
LA-UR 09-03399

The pulse tube and the pendulum

G. W. Swift and S. Backhaus

Condensed Matter and Thermal Physics Group,

Los Alamos National Laboratory,

Los Alamos,

New Mexico 87545

(Dated: August 17, 2009)

The pulse tube and the pendulum 1



Abstract

An inverted pulse tube in which gravity-driven convection is suppressed

by acoustic oscillations is analogous to an inverted pendulum that

is stabilized by high-frequency vibration of its pivot point. Gravity

acts on the gas density gradient arising from the end-to-end tem-

perature gradient in the pulse tube, exerting a force proportional to

that density gradient, tending to cause convection when the pulse

tube is inverted. Meanwhile, a nonlinear effect exerts an opposing

force proportional to the square of any part of the density gradient

that is not parallel to the oscillation direction. Experiments show

that convection is suppressed when the pulse-tube convection num-

ber Nptc = ω2a2
√

∆T/Tavg/[g(αD sin θ − L cos θ)] is greater than 1 in

slender tubes, where ω is the radian frequency of the oscillations, a is

their amplitude, ∆T is the end-to-end temperature difference, Tavg is

the average absolute temperature, g is the acceleration of gravity, L

is the length of the pulse tube and D is its diameter, α is about 1.5,

and the tip angle θ ranges from 90◦ for a horizontal tube to 180◦ for

an inverted tube. Theory suggests that the temperature dependence

should be ∆T/Tavg instead of
√

∆T/Tavg.

PACS numbers: 43.35.Ud, 43.25.Ts, 43.28.Py
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I. INTRODUCTION

Rigid pendula exhibit many interesting phenomena,1 including dynamic stabilization: If

the pivot point of a rigid pendulum is vibrated at high enough frequency and high enough

amplitude, the pendulum tends to align with the vibration axis, and the pendulum can stand

inverted, seeming to defy gravity. The equation of motion can be derived with the simple

approach of Blitzer.2 Let the x and y directions, the angle θ of the pivot-point vibration

relative to gravity g, and the angle φ(t) of the pendulum relative to gravity be defined as

shown in Fig. 1(a), and let m be the mass of the pendulum’s bob and L be the length of its

rod. The position x(t), y(t) of the pendulum’s bob is given by

x = a sin θ cos ωt + L sin φ, (1)

y = −a cos θ cos ωt− L cos φ (2)

when the pivot point is forced to vibrate sinusoidally with amplitude a and radian frequency

ω. The equation of motion for the bob can be written

Fx = mẍ, Fy −mg = mÿ, (3)

where the F ’s are the two components of force exerted by the rod on the bob and the

overdots represent time derivatives. By Newton’s third law, the bob exerts force −−→F on the

rod, applied at the end of the rod attached to the bob. The torque on the rod about the

pivot point due to −−→F must be zero, because this massless rod has zero moment of inertia,

Irod. Thus

−LFx cos φ− LFy sin φ = Irodφ̈ = 0. (4)

Combining these four equations by eliminating x, y, Fx, and Fy yields the equation of motion

for the pendulum angle φ :

φ̈ = −(g/L) sin φ + ω2(a/L) sin(θ − φ) cos ωt. (5)

For 0 < φ < 180◦, the torque applied by gravity that tends to decrease φ is apparent

in Fig. 1(a) and Eq. (5). The time-averaged torque caused by the pivot-point vibration,
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tending to align φ with the vibration, is not so apparent in Fig. 1(a) or Eq. (5), but Fig.

1(b) helps explain the mechanism, if the vibration is exaggerated and gravity is neglected.1

The figure shows the pendulum at two extremes j and k of its motion under this exaggerated

circumstance. At j, the acceleration of the pivot point causes a large, positive φ̇, without

much acceleration of the bob. At k, the acceleration of the pivot point causes the bob to

accelerate parallel to the vibration direction, with only a small, negative φ̇. The net effect on

φ is positive, causing the pendulum to tend to align with the vibration. In other words, the

time-averaged torque tending to align φ with the vibration is proportional to the product of

the amplitude of the angular vibration, φk − φj, and how strongly the torque caused by the

vibration varies with φ.

For decades, quantitative analysis of Eq. (5) when ω2 À g/L has appeared as an exercise

in textbooks on classical mechanics, such as Ref. 3 for θ = 180◦ and θ = 90◦ and Ref. 4 for

θ = 180◦. Extended to arbitrary θ, the analysis shows that the dimensionless number

Npendulum =
ω2a2

gL
(6)

determines the simple pendulum’s behavior for slow time scales, i.e., time scales À 1/ω. For

Npendulum > 4, the pendulum can be stably held up for any θ. For 1 < Npendulum < 4, it can

be stably held up only if the pivot point’s vibration is close enough to vertical (i.e., close

enough to either θ = 0 or θ = 180◦, which are equivalent). For Npendulum < 1, the pendulum

cannot be stably inverted for any θ. (The details of this analysis are omitted here, because

similar details are presented in the next paragraph and in Sec. II.)

A more complicated pendulum sets the stage well for analysis of the pulse tube in Sec. II.

Figure 1(c) shows a ring of radius L and mass m, supported from its central pivot point by

massless spokes. The mass m is uniformly distributed around the ring, except for an out-of-

balance part ∆m/2, which has been removed from location −φ and added to location +φ.

The pivot point is forced to vibrate sinusoidally along a line at angle θ from the vertical, with

amplitude a and angular frequency ω, as for the simple pendulum considered above, and

the analysis again begins by following Blitzer’s approach.2 The coordinates of the “positive”
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mass at +φ and the “negative” mass at −φ are written down, as are equations of motion for

these two masses. The torque exerted on the ring by its contact with the two out-of-balance

masses is set equal to Iringφ̈, where Iring = mL2 is the ring’s moment of inertia. Eliminating

the forces and coordinates yields an equation of motion for the angle φ(t),

mL2φ̈ = −∆mgL sin φ + ∆mω2aL sin(θ − φ) cos ωt (7)

≡ τgrav + τvib, (8)

where the right-hand side can be interpreted as the sum of a torque due to gravity and a

torque due to the vibration of the pivot. References 3 and 4 show that the pendulum angle

φ should be written as the sum of slow and fast parts,

φ = φslow + φfast cos ωt, (9)

when ω2 À ∆mg/mL. Using Taylor-series expansions

τ = τ |φslow
+

∂τ

∂φ

∣∣∣∣
φslow

φfast cos ωt (10)

for both terms on the right-hand side of Eq. (7) and time averaging confirms that there was

no need for a sin ωt term in Eq. (9) and generates two equations, a “fast” equation from the

cos ωt terms and a “slow” equation from terms with nonzero time-averages:

