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Abstract 

The effect of plasticity is investigated for the incremental slitting, or crack-

compliance, method for measuring through-thickness profiles of residual stress. Based on 

finite element simulations, the errors can be strongly correlated with KIrs, the stress-

intensity factor caused by the cut extending into a residual stress field. 3-D simulations 

also show that the errors are strongly dependent on the amount of constraint provided by 

the part width. The simulations are used to develop a procedure for estimating errors 

from experimental data. Even with the possibility of plasticity errors in the measured 

residual stresses, the KIrs can be simply calculated using only the experimentally 

measured strains. This KIrs is called “apparent” because the calculation assumes elasticity. 

The apparent KIrs can then be used to bound the errors in the measured residual stresses. 

The error bound is given as a function of non-dimensionalized apparent KIrs and part 

width. 

 

Keywords: Residual stresses, Stress intensity factor, Weight function, Crack 

compliance. 
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1. Introduction 

1.1. Motivation 

The method known most commonly as “crack compliance” but more descriptively 

called “incremental slitting” or just “slitting” is a unique and valuable tool for residual 

stress measurement [1]. By incrementally introducing a narrow slit and measuring 

relaxed strain at each increment of slit depth, it is possible to precisely determine a depth 

profile of residual stresses. Slitting works well in many situations where other methods 

are inaccurate, expensive, difficult, or simply not applicable at all. Although sometimes 

an excellent choice for near-surface stress measurements [2-5], slitting is more unique in 

its ability to measure through-thickness stress profiles precisely and with excellent spatial 

resolution. Slitting can be applied to a nearly limitless range of part thicknesses, with 

results having been reported for layer thicknesses as small as 300 nm [5] and part 

thicknesses greater 160 mm [6]. Slitting has measured stresses of very low magnitude 

quite precisely [7-10]. Slitting has measured stresses in parts where diffraction methods 

could not have been applied to the given material, such as non-crystalline bulk metallic 

glasses [8, 11], single crystals [12], and polymers [13]. Using electric discharge 

machining, slitting can be applied to very hard materials [14] where other destructive 

methods have difficulty with material removal. Other unique applications include 

functionally-graded materials [15], layered parts [16], ceramics[17], and composites [18]. 

Because the slitting method relies of the assumption of elastic stress relaxation, 

plasticity during relaxation can cause errors in the measured stresses. The hole drilling 

ASTM standard [19] limits the measured stresses to 60% of the magnitude of the yield 

strength, which is quite limiting since residual stresses, from welding for example, often 
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exceed that level. Through-thickness slitting has long been assumed to be less sensitive to 

yielding, but more quantified guidelines must be established.  

1.2. Previous Work 

Only very limited studies of plasticity in slitting-type measurements have been 

published. The question of what stress levels would cause plasticity errors in general 

measurements has not been answered. Residual stresses apparently above yield were 

measured in pre-cracked specimens and a simple correction for yielding was proposed 

based on fracture mechanics simulations and some assumptions about the stress field [20, 

21]. Another simulation looked at possible plasticity effects in laser peened samples and 

found the effects to be small even with stresses exceeding the yield strength in a small 

region [22]. Another simulation considered near-surface measurements of uniform 

stresses by measuring the relaxed strain between two grooves [23]. Slitting measurements 

in an autofrettaged thick ring [24] were simulate to investigate possible plasticity errors 

in some measurements [25]. That measurement involved the slitting of a ring specimen, 

where the residual hoop stresses across the ring thickness have a large net moment which 

can lead to a large load on the slit and significant yielding. Plasticity effects when 

measuring rings could be minimized by first splitting the ring open to measure the net 

moment and then measuring the remaining residual stresses, which satisfy equilibrium. 

1.3. Approach 

This study considers a known stress, simulates the measured strains including 

plasticity effects, back-calculates the residual stresses assuming elasticity, and evaluates 
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the errors. The study continues on to the subtler problem of identifying errors from only 

the experimental measurements without any prior knowledge of the stresses. 

