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Various oscillating-wave thermodynamic devices, including orifice and feedback pulse tube
refrigerators, thermoacoustic-Stirling hybrid engines, cascaded thermoacoustic engines, and
traditional Stirling engines and refrigerators, utilize regenerators to amplify acoustic power
�engines� or to pump heat acoustically up a temperature gradient �refrigerators�. As such a
regenerator is scaled to higher power or operated at lower temperatures, the thermal and
hydrodynamic communication transverse to the acoustic axis decreases, allowing for the possibility
of an internal acoustic streaming instability with regions of counterflowing streaming that carry
significant heat leak down the temperature gradient. The instability is driven by the nonlinear flow
resistance of the regenerator, which results in different hydrodynamic flow resistances encountered
by the oscillating flow and the streaming flow. The instability is inhibited by several other
mechanisms, including acoustically transported enthalpy flux and axial and transverse thermal
conduction in the regenerator solid matrix. A calculation of the stability limit caused by these effects
reveals that engines are immune to a streaming instability while, under some conditions,
refrigerators can exhibit an instability. The calculation is compared to experimental data obtained
with a specially built orifice pulse tube refrigerator whose regenerator contains many thermocouples
to detect a departure from transverse temperature uniformity. © 2006 Acoustical Society of America.
�DOI: 10.1121/1.2259776�
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I. INTRODUCTION

The regenerator1 is a critical component of many
oscillating-wave thermodynamic devices including orifice2

and feedback3 pulse tube refrigerators, thermoacoustic-
Stirling hybrid engines,4–6 cascade thermoacoustic engines,7

and traditional Stirling engines and refrigerators.8 In combi-
nation with the temperature gradient, the regenerator ampli-
fies acoustic power in engines and it allows the acoustic
wave to pump heat in refrigerators.

To analyze regenerators, researchers have generally as-
sumed one-dimensional behavior, i.e., that everything is in-
dependent of transverse coordinates y and z but depends only
on the axial position x. However, awareness is growing that
nontrivial multidimensional behavior and an associated pen-
alty in performance can occur in the regenerators of pulse-
tube and Stirling cryocoolers. Such multidimensional behav-
ior has been described for transverse variation in the
hydraulic radius of regenerators9 and for three identical re-
generators operated in parallel.10

Most regenerators are made of stacked screen or other
tortuous porous media whose nonlinear flow resistance gen-
erates a complicated interaction between the oscillating and
steady flows. The result is that the oscillating and steady
flows encounter different flow resistances which depend on
temperature in different ways. A small spatial perturbation in
the mean temperature transverse to the acoustic axis leads to
different flow resistances for the oscillating and streaming
flows in different regions of the regenerator, resulting in a
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small circulating streaming flow, as illustrated in Fig. 1.
Whether the streaming flow acts to amplify or suppress the
original perturbation depends on many variables, including
the direction of the streaming flow and the temperatures of
the heat exchangers at the two ends of the regenerator. The
original perturbation might be amplified by this effect if Tw

�Ta and suppressed if Tw�Ta where Ta is ambient tempera-
ture and Tw is the working temperature �i.e., the hot tempera-
ture for an engine and the cold temperature for a refrigera-
tor�. Even if the resulting streaming acts to amplify the
original perturbation, other effects, such as thermal conduc-
tion or acoustic enthalpy transport, will attempt to suppress
it.

As such an engine or refrigerator is scaled to higher
power, the cross-sectional area of its regenerator must in-
crease proportionally to keep its design near a thermody-
namic optimum, but its length remains approximately con-
stant. At some point, the transverse thermal and
hydrodynamic communication within the regenerator be-
comes so weak that it cannot counteract the streaming caused
by a transverse mean-temperature perturbation, and an insta-
bility may arise. Whether or not this occurs depends on the
balance among all these effects. If an instability does occur,
the streaming flow carries additional energy flux down the
temperature gradient, resulting in reduced efficiency in the
engine or refrigerator.

