The Low-level Radioactivity Ocean Sediment Standard Reference Material


National Institute of Standards and Technology, Gaithersburg, Maryland, 20899, USA
1Environmental Measurements Laboratory, United States Department of Energy, New York, NY, USA
2Environmental Monitoring and Support Laboratory, Environmental Protection Agency, Las Vegas, Nevada, USA
3Radiological Sciences Laboratory, International Technology Corporation, Oak Ridge, TN, USA
4Oak Ridge National Laboratory, Martin Marietta Energy Systems, INC., Oak Ridge, TN, USA
5Oregon State University, USA
6Yankee Atomic Electric Co., Bolton, MA, USA
7National Physical Laboratory, Teddington, Middlesex, TW11 0LY, U.K.
8National Radiological Protection Board, Chilton, Didcot, Oxfordshire, OX11 0RQ, U.K.
9British Nuclear Fuels plc., U.K.
10Laboratory of the Government Chemist, U.K.
11Ministry of Agriculture, Fisheries, and Food, Fisheries Laboratory, Lowestoft, Suffolk, NR33 0HT, U.K.
12Atomic Weapons Establishment, Aldermaston, Reading RG7 4PR, U.K.
13Nuclear Electric, Gravesend, Kent DA12 2RS, U.K.
14South of Scotland Electricity Board, West Kilbride, Ayrshire KA23 9QI, U.K.
15Laboratoire de Radioecologie Marine, Commissariat à L'Energie Atomique, Center D. Études Nucleaires de Fenteney-Aux-Roses, B P 504 90105 Cherbourg Cedex, France
16Faculty of Science, Kanazawa University, Kanazawa, 920, Japan
17Niedersachsisches Institut Für Radioökologie, Herrenhäuser Str. 2, D-3003 Hannover 21, Germany
18AEA Technology, U.K.

Over the past decades, on the order of 10¹⁵ Becquerel nuclear waste have been stored in the oceans. Potential contamination of the oceans from leaking nuclear waste has caused worldwide concern. Currently, early warning of ocean contamination near the waste dumping sites rely on monitoring systems being set up by different countries and agencies. Because the determination of low-level radioactivity in ocean sediment is a difficult technical task, a basis for measurement quality assurance, methods verification, and data comparability is needed. The recently certified NIST ocean sediment Standard Reference Material (SRM-4355) is a composite of 1 percent contaminated Irish Sea sediment and 99 percent of Chesapeake Bay sediment by weight. The sediments were blended, pulverized to a median particle size of 8 μm, and reblended to achieve acceptable sample homogeneity. A statistical assessment of the intercomparison results from 19 laboratories has shown the material to be homogeneous down to 10 grams. The certified radionuclide concentration range from 0.4 to 230 mBq/g. A variety of radiochemical procedures and detection techniques have been used in the measurements to minimize possible systematic bias. Twelve radionuclides including ⁴⁰K, ⁹⁰Sr, ¹³⁷Cs, ²²⁶Ra, ²²⁸Th, ²³⁰Th, ²³²Th, ²³⁴U, ²³⁵U, ²³⁸U, ²³⁸Pu, and ²³⁹⁺²⁴⁰Pu were certified. The mean values were reported for an additional 10 uncertain radionuclides: ¹²⁹I, ¹⁵⁵Eu, ¹⁷⁷Lu, ¹⁷⁸Eu, ¹⁸⁷Os, ¹⁸¹Os, ¹⁸⁴Os, ¹⁸⁴Bi, ²²⁸Ra, ²⁴⁳Pu, and ²⁴ⁱAm. The standard reference material in unit quantities of about 100 gram each will be available by the end of 1995.