Two possible yielding scenarios are considered in the study. The first is local 

yielding in the region near the cut tip where there is a stress concentration. Such yielding 

is expected to increase with increasing KIrs, the cut-tip stress-intensity factor caused by 

the cut extending into a residual stress field. This scenario requires addressing 3-D effects 

because crack tip yielding is considerably smaller for wider specimens where the cut tip 

is under plane strain conditions. The second yielding scenario is bulk yielding on the 

surface opposite the cut. When tensile stresses, for example, are relaxed by slitting from 

one side of a part, the resulting stress redistribution causes a negative change in the 

stresses on the opposite surface. If and only if the stresses on the opposing surface are 

opposite sign from the cut surface, this effect potentially leads to yielding underneath the 

strain gauge.  

 

The three main parameters that are varied in this study were carefully chosen. 

Parameter studies of plasticity effects on hole drilling [26-30] provide some guidance for 

this study, but additional considerations must be addressed for slitting. In those studies, 

the main varied parameter was the magnitude of the residual stresses relative to the 

material yield strength, which is also varied in the slitting study. The hole drilling studies 

only considered the measurement of the average, i.e., uniform, stress over the depth of a 

through-hole [26, 27] or a blind hole [28-30]. The slitting study, however, must 

necessarily consider the measurement of the through-thickness stress variations by 

considering different stress profiles, which is the second independent variable. Finally, 3-
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D constraint effects must also be examined for slitting, which is the third independent 

variable. Some hole drilling studies also examined the effect of different levels of strain 

hardening, which reduces the errors [26, 28, 30]. For this preliminary slitting study, the 

over-conservatism inherent in assuming perfect plasticity will be accepted. Plasticity in 

slitting measurements would also be moderated by the width of the slit and the shape of 

the slit tip. For this study, the slit was conservatively taken as a sharp, zero-width crack.  

2. Methods 

Finite element (FE) simulations were used to investigate the effect of plasticity on 

measurements of through-thickness residual stresses in a beam or plate specimen. The 

strains that would be measured during a slitting experiment were simulated for various 

residual stress profiles and magnitudes relative to the yield strength. The simulated 

strains were then used to calculate stresses using a series expansion approach and 

assuming elasticity. A large parameter study was performed using 2-D plane stress and 

plane strain simulations. A small number of 3-D simulations were performed to 

determine the applicability of plane stress or plane strain approximations. 

2.1. Geometry and Stress Calculation 

Figure 1 shows the standard slitting terminology and geometry for a beam. The 

models used in this study had a thickness of 1 to normalize other dimensions, so x and a 

range from 0 to 1 through the beam thickness. Using symmetry, the modeled half-length 

was 5, which was long enough to eliminate any effect of beam length. It was assumed 

that the slit did not close during the cutting.  
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Figure 1. Geometry and coordinate definitions for beam specimen. The gauge measures 

strains in the y-direction. 

 

The series expansion approach was used to calculate the stresses from the data 

[31, 32]. Experimentally, at discrete slit depths, a, strains are measured by the strain 

gauge: 

( ) iia εε = , (1) 

where there are m slit depths i = 1,m. It is assumed that the stress can be approximated as 

an expansion of analytic basis functions. For through-thickness measurements, the 

expansion is commonly taken as 

( ) ( ) [ ]{ }ALxLAx
n

j
ijjiiy =≈= ∑

=2
σσ , (2) 

where Lj(x) is the jth order Legendre polynomial expanded with the domain as the full 

beam thickness. The series expansion begins at j = 2 because the zeroth and first order 

polynomials do not satisfy equilibrium. The first four equilibrium polynomials are shown 

in Figure 2. 
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Figure 2. First four equilibrium Legendre polynomials. 

The solution for σ now requires choosing an expansion order n and determining 

the basis function amplitudes Aj . The solution strategy requires determining the strain 

release Cj(ai) that would occur at each a = ai if σ(x) were exactly given by each Lj(x). 