Using a linear stability analysis, we add to a streaming-
free solution a perturbation that grows or decays exponen-
tially in time. By comparing different terms that either drive
or inhibit the instability, we show when the combination of

these mechanisms results in instability, i.e., an exponentially
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growing perturbation. The instability is experimentally in-
vestigated using a specially designed and heavily instru-
mented orifice pulse tube refrigerator. Thermocouples placed
inside the refrigerator’s regenerator detect the presence of
streaming through measurements of the mean temperature
distribution. When the acoustic power flux is high and the
total energy flux and cold-end temperature are low, a mean
temperature variation about the axial midplane of the regen-
erator is detected, indicating the presence of a streaming in-
stability. The values of the acoustic power flux, total energy
flux, and cold-end temperature at the threshold of instability
are found to be in only qualitative agreement with theory.

II. THEORY

To search for an internal streaming instability analyti-
cally, we will combine a thermoacoustic analysis11 through
second order in the acoustic amplitude with a linear pertur-
bation analysis.12 Carrying the thermoacoustic analysis to
second order includes the lowest-order, time-averaged en-
ergy and mass-flux effects, which can interact in the pertur-
bation analysis to produce exponential growth of both. A
similar approach was taken in an investigation of a related
instability.13 First, a simplified model of the acoustics in the
regenerator is used to establish relationships among
streaming-free first-order variables. Then the important
second-order streaming-free quantities—the time-averaged
energy flux and the second-order velocity—are derived from
the first-order quantities. Thus far, all variables depend on
the axial coordinate in the regenerator but are independent of
transverse coordinates. Then, a perturbation is added to the
solution that depends on the transverse coordinates, and the
analysis shows that it can either grow or decay exponentially
with time, depending on the competition among a number of
stabilizing and destabilizing effects. To make the mathemat-
ics as simple as possible, we make a number of restrictive
and potentially unrealistic assumptions. We neglect any time-
phase difference between first-order pressure and first-order
velocity throughout the regenerator. We assume that the ve-
locity perturbation is nonzero only parallel to the acoustic
axis. We neglect oscillations at any frequency but the funda-

FIG. 1. Schematic drawing of an internal streaming flow in a regenerator.
The x axis is the acoustic direction, and the y axis is the long transverse
dimension. The extent of the regenerator along the z axis �not shown� is
assumed to be small enough so that the acoustic and streaming flows are
uniform in that direction. The arrows represent steady streaming flows in-
duced by a small left-right temperature difference.
mental. We arbitrarily choose a mathematically simple func-
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tional form for the axial spatial dependence of the perturba-
tion. We hope that some or all of these restrictive
assumptions can be avoided in future work.

A. Streaming-free solution

Using a variation on the usual acoustic expansion and
time-harmonic notation,11 the streaming-free solution can be
written

p�x,t� = pm + p1R�x�cos �t − p1I�x�sin �t + p20�x�

+ p22R�x�cos 2�t − p22I�x�sin 2�t + ¯ , �1�

u�x,t� = u1R�x�cos �t − u1I�x�sin �t + u20�x�

+ u22R�x�cos 2�t − u22I�x�sin 2�t + ¯ , �2�

T�x,t� = Tm�x� + T1R�x�cos �t − T1I�x�sin �t + T20�x�

+ T22R�x�cos 2�t − T22I�x�sin 2�t + ¯ , �3�

where p ,u, and T are the working-gas pressure, x component
of velocity, and temperature, respectively. Here and through-
out this paper, variables with the subscript
m ,1R ,1I ,22R ,22I, or 20 are real. The fundamental angular
frequency of the oscillation is �, t is time, and x is the
coordinate along the axis of the regenerator, with x=0 at the
ambient face and x=xw at the working-temperature face.
Variables describing the gas, such as u1R�x� and T1R�x�, rep-
resent local spatial averages over small volumes of gas in-
cluding many pores, not microscopic values needed to de-
scribe spatial dependencies within the tortuous geometry of a
single pore. However, the time-averaged energy-flux density

ḣ, which describes energy flux through both the gas and
solid, is a local spatial average over a small volume of both
gas and solid including many pores. Thus, if A is the regen-
erator’s cross-sectional area and � is its volume porosity, the
total volume flow rate is �Au and the total energy flux is

