- Unlike the diffusion equation, the SP_N equations propagate information at a finite speed. For radiation, this speed approaches c from below as the order of approximation is increased.

- Order N unknowns for SP_N, vs. order N^2 unknowns for P_N and S_N.

- In a homogeneous region, SP_N and P_N scalar flux solutions satisfy same equation, except with different boundary conditions.
Simplified Spherical Harmonics
(SP_N) Temporal Discretization

Radiation transport equations:

$$
\frac{1}{c} \frac{\partial}{\partial t} \xi_{m,g} + \nabla \cdot \Gamma_{m,g} + \sigma_g^t \xi_{m,g} = \sigma_g^s \phi_g + \sigma_g^e B_g + C_g^s ,
$$

$$
\frac{1}{c} \frac{\partial}{\partial t} \Gamma_{m,g} + \mu_m^2 \nabla \xi_{m,g} + \sigma_g^t \Gamma_{m,g} = \Gamma_v \Gamma_{m,g}
$$

for $m = 1, M$, and $g = 1, G$.

Temperature equations:

$$
C_{vi} \frac{\partial T_i}{\partial t} = \alpha (T_e - T_i) + Q_i ,
$$

$$
C_{ve} \frac{\partial T_e}{\partial t} = \alpha (T_i - T_e) + Q_e + \sum_{g=1}^{G} \left(\sigma_g^{a} \phi_g^{(0)} - \sigma_g^{e} B_g \right) ,
$$

where

- **Blue** = Implicit or backwards Euler terms,
- **Magenta** = Explicit or extrapolated implicit terms,
- **Red** = Implicit terms accelerated by DSA,
- **Green** = Linearized implicit terms accelerated by LMFG.

This is not quite accurate — it’s actually more complicated than this — but this captures the flavor of the temporal discretization.
Simplified Spherical Harmonics (SP_N) Source Iteration Strategy

- SP_N Equations: Red and Green terms are treated explicitly, equations decouple into $M \times G$ separate diffusion equations

- DSA Equations: summing over angle and treating Red terms implicitly leads to G separate diffusion equations, which provide an angle-constant update

- LMFG Equation: summing over group and treating Green terms implicitly leads to a single diffusion equation, which provides a spectrum-scaled update

- These equations are solved repeatedly until the Red and Green terms converge
Diffusion (P_1) Equation Set:

$$\alpha \frac{\partial \Phi}{\partial t} - \nabla \cdot D \nabla \Phi + \nabla \cdot \vec{J} + \sigma \Phi = S$$

Which can be written

$$\alpha \frac{\partial \Phi}{\partial t} + \nabla \cdot \vec{F} + \sigma \Phi = S$$

$$\vec{F} = -D \nabla \Phi + \vec{J}$$

Where

$$\Phi = \text{Intensity}$$
$$\vec{F} = \text{Flux}$$
$$D = \text{Diffusion Coefficient}$$
$$\alpha = \text{Time Derivative Coefficient}$$
$$\sigma = \text{Removal Coefficient}$$
$$S = \text{Intensity Source Term}$$
$$\vec{J} = \text{Flux Source Term}$$
All three methods:

- Are cell-centered – balance equations are done over a cell
- Require cell-centered and face-centered unknowns to rigorously treat material discontinuities
- Preserve the homogeneous linear solution, and are second-order accurate
- Reduce to the standard cell-centered operator for an orthogonal mesh
- Maintain local energy conservation
Diffusion Discretization
Method Properties (cont)

• Morel-Hall Asymmetric Method
 – Described in

 which is an extension of

 to 3-D unstructured meshes, with an alternate derivation.

• Hall Symmetric Method:
 – Based on the above method, but only applicable in 2-D x-y.

• Support Operator Symmetric Method:
 – Extension of the method described in

 to 3-D unstructured meshes, with an alternate derivation.
Diffusion Discretization Stencil

The flux at a given face, for example the $+k$-face,

$$\bar{F}^{n+1}_{+k} = -D_{c,+k} \nabla \Phi^{n+1} + J_{+k}$$

is defined using this stencil:

in the Asymmetric Method. The Support Operator Method uses all seven unknowns within a cell to define the face flux.
Diffusion Discretization Stencil (cont)

Each cell has a cell-centered conservation equation which involves all six face fluxes, and gives a stencil which includes all seven unknowns within the cell (in both methods).

To close the system, an equation relating the fluxes on each side of a face is added for every face in the problem. This gives the following stencil:

in the Asymmetric Method. The Support Operator Method uses all thirteen unknowns within a cell-cell pair to define the face equation.
Algebraic Solution

- Main Matrix System (Asymmetric Method):
 - Asymmetric – must use an asymmetric solver like GMRES, BCGS or TFQMR
 - Size is \((4n_c + n_b/2)^2\) squared
 - Maximum of 11 non-zero elements per row

- Main Matrix System (Support Operator Method):
 - Symmetric – can use CG to solve
 - Size is \((4n_c + n_b/2)^2\) squared
 - Maximum of 13 non-zero elements per row

- Preconditioner for Krylov Space methods is a Low-Order Matrix System:
 - Assume orthogonal: drop out minor directions in flux terms
 - Symmetric – can use standard CG solver
 - Size is \(n_c\) squared
 - Maximum of 7 non-zero elements per row
Results: Sample Augustus Problem

- 3-D Kershaw-Squared Mesh

- Constant properties

- No removal or sources

- Reflective boundaries on 4 sides

- Source and vacuum boundary conditions on opposite sides

- Analytic solution - linear

- Grid size - $20 \times 20 \times 20 = 8000$ nodes, 6859 cells

- 50 time steps, 15 s / time step on IBM RS/6000 Scalable POWERparallel System, SP2
Results: Sample Problem

Actual Mesh (Cell Nodes)

Dual Mesh (Cell Centers)
Results: Sample Problem

Orthogonal Mesh Steady State Solution
Results: Sample Problem

Kershaw-Squared Mesh Steady State
Results: Sample Problem

Kershaw-Squared Random Cutplane
Future Work

- Parallel (JTpack90, PGSlib, SPAM)
- Object-based, design-by-contract F90
- Generic programming?
- Integrated documentation (HTML, PS)
- Newton-Krylov solution method?
- Alternate angular discretization?
- Self-adjoint equation set?