These compliance functions, or calibration coefficients, are usually calculated using finite 

elements. Using elastic superposition, the strains that would be measured for this 

approximation of σ(x) is then given by 

( ) [ ]{ }ACaCA
n

j
ijji == ∑

=2
ε .  (3) 

A least squares fit it used to determine the Aj that provide the best match to the measured 

strains.  

In this study, a conservative assumption about expansion order was made in order 

to simplify the calculations and the interpretation of results. An objective selection of the 

expansion order should be made by minimizing the estimated average uncertainty in the 
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results [33]. In all of the error simulations in this study, the errors increased or remained 

constant with increasing expansion order. Therefore, the stresses were always calculated 

using an expansion order of n = 12. Expansion orders larger than n = 12 are rarely 

practical and should be used with caution. 

2.1.1. Material Behavior 

The finite element calculations used incremental plasticity, elastic-perfectly 

plastic constitutive behavior, the Mises yield surface and the associated flow rule. 

Isotropic hardening was simulated, so there was no Bauschinger effect. The yield strength 

was taken as one for all of the simulations, and the magnitude of the initial residual 

stresses was adjusted to give the desired σmax/Sy: 

( )( )
yS

xr σmax
=  . (4) 

 

The elastic modulus was taken as 1000 to keep the displacements small, and is also 

realistic since Sy/E ≈ 1000 for structural metals. Poisson’s ratio was taken as 0.3. 

2.1.2. Assumed Stress States 

Legendre polynomials were initially chosen to represent the possible residual 

stress profiles. The second order Legendre polynomial, L2 in Figure 2, was used as a test 

case for high KIrs, and the third order Legendre polynomial was used as the test case for 

bulk yielding on the surface opposite the cut. Preliminary calculations demonstrated that 

higher order Legendre polynomials cause insignificant levels of plasticity. 

Based on early results, it was recognized that plasticity effects in slitting were 

dominated by KIrs, and a more pessimistic test case was constructed. Figure 3 shows the 
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square stress profile that, for a given peak stress magnitude, results in the theoretically 

highest KIrs. Such a discontinuous stress profile is physically unrealistic for homogeneous 

bodies. Therefore, a more realistic stress profile for high KIrs was constructed and is 

shown in Figure 3. This profile was constructed from Legendre polynomials so that the 

stresses could be fit exactly by the series expansion process, therefore allowing the study 

to isolate plasticity errors. Such a residual stress distribution would be most commonly 

seen with quenching stresses, but quenching stresses rarely exceed half of the yield 

strength. Such a distribution but with even higher stress magnitudes can be found for the 

transverse stresses in a butt welded plate [34] or girth welded pipe [35]. Stress profiles 

giving significantly higher KIrs are increasingly unrealistic.  

 

Figure 3.  The theoretical stress profile that maximizes KIrs(a), a more realistic stress case to 

give high KIrs(a), and the 2nd order Legendre polynomial for comparison. 

 

The high KIrs stress profile is given by 
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(5) 

 

The peak value of 1 is achieved slightly subsurface at x ≈ 0.0145,0.9855.  

An initial residual stress state throughout the body was modeled. For elastic 

slitting analyses, it is generally more convenient to use Bueckner’s superposition 

principle and apply pressure loads to the slit faces than to use initial stresses [36]. 

However, applying pressure loads to an unstressed body only considers the change in 

stress from the slitting, does not include the presence of the initial stresses, and would 

incorrectly model yielding during relaxation. Away from the cut plane, the initial stresses 

state was transitioned to zero in order to satisfy both the stress-free surface boundary 

conditions and equilibrium. 

Because the full stress tensor effects yielding, the effect of the transverse stress 

was considered. The transverse stress σz is also commonly of large magnitude and can 

affect yielding. Besides uniaxial stress, σz = 0, the study considered equi-biaxial stress, 

σz(x) = σy(x), obviously for the plane strain simulations only. The third stress component 

σx is generally smaller because it must be zero on the top and bottom free surfaces, and is 

therefore ignored in this study. 