Aḣx.
The representation in Eqs. �1� through �3� is equivalent

to the usual complex notation

p�x,t� = pm + Re�p1�x�ei�t� + p20�x� + Re�p22�x�ei2�t�

+ ¯ , �4�

u�x,t� = Re�u1�x�ei�t� + u20�x� + Re�u22�x�ei2�t� + ¯ ,

�5�

T�x,t� = Tm�x� + Re�T1�x�ei�t� + T20�x� + Re�T22�x�ei2�t�

+ ¯ , �6�

with, e.g., p1�x�= p1R�x�+ ip1I�x� and with variables having
subscript 1 or 22 being complex. At each step in the calcu-
lation, the choice of notation will be determined by conve-
nience.

Using the notation in Eqs. �4�–�6�, the continuity equa-
tion expanded to first order and averaged over the small scale

14
is
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du1

dx
−

1

Tm

dTm

dx
u1 = −

i��1

�m
. �7�

In effective regenerators, the excellent thermal contact be-
tween the working gas and the regenerator solid renders the
density oscillations nearly isothermal, so that �1

= ��m / pm�p1. If the gas volume in the regenerator is small
enough that its compressibility can be ignored, the �1 term
on the right-hand side �RHS� of Eq. �7� can be neglected, so
that

u1�x� = u1�0�
Tm�x�

Ta
. �8�

The subscripts a and w refer to mean variables evaluated at
the ambient end x=0 and the working end x=xw of the re-
generator, respectively. Without loss of generality, the phase
of u1�0� can be chosen so that

u1R�x� = u1R�0�
Tm�x�

Ta
� 0, �9�

u1I�x� = 0. �10�

Under typical operating conditions, p1 and u1 at x=0 are
nearly in phase so that

p1R�x� � 0, �11�

p1I�x� = 0. �12�

In general, the second-order mass-flux density is given
by

ṁ20 = Re��1u1
*�/2 + �mu20 =

�m

2pm
p1Ru1R + �mu20, �13�

where the superscript * stands for complex conjugation. We
have again assumed that the density oscillations are nearly
isothermal. In the streaming-free state ṁ20=0, and if the
typically small variation in p1R through the regenerator is
ignored, u20 can be expressed

u20�x� = −
p1Ru1R�x�

2pm
= u20�0�

Tm�x�
Ta

, �14�

showing that u1R and u20 have approximately the same spa-
tial dependence.

If the perimeter of the regenerator is well insulated, the

time-averaged second-order energy-flux density ḣ2,x is inde-
pendent of both x and t in the streaming-free steady state,
indicating there is no buildup of energy inside the

regenerator.11 A perfect regenerator would have ḣ2,x=0, and

in realistic regenerators ḣ2,x is small—much smaller than the
acoustic intensity. The small T1 that is neglected above in the
analysis of u1�x� contributes significantly to this small

energy-flux density and cannot be neglected in ḣ2,x.

B. Perturbed solution

An exponentially growing or decaying perturbation is
added to the streaming-free solution derived in the previous

