Skip to Content Skip to Search Skip to Utility Navigation Skip to Top Navigation
Los Alamos National Laboratory

Los Alamos National Laboratory

Delivering science and technology to protect our nation and promote world stability


Research into alternative forms of energy, especially energy security, is one of the major national security imperatives of this century.

Contact Us  

  • Babetta Marrone
  • Biofuels Program Manager
  • Email
  • Srinivas Iyer
  • Bioscience Division Leader
  • Email
  • Richard Sayre
  • Senior Scientist
  • Email
  • Rebecca McDonald
  • Bioscience Communications
  • Email
“Research into alternative forms of energy, of which biofuels is a key component, is one of the major national security imperatives of this century. Energy security is vital to our future national security and the efficient functioning of our market economy.” –Laboratory Director Charles McMillan

Los Alamos developing next-generation of biofuels from renewable resources

algae harvester image
Read caption +
Los Alamos scientists used genetic engineering to develop magnetic algae, thus making it much easier to harvest for biofuel production. Harvesting algae accounts for approximately 15–20 percent of the total cost of biofuel production—magnetic algae can reduce such costs by more than 90%.

Overview of Research and Highlights

The next-generation of biofuels are being developed at Los Alamos. Made from renewable resources, biofuels could yield reduced carbon dioxide emissions.

Los Alamos scientists are

  • working to bring cellulosic ethanol (made from the inedible parts of plants, instead of corn) and algae-based fuels to the marketplace in ways that make them economically competitive with fossil fuels and prevent a strain on valuable food crops.
  • investigating the use of genetically engineered microorganisms to produce fuel directly from carbon dioxide, as well as creating commodity chemicals—like plastics and food additives—that traditionally come from fossil fuels.

Scientists at Los Alamos are working to create competitive, sustainable forms of bioenergy. Approaches include genetically modifying algae for cost-effective biofuel production to one day using nonedible biomass materials like corn leaves or switchgrass to produce forms of usable energy. Projects include