2.2. Finite Elements 

The finite element simulations were carefully constructed to accomplish two main 

goals: to simulate plasticity as realistically as possible and to isolate the errors caused by 

plasticity. A zero-width cut was modeled by incrementally removing symmetry boundary 

conditions in a series of analysis steps. Contact of the cut surfaces was not allowed even 
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if the surface displaced over the centerline. The residual stresses were simulated by using 

the initial stress option and an ABAQUS user subroutine sigini.f [37].  

2.2.1. Mesh details 

The same finite element model was used to simulate the slitting experiments and 

to calculate the calibration coefficients of Eq. 3. The quadrilateral elements were second 

order (8-noded, quadratic shape function) in order to better capture stress concentrations 

and reduced integration for increased accuracy with second order elements as well as 

reduced computation time. Using symmetry about the cut plane, half of a beam was 

modeled. The mesh was biased towards the slit region to improve computational 

efficiency. Along the slit, the elements were squares 0.01 by 0.01, giving 100 elements 

through the thickness. A convergence study showed that this mesh size was sufficiently 

converged for stress gradients, and that a cut depth increment of da/t = 0.01 was 

sufficient to resolve the path-dependent plasticity. The slit was extended to a final depth 

of a/t = 0.95 because deeper cuts are rarely used experimentally. Separate calibration 

coefficients were calculated for plane stress and plane strain. For 3-D calibration 

coefficients, the elastic solution for the same mesh is used in order to isolate plasticity 

effects from other errors, such as the errors from using 2-D compliances for 3-D data 

[38]. The simulated gauge strain was calculated from the displacement of a node on the 

beam surface opposite the slit that was 0.035 from the symmetry plane. Dividing this 

displacement by 0.035 gives the average strain that would be measured by the gauge [39]. 

 

To make the 3-D model sizes tractable, the element size was increased to give 50 

elements through the beam thickness, and the cut increments were increased to 0.02t. In 
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direct comparisons, 2-D simulations using this mesh density were used. A 2-D mesh was 

then extruded in the z-direction to give a 3-D mesh of reduced integration quadratic shape 

function (C3D20R) elements. Specimens widths W = 0.1, 0.2, 0.5, and 1.0t were 

simulated. Using symmetry, only half of the specimen width was modeled, giving 

quarter-symmetry models. The elements were equally spaced in the z-direction except for 

W = 1.0t where a graded mesh was used to keep the calculation tractable. Table 1 shows 

the details of the 3-D meshes.  

 

Width (B/t) Elements over 
half-width 

Element 
width range 

Total number 
of elements 

0.1 4 0.0125 28,200 
0.2 4 0.0250 28,200 
0.5 6 0.0417 42,300 
1.0 10 0.0405-

0.0607 
70,500 

Table 1. Mesh details for 3-D FE simulations.  

2.3. Fracture Mechanics Calculations 

Calculations of the stress intensity factor from extending the crack into the 

residual stress field, KIrs(a), were made in order to interpret the results. KIrs(a) for the test 

case residual stresses were calculated using the weight function approach [40]. KIrs was 

normalized by the yield strength and by the square root of the specimen thickness to 

provide the appropriate dimensionless parameter for plasticity studies. The normalization 

by the square root of specimen size becomes clear when one remembers the 

proportionality between stress intensity factor and global loading is aK I σ∝ and the 

crack length will scale with specimen size. In spite of the magnitude of KIrs for a given 

profile increasing with the square root of the specimen size, plasticity errors do not 
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depend on specimen size for a given residual stress profile. The extent of the plastic 

region at a crack tip scales with the square of KIrs and thus will increase linearly with 

specimen size. The important parameter for plasticity errors is the plastic region size 

relative to the specimen thickness, which then does not change.  