φfast = −∆m

m

a

L
sin (θ − φslow) , (11)

mL2φ̈slow = −∆mgL sin φslow +
(ωa∆m)2

4m
sin (2θ − 2φslow) . (12)

If this pendulum can be stably inverted, then φ̈slow = 0 and setting the right-hand side of

Eq. (12) equal to zero must yield a solution for φslow. Whether such a solution exists, and

its value, depends on the ratio of the coefficients of the two terms on the right (dropping

the factor of 4 for simplicity):

Nring =
ω2a2

gL

∆m

m
. (13)

It is interesting how many effects combine to put ∆m and (∆m)2 /m in the two terms on

the right-hand side of Eq. (12), and hence to put ∆m/m in Eq. (13). The left-hand side
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of Eq. (12) is the moment of inertia times the slow angular acceleration, so the right-hand

side must be the slow torque. The first term on the right-hand side shows gravity applying

torque proportional to the unbalanced mass ∆m, with the mass ∆m/2 trying to drop down

on the right and the negative mass −∆m/2 trying to float up on the left, both applying

clockwise torques in Fig. 1(c). The second term on the right-hand side, which represents the

time-averaged torque tending to align the unbalanced axis of the ring with θ, arises from the

mechanism illustrated in Fig. 1(b), i.e., the time-averaged product of ∂τvib/∂φ and φfast in Eq.

(10), where τvib is the vibration torque given by the second term in Eq. (7). The unbalanced

mass ∆m appears in the numerator of φfast in Eq. (11) because it is responsible for τvib

through the mechanism shown in Fig. 1(b). The ring mass m appears in the denominator

of φfast in Eq. (11) because the ring’s moment of inertia resists the fast torque. Finally,

∂τvib/∂φ retains the mass dependence of τvib itself, namely ∆m. Overall, Nring represents

the angle-independent part of the ratio of the time-averaged alignment torque [proportional

to (∆m)2 /m] to the gravitational torque (proportional to ∆m).

This paper explores the hypothesis that a similar mechanism is responsible for suppress-

ing natural convection in the gas in a tube with an axial temperature gradient, when the

gas oscillates axially at high enough frequency and amplitude. As shown in Fig. 1(d) for

such a tube with its cold end higher than its hot end, gravity tends to pull the dense gas

near the cold end to one side and down, pushing the less dense gas near the hot end to the

other side and up. This puts the center of mass of the gas below the tube’s centerline. The

vibration can then exert a time-averaged torque on the entire body of gas, via time-averaged

oscillating forces on this off-center center of mass, in a process analogous to that shown in

Fig. 1(b). This torque opposes that of gravity and can balance it, preventing convection.

The gas in a pulse tube experiences such axial oscillations and supports such an ax-

ial temperature gradient. The pulse tube, a vital component of cryogenic pulse-tube

refrigerators,5 is a smooth-walled tube without internal structures, bounded on both ends

by flow straighteners and heat exchangers through which gas flows easily. Its purpose is to

transmit acoustic power through the gas from the cold end to the hot end with minimal
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heat leak from the hot end to the cold end. The lack of internal structure generally makes

low-loss transmission of acoustic power easy, but makes heat-leak minimization challenging.

The peak-to-peak volumetric stroke of the moving gas is always less than the volume of the

gas in a pulse tube. Ideally, one imagines a perfectly thermally stratified slug of gas, whose

volume is the difference between the tube volume and the volumetric stroke, oscillating axi-

ally in the tube and remaining entirely inside the tube at all times, conducting only a little

heat from hot to cold, without any accompanying convection. However, several heat-transfer

mechanisms can disturb this ideal picture, carrying much more heat than would be carried

by conduction alone, unless attention is paid to minimizing each one of them. One such

heat-transfer mechanism—natural convection due to gravity acting on density gradients in

the gas, the subject of this paper—is known to occur commonly in low-frequency pulse-

tube refrigerators, but it is also known that such convection is often reduced or absent in

high-frequency pulse-tube refrigerators.6–8

Our motivation for this work arose in the context of pulse-tube refrigerators and ther-

moacoustic engines, sometimes coupled, in which convectively stable orientation of the tubes

relative to gravity was inconvenient and an accurate understanding of the suppression of

convection by high-frequency oscillations was desired. In thermoacoustic-Stirling hybrid

engines9 and cascade thermoacoustic engines,10 the tubes that transmit acoustic power across

a temperature difference while minimizing heat leak are called thermal-buffer tubes. They

generally carry acoustic power from a hot temperature to ambient temperature, while pulse

tubes carry acoustic power from a cold temperature to ambient temperature. But even in

pulse-tube refrigerators, these tubes are sometimes called thermal-buffer tubes. For brevity

in this paper, all such tubes are referred to as pulse tubes, and their end temperatures are

labeled as hot and cold.

Below, theoretical arguments (Sec. II) and experimental evidence (Sec. III) are presented

to show that

Nptc =
ω2a2

g (αD sin θ − L cos θ)

(
∆T

Tavg

)β

(14)

is a useful and plausible choice of dimensionless group for characterizing this phenomenon in
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pulse tubes of low aspect ratio D/L. As above, ω is the radian frequency of the oscillation,

a is its displacement amplitude, and g is the acceleration of gravity; D is the pulse tube

diameter and L is its length, ∆T is the end-to-end temperature difference, and Tavg is the

average temperature. The tip angle θ is taken to be zero in the vertical, gravitationally

stable orientation, and this equation is only valid for 90◦ ≤ θ ≤ 180◦ (where cos θ ≤ 0, so

both terms in the denominator are non-negative). The parameter α is a fitting parameter

discussed below, experimentally found to be about 1.5, and experiment shows that β is close

to 1/2 while theory suggests β = 1.

II. THEORY

An extensive literature describes the interaction between rapid vibration and steady

convection in fluids, in the framework of the Boussinesq approximation, namely that density

variations due to temperature variations are small and density variations due to pressure

variations are zero. This literature is reviewed and its foundations are succinctly summarized

by Gershuni and Lyubimov.11 After writing the hydrodynamic and thermal variables as the

sum of fast variations at the vibration frequency and slow variations, they derive time-

averaged equations of motion for the slow variables similar in spirit to Eq. (12) above,

showing that fast vibrations effectively add a time-averaged body force to the fluid, whose

magnitude and direction depend on the magnitude and direction of the vibration velocity

and the fluid’s temperature-gradient vector field. For steady state with negligible convection,

their Eqs. (1.100) and (1.101) give the conditions for balance between gravity- and vibration-

induced forces:

Ra ~∇T × ĝ + Ravib
~∇ (~w · n̂)× ~∇T = 0, (15)

~∇ · ~w = 0, (16)