  • improving the efficiency of plant photosynthesis
  • advancing algae production and harvesting
  • gaining a better understanding of the structure and biochemical and thermochemical conversion of cellulose for use in fuel production
Algae Science and Algal Biofuels
  • Developed the Ultrasonic Algal Biofuel Harvester, which provides a low-cost, environmentally benign, and energy-efficient source of algal lipids for use in biofuels. This technology won an R&D 100 Award in 2010. In 2012, the National Alliance for Advanced Biofuels and Bioproducts selected this technology for Phase II development, and in collaboration with Solix BioSystems, a scaled-up system is currently being field tested for use in fuel production
  • Used genetic engineering to develop magnetic algae, thus making it much easier to harvest for biofuel production. Harvesting algae accounts for approximately 15–20 percent of the total cost of biofuel production—magnetic algae can reduce such costs by more than 90%.
  • Working to produce a high-performance version of an enzyme known as carbonic anhydrase that could (1) reduce carbon emissions from coal- and gas-fired power plants and (2) play a valuable role in increasing algae growth for the production of algae-based biofuels.
  • Sequenced 8 complete algae genomes and 11 transcriptomes, as well as created an annotation pipeline, thus providing the first available comprehensive sequences of algae that will help scientists identify species and characteristics best suited for biofuels production.
  • Using sequence data, identified key metabolic pathways of lipid biosynthesis to enhance biofuels production by addressing significant alterations in carbon partitioning from growth to lipid accumulation caused by nitrogen depletion.
Cellulosic Biofuels
  • Using mechanistic kinetic models, agent based (rule-based) modeling, statistical mechanical and coarse-grained models, all-atom molecular dynamics simulations and quantum chemical calculations to tackle the challenge of biochemical and thermochemical conversion of biomass
  • Quantified—for the first time—the stacking interactions in cellulose fibril—this continues to be one of the top-ten accessed articles for The Journal of Physical Chemistry A since its publication more than an year ago.
  • Developed vanadium catalysts that can break down nonfood biomass known as lignocellulose, an attractive alternative as a feedstock used to produce renewable chemicals and fuels.
  • Created pipeline for protein evolution of cellulases (enzymes that degrade cellulose) and thermostable cellulases that are optimized for industrial environments.
  • In collaboration with the Great Lakes Bioenergy Research Center (GLBRC), made important progress toward the optimization of ammonia-based pretreatment strategies for efficient degradation of cellulose by cocktails of enzymes.
Plant Growth Science
  • Applying metagenomics to learn how to adapt microbial fuel production to widespread application.
  • Optimized photosynthetic antennae size in algae and plants to improve biomass yield by 30%.
  • Engineered improved carbon fixation in algae to enhance photosynthetic rates by 60%.
  • Engineered improved respiratory carbon metabolism in algae to increase oil yield two-fold.
  • Used metabolomics to enhance plant growth.
Food Security
  • Enhanced the levels of iron and protein in cassava to meet the minimum daily requirement in a typical sized meal
  • Extended the shelf life of cassava from 2 days to three weeks after harvest to increase food security
  • Reduced the levels of toxic cyanogenic glycosides in processed foods.
Resources and Sustainability
  • Demonstrated—both in the field and in the laboratory—that produced water (extracted with oil or gas) is a viable medium for marine algae such as Nannochloropsis, and for brackish-adapted algae such as Scenedesmus. The water also has been shown to contain valuable nutrients for the algae, including high levels of bicarbonate, potassium, and iron.
  • Collaborated with SIMTECHE to develop a cost-effective carbon dioxide capture process that will enable carbon capture that could one day enhance the availability of carbon dioxide to drive photosynthesis for algae production. This technology won an R&D 100 Award in 2009.
Fuel Conversion
  • New biomass conversion technologies have been discovered to produce hydrocarbons and platform chemicals using completely novel molecular pathways and catalytic approaches. The patent pending compounds and methods could potentially show superior economics as compared to those currently industrially used.
Bioinformatics and Analytics Patrick Chain
Biomass and Diversity David Fox
Biophysical Chemistry Ryszard Michalczyk
Computational Modeling Ben McMahon
Genome Technologies Tracy Erkkila
Molecular Recognition and Design Andrew Bradbury
Protein engineering Geoff Waldo
Structural Biology Tom Terwilliger
Facilities and Resources
  • Los Alamos National Laboratory-New Mexico Consortium Photobioreactors Housed at the New Mexico Consortium (NMC) and shared between the Laboratory and NMC, the ePBR Matrix consists of 33 Phenometrics ePBRs that simulate a microalgal biofuel pond production environment with control of depth, light, turbidity, pH, temperature, and gas delivery. This system is available to users in the scientific community.
  • Los Alamos Genome Center: The Genome Center houses all of the newest sequencing technologies primarily focusing on sequencing critical pathogens and near neighbors as well as microorganisms useful to bioenergy research. In addition to initial sequencing, the Center engages in computational finishing and bioinformatics characterization, database and web services for genome comparisons, metagenome sequencing and analysis for pathogen discovery and biosurveillance.
  • High-Throughput Gene Cloning and Protein Production Facility: This facility serves the Tuberculosis Structural Genomics Consortium, the Integrated Center for Structure and Function Innovation, and an NIH project to select antibodies against every human protein.
  • Protein Structure Determination: Multiple facilities at the Laboratory provide capabilities in NMR, and X-ray and neutron diffraction techniques to perform groundbreaking work in new drug-design methods through advanced understanding of protein structures and their functions.
  • New Mexico Consortium's Biology Research Facility: Scientists in this 24,000-square-foot research facility and greenhouse focus on biofuel research, particularly fuels derived from certain plants and algae.
  • Producing Algae and Co-Products for Energy (PACE)
  • Past Partnerships: National Alliance for Advanced Biofuels and Bioproducts (NAABB), National Advanced Biofuels Consortium (NABC), Center for Advanced Biofuels (CABS), Photosynthetic Antennae Research Center (PARC), Center for Enhanced Camelina Oil (CECO)
Sponsors, Funding Sources, or Agencies
  • Department of Energy, Science-Office of Biological and Environmental Research
  • Department of Energy, Energy Efficiency and Renewable Energy-Office of Biomass Programs
  • U.S. Department of Agriculture
  • National Science Foundation
  • 2010 R&D 100 Award for Ultrasonic Biofuel Harvester
  • 2009 R&D 100 Award for SIMTECHE

Visit Blogger Join Us on Facebook Follow Us on Twitter See our Flickr Photos Watch Our YouTube Videos Find Us on LinkedIn Find Us on iTunesFind Us on GooglePlayFind Us on Instagram