KIrs(a) was also calculated from the slitting strains, as compared to the known 

stresses, as a method for estimating possible plasticity errors after a slitting test. The 

calculation from the measured strains [41, 42] is simple:  

( ) ( ) da
d

aZ
EaK Irs

ε′
=  (6) 

 

where E' = E/(1-ν2) for plane strain or E' = E for plane stress. For a rectangular beam 

with l > 2t [43],  

( )
( )

( ) ( )
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10.25for  ,532.2
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(7) 

 

Because the simulated experimental data in this study includes the effects of 

plasticity, this calculation based on elasticity may not give the exact KIrs; therefore, the 

result is called the “apparent” KIrs. The strain differential in Eq. 6 was calculated using an 

exact spline fit. When applying to experimental data, some smoothing of the differential 

may be required [44]. When applying this calculation to the results of 2D simulations, the 

E' appropriate to the plane stress or plane strain simulation was used and confirmed to 

give the correct results. For an experiment that may be somewhere between plane stress 

and plane strain, the choice is not too important since the difference is only 10% for 
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ν = 0.3. Nonetheless, using E for B/t < 0.25,  E'  for B/t > 1.5, and a linear interpolation in 

between provided good accuracy based on the 3D simulations in this study. 

2.4. Error Calculations 

The strain error is the difference between the simulated strain including plasticity, 

εp, and the strains when yielding is not allowed, εe. The values are normalized by the 

maximum strain magnitude from the elastic calculation 

( ) ( ) ( )
( )( )( )aabs
aa

a
e

ep
error ε

εε
ε

max
~ −

=  (8) 

 

 

The tilde indicates normalization by a maximum value. The root-mean-square average of 

this quantity over the cut depths quantifies the average strain error 

( )( )∑
=

=∂
m

i
ierror a

m 1

2~1 εε , (9) 

 

where m is the 95 cut depths.  

While the strain error provides an error measure that is independent of the method 

used to solve the inverse problem for the stresses, it is the errors in the calculated stresses 

that are of main interest. The stress error is defined as the difference between the 

calculated stresses and the known stresses. The stress error is normalized by the 

maximum of the known stresses. 

( ) ( ) ( )
( )( )a

aa
a

known

knowncalculated
error σ

σσ
σ

max
~ −

=  (10) 

 

The root-mean-square average of this quantity over the cut depths quantifies the average 

error in the calculated stresses:  
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( )( )∑
=

=∂
m

i
ierror a

m 1

2~1 σσ . (11) 

 

 

3. Results & Discussion 

3.1. Fracture mechanics  

Figure 4 shows the result of the weight-function calculation of KIrs(a) for the test 

case residual stresses from Figure 2 and Figure 3. The plot ends at a/t = 0.85, which is the 

limit of accuracy for the weight function. The L2 and high KIrs(a) cases both show a 

single significant peak that occurs relatively early in the cutting. The peak for the high 

KIrs(a) is 58% greater in peak KIrs compared to L2. The L3 case has two peaks of similar 

magnitude, with that magnitude another 35% lower than the peak of L2. 

 

Figure 4. The stress intensity factor from cutting into a residual stress profile corresponding 

to the test case residual stress profiles. 
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3.2. Typical results from individual 2-D runs 

Figure 5 shows typical simulated slitting strains. For σmax= 0.9 Sy, the strains 

including plasticity effects are plotted alongside the strains for elastic only behavior for 

the three test case stress profiles and both plane stress and plane strain. For clarity, only 

every second data point is plotted. The effect of plasticity is most visible for the plane 

stress simulations for the high KIrs, and L2 test cases. 

 

Figure 5. Simulated slitting strains. Lines are elastic strains, symbols are from simulations 

including plasticity with σmax/Sy = 0.9. 

To examine the plasticity effects more closely, Figure 6 shows the strain error of 

Eq. 8 for the plane-strain L2 simulation. The strain errors peak at a relatively shallow cut 

depth, which corresponds with the peak in KIrs(a), Figure 4, as the slit depth is increased. 

The strain errors return to zero after cut tip plasticity ceases to occur and the remotely 
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measured strain becomes dominated by the globally released stresses rather than previous 

local plasticity effects. The magnitude of strain errors scales with stress magnitude.  

 

Figure 6. Normalized strain errors for plane strain and L2 and different levels of r = σmax/Sy. 

 

Figure 7 shows the L2 stress errors for the plane strain simulations corresponding 

to Figure 6, with some of the curves removed for clarity. After calculating the stresses 

using the 12th order Legendre series expansion, the errors were calculated using Eq. 10. 