~∇× ~w = ~∇T × n̂, (17)

where ĝ and n̂ are unit vectors in the directions of gravity and the vibration, respectively, T

is the time-averaged temperature, ~w is the solenoidal part of T n̂, and the ordinary Rayleigh
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number Ra and the vibrational Rayleigh number Ravib are given by

Ra =
l3g∆Tchar

νκTchar

, (18)

Ravib =
(ωal∆Tchar)

2

2νκT 2
char

, (19)

with l a characteristic length of the boundary of the fluid, ∆Tchar a characteristic temperature

difference, Tchar a characteristic temperature, ν a characteristic kinematic viscosity, and κ

a characteristic thermal diffusivity. In Eqs. (18) and (19), we have set Ref. 11’s thermal

expansion coefficient equal to 1/T, as appropriate for an ideal gas. Evident from Eq. (15),

the existence of a steady state without convection depends on the ratio of Ravib and Ra,

ω2a2

gl

∆Tchar

Tchar

. (20)

Although derived in the context of the Boussinesq approximation, which is not really ap-

plicable to pulse tubes, this expression suggests most of the functional dependences that

are displayed in Eq. (14), most of which are confirmed in the experiments described be-

low. Presumably, numerical analysis based on Eqs. (15)–(17) could show whether the pulse

tube’s length L, its diameter D, or some combination of those variables is best used for the

characteristic length l, and could find the tip-angle dependence of vibrational suppression

of convection in a pulse tube.

A high vibrational Rayleigh number tends to align density gradients along the direction

of vibration, whether or not gravity is involved. Thus, we expect that this phenomenon

also mitigates the effect of jet-driven streaming due to imperfect flow straightening and the

effect of Rayleigh streaming, on Earth or in zero gravity, because both of these streaming

phenomena create non-axial density gradients in pulse tubes.12 However, since streaming

grows more intense as ωa rises, the mitigation cannot be as abrupt a function of ωa as it is

for gravity-driven convection. Nevertheless, at a given ∆T, the effect of streaming might be

reduced significantly.

The rest of this section presents a very simple attempt to anticipate the best choice for

l in Eq. (20) when the pulse tube’s length L is significantly greater than its diameter D,
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which is a common situation in pulse-tube refrigerators. Although the approximations used

here might seem crude, we hope that they can correctly capture the dominant functional

dependences on D and L.

Three characteristic times are well separated. For a typical sinusoidally driven pulse-

tube refrigerator, 1/ω ∼ 0.003 s. This is significantly faster than the time required for

an appreciable change in convective motion, estimated from the ring-pendulum analysis to

be of the order of
√

l/g ∼ 0.1 s. This, in turn, is significantly faster than the diffusive

thermal relaxation time l2/κ ∼ 30 s. Thus, for rough estimates, it is plausible to assume

that temperatures are essentially carried with the moving gas on the time scales of the gas

motion and that the dynamical behavior of the gravity–vibration interaction in the gas is

qualitatively similar to that of the ring pendulum.

Furthermore, since ν ∼ κ in gases, the viscous relaxation time for l-scale distance is also

∼ 30 s, so the viscous penetration depth
√

2ν/ω is typically much smaller than l. The velocity

of the developing steady flow might be of the order of l/
√

l/g, so the steady-flow Reynolds

number might initially be roughly (l2/ν)/
√

l/g ∼ 300, a regime in which inertial effects

are important and two- and three-dimensional flows are often time dependent. The typical

Rayleigh number given in Eq. (18) can be estimated as (l2/ν)(l2/κ)(∆Tchar/Tchar)/(l/g) ∼
106∆Tchar/Tchar, so modest ∆Tchar/Tchar can cause significant convection. Similarly, the

typical vibrational Rayleigh number in Eq. (19) can be estimated as 108(a/l)2(∆Tchar/Tchar)
2,

so values of a/l that are common in pulse tubes can make Ravib ∼ Ra.

To keep the analysis of the problem simple, we retain the Boussinesq approximation,

treating the gas in the pulse tube as incompressible. Thus, the double-headed arrows in

Fig. 1(d), illustrating the peak-to-peak stroke of the gas, are taken to be the same length at

the two ends of the pulse tube. The isotherms in Fig. 1(d) are shown at an instant of time

when the motion of the gas is at mid-stroke, e.g., when ωt = −π/2. A quarter cycle later,

cos ωt = 1 and the uppermost isotherm would have just touched the cold heat exchanger;

another half cycle later, when cos ωt = −1, the lowermost isotherm would just touch the

hot heat exchanger. The slug of gas between these two isotherms, which always remains
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inside the pulse tube, is the object of interest. It has a length L− 2a, which we might take

to be the effective length for this problem. However, our experiments cannot resolve the

small difference between this length and L itself, so for simplicity we use L in the rest of

this derivation.

The uppermost isotherm has temperature TC when it is momentarily in contact with

the cold heat exchanger at that temperature, but the pressure-induced adiabatic heat-

ing and cooling that the gas experiences causes its average temperature to be TC,avg =

TC [1 + (γ − 1)pa sin β/γpm], where γ is the ratio of isobaric to isochoric specific heats, pa

is the pressure amplitude, pm is the mean pressure, and β = π/2 is the phase by which

oscillating pressure leads oscillating velocity (positive velocity going from hot to cold).13

The hot isotherm’s temperature TH,avg obeys a similar expression. Our experiments cannot

resolve the effects of these small pa-dependent temperature differences, so for simplicity we

describe the temperatures of the slug of gas with ∆T = TH −TC and Tavg = (TH + TC)/2 in

the rest of this derivation, instead of similar but more complicated expressions with TH,avg

and TC,avg.

As shown in Fig. 2(a), imagine that motion within this slug of gas in the pulse tube

can be modeled as plug flow in a loop of piping that is vibrating along the θ direction and

whose cross-sectional area is half of the cross-sectional area A of the pulse tube itself, so gas

rising on the left half of the pulse tube in Fig. 1(d) is modeled as rising plug flow in the left

leg of Fig. 2(a), and similarly down on the right. In this model, the convective motion in

the pulse tube is represented by a single degree of freedom, measured by a time-dependent

displacement δ(t). This displacement and the superimposed vibration carry the isotherms,

because the thermal-relaxation time is so much slower than the times for these motions,

as estimated above. Then 2δ is the measure of how far the isotherms in the right half of

the loop are misaligned from those in the left half at any instant of time, with the sign of

δ as shown in the Figure. Ignoring end effects for small δ, and assuming that end-to-end

temperature differences are small enough that the density ρ can be assumed to be essentially

linear in position [not obviously a good assumption, but linear T (z) is discussed below], the
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density in the two legs of the loop can be written

ρ(z) = ρH + (z ± δ)∆ρ/L (21)

except near the ends, where z is the distance from the hot end, ∆ρ = ρC − ρH , the plus

sign is chosen for the right leg and the minus sign for the left leg, and the subscripts on ρ

correspond to those on T above. Thus, when δ = 0 the density rises linearly from ρH at

z = 0 to ρC at z = L in both legs, and nonzero δ shifts one of these density profiles up and

the other one down.