The stress errors are much greater than the strain errors because of the sensitivity of the 

inverse calculation. The largest stress errors occur near the surface, the location of peak 

stress magnitudes. The calculated surface stress is most affected by the strains measured 

at shallow cut depths, which have the lowest magnitudes. The calculated stresses shown 

in Figure 7 over-predict the actual magnitudes, which aids in recognizing plasticity errors 

in the stress results.  
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Figure 7. Stress error for plane strain and L2. The known stress at a = 0 is +1, so the 

maximum errors overestimate the stress magnitudes. 

3.3. 2-D Compiled results 

Figure 8 shows the average strain errors, Eq. 9, as a function of stress level for the 

2-D FE parameter study. The figure represents root-mean-square depth-averaged values 

of curves including those in Figure 6. As expected, the plane stress simulations show the 

greatest magnitude of strain errors, often three or four times the level of corresponding 

plane strain simulations. The high KIrs test case has significantly higher errors than other 
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profiles. The difference between uniaxial and biaxial stress states is quite small. The L3 

results show a sharp increase above r = 0.9 when yielding under the strain gauge occurs.  

 

Figure 8. Root-mean-square average strain errors from 2-D runs 

Figure 9 shows the average stress errors, Eq. 11, as a function of stress level for 

the 2-D FE parameter study. The magnitude of stress errors are up to an order of 

magnitude greater than the strain errors, confirming that the inverting measured strains to 

original residual stresses magnifies the errors. The errors vary greatly for different stress 

profiles. Except for the high KIrs profile, the average errors are under 10% for all initial 

stresses under the yield strength. Similar plots for hole drilling simulations show higher 

errors (for their single average stress value rather than a depth-average) [28, 29]. The 

difference between uniaxial and biaxial stresses errors is still insignificant but is larger 

than in Figure 8 because the shapes of the strain error curves are somewhat different. The 
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L3 errors are small even for high stress levels. Furthermore, having near yield magnitude 

stresses of opposite sign on the two opposite surfaces is already unrealistic. Therefore, 

the scenario of yielding under the strain gauge is not found to be a realistic error source.  

 

 

Figure 9. Root-mean-square average stress errors as a function of the peak residual stress 

relative to the yield strength. 

Figure 10 shows that plotting the stress errors versus the peak value of apparent 

KIrs(a), 

( )













=

tS
aK

K
y

Irs
Irs maxˆ , 

(12) 
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gives a much more consistent method for interpreting the results. The stress errors from 

Figure 9 now collapse into two distinct populations: plane stress and plain strain. The 

agreement within the populations is striking considering the differences in the stress 

profiles and especially that the calculated stresses result from the processing of the data 

through the series expansion inversion process. The difference between the plane strain 

and plane stress is roughly a factor of three to four, which is consistent with the reduction 

in plastic zone size because of the triaxial stress state for plane strain.  

 

 

Figure 10. Average stress errors correlate well with the maximum values of the apparent 

stress intensity factor from the residual stresses. 

Figure 11 shows Figure 10 plotted on a logarithmic scale. Near-zero values of 

error are not plotted. The central regions of the curves show the expected dependence on 
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the square of KIrs, because that determines the size of the crack-tip plastic zone. For later 

use in interpolating 3D results, approximate bounding curves are constructed as 

( )
( ) strain planefor  ˆ31.0

stress planefor  ˆ0.46
2.6

2

Irs

Irs

K

K

=

=∂σ
 

(13) 

 

At higher levels of KIrs, the fits to a dependence on the square of KIrs are not as 

good partly because the apparent KIrs is not as good an approximation to the actual KIrs. 

The curve for plane strain therefore uses a higher exponent in order to remain 

conservative for the high KIrs profile with peak stresses over 0.8Sy. For general reference 

as threshold values, note that the errors do not exceed even one percent until IrsK̂ exceeds 

about 0.15 for plane stress or 0.26 for plane strain.  
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Figure 11. Logarithmic plot of stress errors and functions representing upper bounds to 

errors. 