A Lagrangian derivation of the equation of motion for δ(t) is well suited to keeping

track of details here. The applied vibrational displacement a cos ωt is superimposed on the

plug-flow displacement δ, so the velocity of the gas is −ωa sin ωt + δ̇ in the left leg of the

loop and −ωa sin ωt− δ̇ in the right leg. Transverse kinetic energy near the ends, and other

end corrections to the kinetic energy, are neglected because D ¿ L is assumed. Then the

total kinetic energy is

K =
1

2
(ρavg −∆ρδ/L)

A

2
L

(
−ωa sin ωt + δ̇

)2

+
1

2
(ρavg + ∆ρδ/L)

A

2
L

(
−ωa sin ωt− δ̇

)2

(22)

=
AL

2
ρavg

(
ω2a2 sin2 ωt + δ̇2

)
+ A∆ρδδ̇ωa sin ωt. (23)

In Eq. (22), the first term is the kinetic energy in the left leg of the loop, and the second

term that in the right leg. The density factors in these terms come from averaging Eq. (21)

with respect to z.

The potential energy change U due to δ can be estimated by considering Fig. 2(b). As

δ changes from zero to a nonzero value, isotherms far from the ends of the tube contribute

no change to U, because for any mass moving up in the left leg there is an equal mass

associated with the same isotherm moving down the same distance in the right leg. The

same cancellation would occur for the gas within δ of the end of the tube, if it did not have

to “turn the corner,” changing from the left leg to the right leg at the top or the right to the

left at the bottom; if such gas parcels could move to the positions shown as crosshatched
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in Fig. 2(b), their effects on U would be canceled by their partners of the same isotherms

in the other leg. Thus, the net effect of nonzero δ is to lower some cold gas whose mass is

of the order of ρC (A/2) δ a distance of the order of D sin θ − δ cos θ and raise some hot gas

whose mass is of the order of ρH (A/2) δ a similar distance, yielding

U ' −∆ρ
Aδ

2
g

(
4

3π
D sin θ − δ cos θ

)
, (24)

where the 4/3π comes from careful consideration of the semicircular cross section of each

leg.

With the standard Lagrangian methods of classical mechanics, the equation of motion

for δ is obtained by writing (d/dt) ∂ [K − U ] /∂δ̇ − ∂ [K − U ] /∂δ = 0. Using Eqs. (23) and

(24) above for K and U, the result is

ρavgALδ̈ =
A∆ρg

2

(
4

3π
D sin θ − 2δ cos θ

)
− A∆ρω2aδ cos ωt. (25)

This equation resembles Eq. (7) for the unbalanced-ring pendulum. The total mass ρavgAL

in the loop of piping accelerates in the δ direction in response to forces of gravity, expressed

by the first term, and in response to forces caused by vibration, expressed by the second

term. Following the same procedure as for the unbalanced-ring pendulum, this equation of

motion is broken down into fast and slow parts by substituting δ = δslow + δfast cos ωt and

assuming δfast ¿ δslow and ω2 À ∆ρg/ρavgL. The fast part of δ is then

δfast =
∆ρ

ρavg

a

L
δslow, (26)

and the slow response of δ to gravity and to the time-averaged product of δfast and the

imposed vibration is described by

ρavgALδ̈slow =
A∆ρg

2

(
4

3π
D sin θ − 2δslow cos θ

)
− A (∆ρ)2 ω2a2δslow

2ρavgL
. (27)

If the vibrations suppress convection, then δ̈slow = 0, and the phenomenon should be governed

by the surviving terms on the right-hand side. Solving for δslow yields

δslow =
4D sin θ/3π

ω2a2∆ρ/ρavggL + 2 cos θ
. (28)
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Too large a value of δslow would be unrealistic, because it would put the off-center cold

gas and the off-center hot gas in Figs. 1(d) and 2(b) close together, thermally short-circuiting

the temperature difference responsible for the vibration-stabilization effect. Thus, a stable

δslow can be no larger than some fraction of L, which can be conveniently written as 2L/3πα,

where α is as yet unknown. Making that substitution for δslow in Eq. (28), rearranging, and

defining a dimensionless group of variables resembling Eq. (14) yields

Nptc ≡ ω2a2

g (αD sin θ − L cos θ)

∆ρ

ρavg

= 2. (29)

Since ∆ρ/ρavg = ∆T/Tavg, this supports the dependences shown in Eq. (14) above, for

β = 1. Note that this derivation is valid for 90◦ ≤ θ ≤ 180◦, so the geometrical factor in the

denominator could just as well be written αD |sin θ|+ L |cos θ| .
Equations (28) and (29) are only valid for ωa large enough to suppress convective motion.

For very large ωa, δslow is generally small, as illustrated in Fig. 2(b). However, if ωa is just

below the threshold, δslow could be fairly large and essentially time dependent, and the

picture of Fig. 2(b) would be unrealistic because the off-center slugs of extreme-temperature

gas would extend over appreciable lengths, and their temperatures would no longer be

uniformly at TC and TH , but rather would be distributions of less-extreme temperatures

determined by competing conduction to both heat exchangers and between the two legs of

the loop. Whether this might lead to Nptc ∼ (∆T/Tavg)
β, where β < 1, is not clear. Further

analysis of this issue may require numerical study of Eqs. (15)–(17) and other information

in Ref. 11.

Repeating this Section’s analysis but starting with the assumption that 1/ρ ∝ T is linear

in z instead of Eq. (21)’s assumption that ρ is linear in z leads tediously to

(∆T )2

TCTH ln (TH/TC)
(30)

instead of ∆ρ/ρavg in Eq. (29). The difference between ∆T/Tavg and Eq. (30) is only

(∆T )3 /2T 3
avg to lowest order in ∆T/Tavg. The accuracy of the measurements described be-

low do not justify the extra complexity of Eq. (30), so we retain the simpler ∆T/Tavg and

∆ρ/ρavg dependences in Eqs. (14) and (29).
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The high-amplitude stability of pulse tubes against gravity-driven convection was char-

acterized by Wang and Gifford8 in terms of the inverse of the dimensionless group

u2
a

gD ∆T/Tavg

=
ω2a2

gD

Tavg

∆T
, (31)

which is similar to Eqs. (29) and (14), but with two important differences. First, Ref.