Figure 12 shows the maximum stress error for the 2-D parameter study. The 

maximum errors always occurred at the value nearest x = 0, which is at x = a1, 0.01t in 

this case. The maximum errors would be greater if results were extrapolated to the 

surface and less if coarse cut depth increments were used. Therefore, the specific values 

are not as universally representative of all slitting measurements as the average values of 

Figure 9 are. In fact, 0.01t in, corresponds to nearly 100 cut depth increments which 

significantly exceed common practice of using something like 20 to 40 increments. 
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Figure 12. Maximum stress errors as a function of maximum in the apparent stress intensity 

factor. 

Although the maximum stress errors are not as deterministic as the average errors, 

some useful observations are possible. At the same values that the average stress errors 

exceed 1%, the maximum errors hit about 5%. After the maximum stress errors reach 

about 20%, when IrsK̂ exceeds about 0.27 for plane stress or 0.44 for plane strain, the 

errors increase rapidly. For the plane stress simulation with the high KIrs profile and a 

maximum stress of 0.5Sy, the maximum calculated stress is 0.6Sy, and the peak and 

average stress errors are about 20% and 6.5% respectively. All higher errors in the 2-D 

study have a higher calculated stress magnitude. Therefore, one probably does not need 

to consider plasticity error if the calculated stresses do not exceed 0.5Sy or 0.6Sy. 
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3.4. 3-D results 

A small set of computationally intensive 3-D FE runs were used to answer the 

most important questions posed by the 2-D results. The difference between the 2-D plane 

stress and plane strain results show that degree of constraint has a factor of three to four 

effect on the errors caused by plasticity. Therefore, it was necessary to determine where 

between plane stress (width = 0) and plane strain (infinite width) solutions a beam with 

finite width would fall. The L2 and high KIrs profiles were considered in the 3-D study. 

Uniaxial stresses were considered since biaxiality had little effect. Peak stress levels of 

60% and 80% of the yield strength were considered in order to examine a reasonable 

range of errors in the measured stress results.  

Figure 13 shows the most relevant results from the simulations for L2 at 80% of 

the yield strength. The normalized difference between the strains with and without 

plasticity, Eq. 8, is plotted. The results show that as the specimen width increases, the 

difference strains more closely approximate the 2-D plane strain results. The 3-D results 

for the narrowest simulation, W = 0.1t, fall about half way between the plane strain and 

plane stress solutions. These results indicate that results based solely on plane stress 

simulations [23] will generally over-predict plasticity effects. The results for r = 0.6 are 

qualitatively similar. 
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Figure 13. Plasticity effects from 3-D simulations for L2 and σmax = 0.8 Sy and various 

specimen widths compared to 2-D results.  

A simple scalar measure is used to quantify where a 3-D results falls between the 

2-D limiting cases. Since the shapes of the curves in Figure 13 are essentially similar, the 

peak magnitude of the curve, ( ) ( )aa elasticplastic εεε −= max* , can be used to 

approximately scale the results. Degree of plane strain is then defined as 

**

**
3

σε

σ

εε
εε

pp

pDD
−

−
=  (14) 

 

where the subscripts pσ and pε refer to plane stress and plane strain, respectively.  D is 

zero for plane stress and one for plane strain. This definition is analogous to the 

( )[ ]yxz σσνσλ += / degree of plane strain definition used in fracture mechanics.  
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Figure 14 plots the degree of plane strain for the 3-D finite element simulations. 

In terms of the effect of plasticity on slitting measurements, the 3-D result is better 

approximated by plane strain as compared to plane stress for all but the narrowest 

specimens. As the stress level increases, the size of the crack tip plastic zone relative to 

the specimen thickness increases, and the result becomes somewhat less plane strain [45]. 

 

Figure 14. “Degree of plane strain” relevant to plasticity for different specimen widths and 

different stress levels. 