8’s choice keeps g and ∆T together in the denominator, while our derivation of Eq. (29)

shows that the nonlinear nature of the stabilizing effect of vibrations puts (∆ρ)2 in the

last term in Eq. (27), and hence puts ∆ρ in the numerator of Eq. (29), leaving g in the

denominator: In contrast to the dependence in Eq. (31), higher temperature differences

actually allow suppression of convection at lower frequencies and amplitudes, even while a

larger acceleration of gravity would require higher amplitudes. Second, Ref. 8 arbitrarily

chose D as the characteristic length in the dimensionless group, while our derivation shows

that the characteristic length might best be considered to be θ dependent, and that L is

more important than D when D ¿ L, except very close to θ = 90◦.

III. EXPERIMENTS

To investigate these phenomena under a broad range of experimental conditions, an

apparatus with interchangeable tubes much simpler than complete pulse-tube refrigerators

was built. Working only at and above ambient temperature allowed the use of easily mea-

sured electric-resistance heat, without refrigeration, and adoption of nearly standing-wave

phasing for the measurements eliminated need for a pulse-tube refrigerator’s orifice and com-

pliance tank, simplified the apparatus, reduced surface areas that could contribute to room

heat leaks, reduced the heat demands on the heat exchangers, and led to rapid thermal-

equilibration times. Five tubes, shown to scale in Fig. 3 and described in Table I, were used

for these measurements.

Each of the five pulse tubes (or thermal-buffer tubes) was a right-circular cylindrical

space bounded around its sides by a 0.8-mm-thick stainless-steel wall and on its ends by

diffusion-bonded stainless-steel screens acting as flow straighteners. Each flow straight-
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ener comprised 27 layers of nominally 16.5-wires-per-cm, 0.14-mm-diam-wire square-weave

screen, with alternate layers turned 45◦. They were cut to a diameter 1.6 mm greater than

that of each pulse tube’s i.d., by wire electric-discharge machining after diffusion bonding,

so steps on the ends of the pulse tube could hold them firmly in place and define the pulse-

tube length L accurately. Beyond these flow straighteners were drilled copper disks that

served as heat exchangers, maintaining nearly isothermal planes across the ends of the flow

straighteners by conducting heat to or from their surroundings. The heat-exchanger holes

were 1.32 mm diam, and the hole patterns were designed for spatially uniform coverage over

the pulse-tube area.

On the hot end, a bounce space the same diameter as the pulse tube allowed signifi-

cant oscillating flow through the hot heat exchanger, and a 1.5-mm-diam sheathed type-K

thermocouple in that space, a few millimeters from the hot heat exchanger, measured TH .

The thermocouple was bent, as shown in the figure, so almost a centimeter of its tip lay

close to the heat exchanger (except for the thinnest tube, in which the bent portion was

necessarily shorter). A commercial “band” electric-resistance heater provided heat, that

heat being spread around the hot heat-exchanger region by a copper bushing. Ceramic-fiber

thermal insulation covered all the hot parts including the pulse tube itself. The cold end

was mounted in a water-cooled aluminum base, whose temperature TC varied no more than

1◦C during the course of any single data set, and did not differ from 20◦C by more than a

few degrees from week to week.

A passage through the aluminum base, a few cm long, led from the cold heat exchanger

to the top of a 10-cm-diam piston, which was driven by a linear motor14 to whose housing the

aluminum base was bolted. The motor was best operated very near the resonance frequency

defined by its large moving mass and the gas-pressure spring constant experienced by the

piston. This resonance frequency was easily varied by adjusting the mean pressure, and could

be changed for a desired mean pressure by inserting volume-adding spacer rings between the

motor housing and the aluminum base. The motor housing was mounted on a modified

rotary stand, originally intended for rebuilding automobile engines. The rotary part of the
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stand had a holes-and-pin mechanism for reproducibly setting the tilt of the entire apparatus

in 10.0◦ increments from 0.0◦ to 180.0◦. A bubble level was used to align the pulse tube with

gravity to < 0.1◦ with the apparatus set at 180.0◦. The pressure amplitude pa applied at

the bottom of the pulse-tube assembly was measured with a lock-in amplifier connected to

a piezoresistive transducer15 in the aluminum base.

In the D/L = 0.52 tube, a second thermocouple was installed, in the copper bushing

under the electric-resistance heater. Near TH = 250◦C, the bushing thermocouple was never

more than 10◦C hotter than the internal thermocouple, this temperature difference being

largest when the convective heat transport was the largest.

Obtaining one set of data typically took half of a day. A gas, its mean pressure pm, a

frequency, and a tip angle θ were chosen, and were kept fixed for each data set. An initial

motor drive voltage was chosen, and heat was applied to the electric-resistance heater to

maintain the hot temperature at a selected TH . To assess that process, temperature was

displayed as a function of time with a chart recorder. The heater voltage was adjusted

manually until a steady setting achieved both a low rate of change of temperature (less than

0.1◦C in a few minutes) and the desired TH . The steady-state heater voltage V and pressure

amplitude pa were then recorded, and the heater power Q̇ was obtained by squaring the

voltage and dividing by the heater’s resistance. The motor drive voltage was changed to a

new value, and the heat adjustment and data recording were repeated, typically at rates of

two to four data points per hour.

Figure 4(a) shows six such data sets, all in the D/L = 0.25 tube with 3.1-MPa helium

gas driven at 100 Hz, and with TC = 20◦C and TH = 250◦C.

At θ = 0◦, the cold end of the pulse tube was straight down so the gas was convectively

stable. The measurements show that 14 W of heat were needed to keep TH = 250◦C in this

tube, with amplitude-dependent variation being only a fraction of a watt. Calculations show

that the helium in the pulse tube conducted 0.15 W and the stainless-steel pulse-tube wall

conducted 2.5 W, so most of the required heat was apparently heat leak through the fiber

insulation to the room. Calculations16 that include boundary-layer heat shuttle along the
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pulse tube and acoustic-power dissipation in the hot heat exchanger and flow straightener

show that the required heat should drop quadratically by 0.8 W as the oscillation amplitude

rises from pa/pm = 0.01 to pa/pm = 0.05, in rough agreement with the θ = 0◦ measurements.

Compared with θ = 0◦, only a little more heat was convected at θ = 60◦ at zero or low

oscillation amplitude. This tube was slender enough that the highest edge of its cold end

was still 1.0 cm below the lowest edge of its hot end at θ = 60◦, so the gas in the tube can

still be regarded as convectively stable at this tip angle.

At θ = 90◦, 120◦, 150◦, and 180◦, over 4 W of heat was convected through the tube when

no oscillations were present, representing Nusselt numbers ranging from 30 at 90◦ to 50 at

150◦. Such convection is large enough to reduce the cooling power of a pulse-tube refrigerator

significantly. The Rayleigh number based on L is about 27× 106, and such Nusselt numbers

are plausible at this Rayleigh number: Eq. (4.89) in Ref. 17 yields a Nusselt number of 18

under these conditions, for θ = 180◦. (However, our enclosure has porous ends, which could

tend to increase the Nusselt number.) From the convective heat flow, ρ, cp, and ∆T, we

estimate that the convective velocity was of the order of 1 cm/s, roughly 100 times less than

the typical oscillating velocity. The Reynolds number of the convective motion here is of the

order of 20, so the convection should be laminar. This suggests that numerical calculations

based on Ref. 11 may yield reliable results in this range of parameter space. However, in the

tubes with D/L ≥ 0.5 we did sometimes see time-dependent convection, evidenced by time

dependence in the hot temperature, whose variations were as high as a few tenths of a degree

over time scales of about 10 s. The time dependence started near the convection-suppression

transition and rose with amplitude, and was greatest for the tube with the highest D/L.

Numerical calculations in the time-dependent regime might be more challenging.

Figure 4(a) shows an initial rise in convective heat transfer with amplitude for θ ≥ 120◦.

Possible explanations for this phenomenon include a weakening of the zero-velocity boundary

condition at the ends of the convective cell as those ends find themselves, on average, farther

from the flow straighteners at higher amplitude, and a strengthening of thermal contact

near the ends of the convective cell as jets whose diameters are of the order of the flow-
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straighteners’ hydraulic radius squirt gas at the heat-exchangers’ temperatures into the

ends of the convective cell.

Figure 4(a) also shows that the convection was effectively stopped when the oscillations

had a high enough amplitude, as expected from Secs. I and II.

The closely spaced points near the 120◦ transition and the essentially overlapping points

throughout the 180◦ data indicate attempts to observe hysteresis, by taking some of the

data while systematically increasing pa and other data while systematically decreasing pa.

No hysteresis was observed, in these data sets or in any others. [A near exception is described

in the caption for Fig. 6(b).]

To plot such data as a function of ωa or of Nptc, we converted from the measured pa/pm

to the vibration amplitude a in the middle of the pulse tube by using

a =
pa

γpm

(
L

2
+ γϕfsLfs +

[
1 + (γ − 1)

δκ

Rhx

]
ϕhxLhx + Lbounce

)
, (32)

where half of the pulse-tube length, L/2, the hot-flow-straightener length Lfs, the hot-heat-

exchanger length Lhx, and the bounce-space length Lbounce add up to the total distance

between the middle of the pulse tube and the closed end of the experiment. This expression

is based on the assumptions that pa is independent of x from the middle of the pulse tube

to the end of the bounce space, and that thermal-hysteresis effects in the bounce space

and pulse tube are negligible. Thus, if that total distance were unobstructed and of uniform

cross-sectional area, then Eq. (32) would be simply a = (pa/γpm)(L/2+Lfs +Lhx +Lbounce),

describing simple adiabatic compressions and expansions everywhere. The prefactor pa/γpm

is used in Eq. (32) because most of that length, L/2 + Lbounce, does experience nearly

adiabatic compressions and expansions. The prefactors of the small Lfs and Lhx terms in

Eq. (32) account for the volumetric porosities ϕj of those components, the isothermal nature

of the oscillations in the flow straightener, and the thermal hysteresis in the circular channels

through the heat exchanger, in which the channel radius is Rhx and the thermal penetration

depth is δκ. Numerical estimates16 that include inertial and resistive pressure drops in the hot

heat exchanger and flow straightener and the consequences of thermal hysteresis elsewhere
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suggest that these assumptions introduce errors of no more than 2% to the determination

of a.

Figure 4(b) shows convection-suppression data from the D/L = 0.25 tube at three

different frequencies, all with 3.1-MPa helium at θ = 120◦ and TH = 250◦C. Although the

frequency ranges over a factor of 2, plotting these data sets as functions of ωa aligns them

very well, corroborating the ωa functional dependence in Nptc in Eq. (14), and contradicting

any other supposed strong dependences on ω or a in this tube, such as a/L (independent of

ω) or ωa2/L.

[The “100 Hz (orig)” data set in Fig. 4(b) is also shown in Fig. 4(a). After taking that

data set and the “60 Hz (orig)” set, the original D/L = 0.25 tube was disassembled to use

parts elsewhere, and later was “rebuilt” to obtain more data. The difference between the

“original” and “rebuilt” 100-Hz sets is presumably due to slight hardware irreproducibility,

including slightly different hot-thermocouple positions. For future work, we recommend a

reproducible attachment of both thermocouples directly to their copper heat exchangers.]

Figure 4(c) shows convection-suppression data from the D/L = 0.25 tube for four differ-

ent gases at 3.1-MPa and 100 Hz, with TH = 250◦C and θ = 120◦. The horizontal alignment

of all of these data sets confirms the lack of explicit gas-property dependence of Nptc. The

alignment of the helium and argon data, despite the ten-fold difference in atomic mass and

mass density, confirms that Nptc should be independent of molecular mass. The alignment of

the helium–argon data with the pure-monatomic-gas data, despite the mixture’s 32% lower

Prandtl number, confirms that Nptc is independent of Prandtl number and, by inference,

independent of the gas transport properties. The alignment of the γ = 7/5 nitrogen data

with the γ = 5/3 monatomic-gas data confirms that Nptc is independent of the specific-heat

ratio, except through the conversion from pa/pm to a given in Eq. (32).

To investigate the ∆T dependence of the convection-suppression transition, we used the

D/L = 0.25 tube with 3.1-MPa helium and θ = 120◦ at 100 Hz, at three different hot

temperatures. To bring the data into approximate vertical alignment, we divided Q̇ by ∆T,

and then subtracted 0.08, 0.06, and 0.05 W/◦C from the 425◦C, and 250◦C, and 150◦C
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data, respectively, to account for the temperature-dependent heat leaks. With the three

data sets plotted against ωa in Fig. 5(a), it is apparent that it was easier to suppress the

convection at higher ∆T . Figures 5(b) and 5(c) show these three data sets plotted against

ωa 4
√

∆T/Tavg and ωa
√

∆T/Tavg. The data align best using the fourth root, which is why

we choose β = 1/2 in Eq. (14), despite the fact that Sec. II’s derivation yields β = 1.