3.5. 3-D/2-D interpolated results 

The 3-D results of Figure 14 are used to interpolate the 2-D plane stress and plane 

strain results from Figure 10 to different specimen widths. For purposes of this 

interpolation, the results of Figure 14 can be fit to acceptable accuracy by 
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which is used to linearly interpolate the 2D bounding curves results to give an error 

bound of 

( ) ( ) ( ) 
 −+=∂

26.22 ˆ46.0ˆ31.0Dˆ46.0 IrsIrsIrs KKKσ  (16) 

 

This bound is plotted in Figure 15. Considering the conservatism in the fits in 

Figure 11, especially for plane strain, the errors are conservative. The errors start 

becoming significant for IrsK̂ exceeding 0.3 to 0.4 depending on the specimen width.  

 

 

Figure 15. Average stress error as function of specimen width and magnitude of apparent 

stress intensity factor.  
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The literature was extensively examined for slitting tests that might cause 

plasticity errors. Such situations are unusual, but some are found in the literature in thin 

specimens. The specimens most likely to yield are from tests in friction stir welded 

aluminum alloys where the apparent IrsK̂  values were both over 0.3 and the B/t values 

were 0.05 and 0.15 [46, 47]. Figure 15 would indicate average errors of up to 6% and 

peak errors might exceed 20%. However, in both cases, the finite slit width and likely 

strain hardening would reduce the errors. Indeed, if plasticity errors had occurred in  [46], 

the stress profile would probably not have been so symmetric since the KIrs(a) was very 

asymmetric, with significant magnitudes only before the midpoint like Figure 4, and 

Figure 7 indicates that the error would have been asymmetric. Laser peening stresses 

were measured in a thin titanium strip and calculated stresses were near in magnitude to 

the yield strength [48]. That data is not analyzed here for IrsK̂ since a different strain 

gauge location was used.  

4. Conclusions 

These conclusions apply to through-thickness slitting measurements on a beam 

using a strain gauge opposite the cut. Other geometries would be expected to give 

somewhat different errors, and a strain gauge location on the top surface near the cut 

might give very different errors. The results also might be different if a different method 

than series expansion was used to calculate the stresses from strain data. This study’s 

conclusions about plasticity errors are generally conservative. Such likely occurrences as 

strain hardening or a finite-width and round-bottomed slot would lead to lower plasticity 

errors. The mitigating effect of strain hardening can be qualitatively assessed by 
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comparing with hole drilling studies that show the effect of even modest strain hardening 

to be quite significant in reducing errors [28]. The following conclusions are made: 

• The majority of plasticity errors in slitting measurements come from plasticity 

near the cut tip.  

• Yielding under the strain gauge on the back face can occur for stress distributions 

with oppositely signed stresses on the top and bottom surfaces, but is very 

unlikely.  

• Plasticity errors can be estimated without knowing the actual residual stresses by 

using the strain data to calculate the apparent KIrs(a) and then comparing with the 

values in Figure 15 or Equations 15 and 16. 

• Unlike hole drilling, the slitting method errors cannot be deterministically 

correlated with stress magnitude. When the calculated stresses do not exceed 

about 0.5Sy, it can be safely assumed that the plasticity errors are insignificant and 

calculating KIrs(a) is not necessary. However, calculated stresses as high as Sy 

may be quite accurate if the stress distribution is one that does not results in a high 

KIrs(a). 

• The errors are strongly affected by constraint, and plane strain is a better 2D 

approximation than plane stress for all but the narrowest specimens. 

• For specimens wider than 0.5t, the maximum KIrs must exceed tS y4.0 for 

average stress errors to exceed 4%. 

• Maximum stress errors are more difficult to predict than average errors because 

they depend on more factors. For the cases in this study, they range from four to 

seven times the average error. 
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• Because of the correlation with KIrs(a), the plasticity errors could potentially be 

corrected using the cut-depth adjustment approach proposed by Schindler [21] 

with an appropriate scale factor. An experimental correction [49] is probably not 

possible for slitting. 

 

Much future work is possible to improve the fidelity of this study. One could 

investigate the effects of strain hardening, slit width and the shape of the cut tip. One 

could investigate other strain gauge locations and other inverse methods for calculating 

the stress from the strain data. 
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