To study the L and D dependence of the convection-suppression transition, we used data

from all five pulse tubes, which had five different aspect ratios. Measurements with identical

gas, temperatures, and frequency are shown in Figs. 4(a) and 6. Like the D/L = 0.25

tube, which yielded the data shown in Figs. 4 and 5, the D/L = 0.52 tube displayed sharp

convection-suppression transitions at θ = 120◦ and 150◦, and a θ = 0 heat requirement

that was almost independent of amplitude, as shown in Fig. 6(b). In the D/L = 0.75

tube, the transitions were still sharp, but the θ = 0 heat requirement rose dramatically, and

quadratically, with amplitude, as shown in Fig. 6(c). The D/L = 1.57 tube showed a similar

rising baseline heat requirement, but a very ill-defined and incomplete transition to reduced

convection, as shown in Fig. 6(d). Our motor did not let us learn whether higher amplitudes

would bring a second, more complete reduction of convection in this tube. Unlike the other

four tubes, the D/L = 0.126 tube did not have sharp transitions at any tip angle, as shown

in Fig. 6(a), and the small heats involved were difficult to measure accurately.

We do not understand some of these qualitative differences between the data sets in

the different tubes. The quadratically rising θ = 0 heats for the two shortest tubes suggest

streaming, but the calculated Rayleigh streaming velocity18 just outside the boundary layer

at mid tube is very nearly the same, 1.3 cm/s at pa/pm = 0.025, for all five tubes, and

estimates of the heat that such streaming can transport along the tubes19 range only from

0.1 to 0.5 W at that pa/pm, too small to explain the measurements. Seeking another reason

that the short tubes differ from the long tubes, one can consider the stroke divided by

the tube length, 2a/L, which should be smaller than 1 to prevent gas from shuttling heat

all the way from the hot flow straightener to the cold flow straightener every cycle of the

oscillation. But 2a/L is only 0.12 at the θ = 120◦ transition in the D/L = 0.75 tube, where
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the rising baseline is perhaps even visible as low as 2a/L ' 0.07, so shuttle heat should not

be responsible for the rising baseline. Furthermore, the D/L = 0.25 tube’s 100-Hz, θ = 0

data reach as high as 2a/L = 0.09, and that tube’s 45-Hz data extend to 2a/L = 0.14, with

no suggestion of rising baselines in Figs. 4(a) or (b).

Despite this mystery, the data from the four tubes with the smallest D/L can be used to

explore whether D or L is the most important geometrical variable l in Eq. (20) governing

the convection-suppression transition, and to test the αD sin θ−L cos θ geometry dependence

in Eq. (29) for small D/L. From each θ 6= 0 data set in Figs. 4(a) and 5, we subtracted a

quadratic fit to the corresponding θ = 0 baseline data set, and defined the transition from

convection to suppression as the value of pa/pm where each data set passes halfway between

the maximum value of Q̇− Q̇baseline and zero. (This definition of the transition is essentially

identical to the location of steepest decrease in Q̇ − Q̇baseline , except for the D/L = 1.57

tube.) We converted the transition value of pa/pm to a corresponding transition value of a

using Eq. (32).

Figure 7 displays the results as a function of D/L for three different choices of the

characteristic length l that might be used in the dimensionless group in Eq. (20). First, Fig.

7(a) shows the results when plotted with l = D, the choice made in Ref. 8. For this choice

of l, the transition displays complicated dependence on θ and D/L, suggesting that simply

using l = D in Nptc does not provide a universal description of the transition. In fact, for

θ = 180◦ the transition varies almost as 1/(D/L), as shown by the dashed curve, suggesting

that dividing by D is a very poor choice for this particular θ. Next, in Fig. 7(b), the same

data are plotted using l = L. Here, the θ 6= 90◦ data collapse reasonably well along a single

curve with little D/L dependence, but the θ = 90◦ data deviate significantly from the others;

comparison to the dashed line shows that the θ = 90◦ transition varies almost as D/L for

small D/L, suggesting that dividing by L is a poor choice for this particular θ. Finally, Fig.

7(c) shows the same data plotted using l = αD sin θ − L cos θ, with α = 1.5. This choice

brings the data sets for all tip angles close to a common curve, consistent with Eq. (29) in

some ways. Trying α = 1.0, 2.5, or more-extreme values ruins the clustering of the data in
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Fig. 7(c), while using α = 2.0 looks only a little worse than α = 1.5. Using α = 1.5 sets

δslow = 2L/3πα = 0.14L, which seems reasonable, being about three times larger than the

δslow shown in Fig. 2.

IV. FURTHER DISCUSSION

The vibrational stabilization of an inverted pendulum is a useful guide to intuition

about how acoustic oscillations suppress natural convection in an inverted pulse tube, and

the dimensionless pulse-tube convection number Nptc defined in Eq. (14) may provide a

good quantitative framework for analysis, at least for small aspect ratios. Experiments

confirm that ωa captures the relevant dependences on frequency and displacement, and that

gas properties such as γ and Prandtl number are not important. However, the picture is

incomplete, at best.

For example, Fig. 5’s observed β = 1/2 temperature dependence differs significantly

from the β = 1 prediction of Eq. (29). This remains a mystery. In the same Figure, dividing

Q̇ by ∆T brought the data into good vertical alignment, implying that the Nusselt number

is independent of ∆T, while Eq. (4.89) in Ref. 17 predicts that the Nusselt number should

be proportional to (∆T )1/3.

Furthermore, we are not sure how to interpret the D/L dependence that remains in Figs.

7(c) and 7(d). One possibility is that the transition occurs at Nptc ' 1 for a substantial

range of D/L, including 0.25 ≤ D/L ≤ 0.52, as predicted for low D/L by Eq. (14) and

suggested by the dashed line in Fig. 7(c). The data at D/L = 0.126 might fall below this

value because of physics not included in Sec. II: For example, in the D/L = 0.126 tube,

transverse thermal relaxation is faster than in any other tubes, and is comparable to the
√

l/g

convective-motion time, both because the helium-column diameter is smaller and because

of the relatively greater contribution of circumferential conduction by the stainless-steel

tube wall. A second interpretation would simply discount the D/L = 0.126 data because

the convection there was weak, differed qualitatively from the other data sets (having no

23



initial rise of Q̇ with pa), and was hard to measure well (e.g., day-to-day and hour-to-hour

variations in room temperature would have had a greater effect on this data set than on

the others). A third interpretation would be that the analysis of Sec. II is wrong and the

data show that Nptc ∼ c1 + c2D/L describes the transition for all D/L, with the data at

D/L = 0.52 to be discounted for some unknown reason.

Resolving these and the other interesting, unanswered questions raised here may require

additional experiments, numerical modeling, or both. One important question is whether

the suppression of convection depends on the oscillating pressure at all. The time phase

difference between the oscillating pressure and oscillating velocity in these experiments was

90◦, while practical pulse tubes, transmitting acoustic power, operate closer to a time phase

of 0◦ or 180◦, in some cases with the time phase tuned to reduce Rayleigh streaming.18

Whether this time phase affects the convection suppression, either directly or indirectly

through Rayleigh streaming, has not been investigated here. And the magnitude of the

oscillating pressure, neglected here in the discussion between Eqs. (20) and (21), might have

a significant effect via the gas compressibility, because it makes the oscillating velocity at

the ends of the pulse tube different from that in the center.

This situation is most unclear for D/L > 1, where Fig. 6(d) shows that the suppression

of convection by vibration is very incomplete, or, at best, only partially completed at the

amplitudes accessible in this experiment. At such aspect ratios, and with a sometimes a

significant fraction of L, ensuring that imperfect flow straightening at the ends of the tube

does not affect the measurements may be particularly challenging.

Other well-known rigid-pendulum phenomena, such as parametric resonance and syn-

chronized unidirectional rotation,1 may also have analogs in pulse tubes, at lower frequencies

than those studied here.
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Table I. Dimensions for the five tubes used in the experiments, and the heat Q̇gascon car-

ried by simple conduction in the gas in each tube under typical experimental circumstances.

See also Fig. 3(c) for scale drawings.

D/L = 0.126 0.249 0.521 0.750 1.57

Dimensions:

D (cm) 0.88 1.74 3.64 1.74 3.64

L (cm) 6.98 6.99 6.99 2.32 2.32

Lfs (cm) 0.64 0.64 0.64 0.64 0.64

ϕfs 0.82 0.82 0.82 0.82 0.82

Lhx (cm) 0.56 0.56 0.56 0.56 0.56

Number of hx holes 19 91 331 91 331

ϕhx 0.427 0.521 0.436 0.521 0.436

Holes’ Rhx (mm) 0.66 0.66 0.66 0.66 0.66

Lbounce (cm) 6.66 6.74 6.74 9.02 9.02

Q̇gascon (W):

He, TH = 425◦C 0.30

He, TH = 250◦C 0.038 0.148 0.65 0.45 1.96

He, TH = 150◦C 0.076

0.9He–0.1Ar, TH = 250◦C 0.121

Ar, TH = 250◦C 0.019
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Figure captions

Figure 1. (a) An inverted, rigid pendulum whose support is vibrated at a high enough

frequency and amplitude can be stabilized against falling over. Relative to gravity, which

points in the −y direction, θ gives the angle along which the vibrations occur, and φ(t)

gives the angle of the pendulum. (b) Consideration of an exaggerated situation, in which

the amplitude of the pivot-point oscillation is not small compared with the length of the

pendulum’s rod, illustrates the stabilization mechanism. (c) An out-of-balance ring that

is vibrated at its central pivot point behaves similarly, due to the same mechanism but

described by slightly more complicated mathematics. (d) An inverted pulse tube whose gas

is oscillated at a high enough frequency and amplitude can be stabilized against natural

convection, because of a similar mechanism. The double-headed arrows show the peak-to-

peak amplitude 2a of the acoustic oscillation, assumed to carry all isotherms. Ideally, the

central slug of gas, whose length is L− 2a, would experience no gravity-driven convection.

Figure 2. (a) The convective flow in the pulse tube can be modeled crudely as plug flow

in a loop of pipe, characterized by a single degree of freedom, measured by δ. As shown,

the plug-flow displacement δ creates a misalignment of 2δ between isotherms on the left and

right legs of the loop. A change in δ can be caused by gravity, or by the vibration acting on

an off-center center of mass caused by nonzero δ itself. (b) The effect of a change in δ on

the gravitational potential energy of the gas in such a loop of pipe can be estimated from

an even more simplified model.

Figure 3. (a) Cross-sectional scale drawing of the D/L = 0.25 tube, shown with the

cold end down (i.e., θ = 0). The dimensions Lj are given in Table I. The pressure-vessel

boundary, shown in heavy black, was a long, machined tube with a cap welded into one end.

The cap pressed on a thin-walled sleeve in the bounce space (not distinct in the Figure),

whose inside diameter was the same as that of the pulse tube, thereby trapping the hot

heat exchanger and hot flow straightener against a machined step at the top of the pulse

tube. The cap included a welded-in compression fitting through which the hot thermocouple
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passed. Clamps holding the tube to the base are not shown. (b) A perpendicular cross

section though one of the drilled copper heat exchangers, at twice the scale of (a). (c) The

proportions of all five tubes, at 1/4 the scale of (a).

Figure 4. Heat Q̇ required to maintain a steady hot temperature under a wide variety

of conditions with 3.1-MPa gas in the D/L = 0.25 tube. The points are measurements,

and the lines are only guides to the eye. (a) Heat required to maintain TH = 250◦C, with

helium at 100 Hz, for six tip angles θ. The horizontal axis is the pressure amplitude at the

base, divided by mean pressure. (b) Heat required to maintain TH = 250◦C, with helium at

θ = 120◦, for three frequencies. (c) Heat required to maintain TH = 250◦C, at 100 Hz, at

θ = 120◦, for four different gases. The mixture was 90% helium, 10% argon. The horizontal

axis in (b) and (c) is the square root of the relevant part of Eq. (14), because this keeps the

points almost equally spaced, making the variations near the transition easier to see.

Figure 5. Normalized heat required to maintain a steady hot temperature in the (rebuilt)

D/L = 0.25 tube, with 3.1-MPa helium and θ = 120◦, at three different hot temperatures

TH with which the points are labeled. (N.B.: ∆T is ∼ 20◦C smaller than TH .) The points

are measurements, and the lines are only guides to the eye. The experimental temperature

dependence is closer to the fourth root used in (b) than to either the square root used in (c)

or no temperature dependence used in (a).

Figure 6. Heat required to maintain TH = 250◦C in 3.1-MPa helium at 100 Hz, in four

different tubes. Figure 4(a) shows similar data for a fifth tube. The points are measurements,

and the lines are only guides to the eye. The horizontal axis is pressure amplitude at the

base, divided by mean pressure. In (c), one of the 180◦ points is not connected with the

lines. That data point was metastable: it persisted steadily for five minutes before the heat

suddenly dropped to the point below it.

Figure 7. Transitional values of Nptc based on data from Figs. 4(a) and 6, testing

different choices for l in Eq. (20). (a) Choosing l = D yields transitional values of Nptc that

are not independent of aspect ratio at small aspect ratio when θ 6= 90◦. The dashed curve
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shows Nptc ∝ 1/(D/L), for comparison with the θ = 180◦ data. (b) Choosing l = L yields

transitional values of Nptc that are more nearly independent of aspect ratio at small aspect

ratio when θ 6= 90◦, but leaves the θ = 90◦ data varying almost linearly with aspect ratio,

as suggested by the dashed line. (c) Choosing l = αD sin θ − L cos θ, with α = 1.5, yields

transitional values of Nptc that are more nearly independent of both θ and D/L. (d) For

completeness, this shows the same data and vertical axis as in (c), but with the data from

the highest-aspect-ratio tube included.
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