section, so that the complete solution is of the form

1900 J. Acoust. Soc. Am., Vol. 120, No. 4, October 2006
p�x,y,t� = pm + p1Rcos �t + p20�x�

+ ��p1R�x,y�cos �t − �p1I�x,y�sin �t + �p20�x,y��e�t,

�15�

u�x,y,t� = u1R�x�cos �t + u20�x� + u22R�x�cos�2�t�

− u22I�x�sin�2�t�

+ ��u1R�x,y�cos �t − �u1I�x,y�sin �t + �u20�x,y�

� + �u22R�x�cos�2�t� − �u22I�x�sin�2�t��e�t, �16�

T�x,y,t� = Tm�x� + �Tm�x,y�e�t + T1R�x,y�cos �t

− T1I�x,y�sin �t

+ ��T1R�x,y�cos �t − �T1I�x,y�sin �t�e�t, �17�

��x,y,t� = similar to T , �18�

ḣx�x,y,t� = ḣ2,x + �ḣx�x,y�e�t, �19�

ḣy�x,y,t� = �ḣy�x,y�e�t, �20�

where we only allow variation in one of the coordinates
transverse to the acoustic axis, i.e., y and we have carried the
expansions only as far as the terms that we will discuss later.
In this calculation, we have in mind a regenerator with one
long �y� and one short �z� transverse dimension such that
variations in temperature due to a perturbation are more
likely to take hold in the long dimension. The perturbation
includes both oscillating and nonoscillating terms. The oscil-
lating perturbations are assumed to have the same frequency
as the corresponding terms in the streaming-free solution and
amplitudes that change slowly, but exponentially, in time
compared to the acoustic period, i.e., �� � ��. This two-time-
scale approach allows the explicit separation of the slow
change of the instability from the rapid acoustic oscillations.
Nonoscillating terms also change exponentially in time with
the same time constant as the amplitudes of the oscillating
terms. We assume �� is zero. For a refrigerator this can be
regarded as a simple consequence of how the system is
driven, e.g., by a linear motor at fixed frequency. For a
thermoacoustic-Stirling hybrid engine, cascaded thermoa-
coustic engine, or Stirling engine, one can similarly assume
that the complex load impedance is deliberately varied to
keep � fixed.

Substituting the full solution of Eqs. �15�–�20� into the
continuity equation, expanding to first order in the perturba-
tion, taking ��1=0 for the reasons described below Eq. �7�,
utilizing the results of Eq. �8�, and recalling that we are ne-
glecting transverse flow, we find

d�u1

dx
−

1

Tm

dTm

dx
�u1 =

u1�0�
Ta

�d�Tm

dx
−

�Tm

Tm

dTm

dx
� . �21�
The solution to this differential equation for �u1 is given by
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�u1�x,y� = �u1�0,y�
Tm�x�

Ta
+

u1�0�
Ta

�Tm�x,y� , �22�

where the boundary condition �Tm�0,y�=0 has been used.
This boundary condition implies that the heat transfer pro-
vided by the heat exchanger at x=0 is sufficient to hold the
temperature perturbation at zero at the heat exchanger de-
spite the streaming. �Later, we will use the same condition at
x=xw.�

Equation �22� can be broken up into real and imaginary
parts

�u1R�x,y� = �u1R�0,y�
Tm�x�

Ta
+ u1R�0�

�Tm�x,y�
Ta

, �23�

�u1I�x,y� = �u1I�0,y�
Tm�x�

Ta
. �24�

To determine �u1R�0,y� and �u1I�0,y� in Eqs. �23� and �24�,
we must consider the first-order Navier-Stokes equation. The
full solution given in Eqs. �15� through �17� is substituted
into the spatially averaged Navier-Stokes equation for
screens,14 and the result is expanded to first order in the
perturbation for all terms �dropping terms that are obviously
of zero order in the perturbation�. Additionally, the linear
term is expanded to acoustic first order, and the nonlinear
term is expanded to acoustic second order. This intermediate
result is

−
�

�x
��p1Rcos �t − �p1Isin �t�

=
c1

8rh
2 ��m�u1Rcos �t − �m�u1Isin �t + ��mu1Rcos �t�

+
c2

2rh
�m�u1Rcos �t + �u1Rcos �t − �u1Isin �t��u1Rcos �t

+ �u1Rcos �t − �u1Isin �t� +
c2

2rh
��mu1R

2 cos �t�cos �t� ,

�25�

where c1 and c2 parametrize the regenerator flow
resistance,14 rh is the hydraulic radius,14 and � is the gas
viscosity. The presence of the absolute value sign in the non-
linear term complicates the expansion by forcing the tempo-
rary retention of certain terms that may appear to be of
higher order than we later keep. To isolate �p1R or �p1I, Eq.
�25� is multiplied by �cos �t� /	 or �sin �t� /	 and inte-
grated with respect to �t from 0 to 2	, being careful to
split the integration into two at the zero crossings of the
terms inside the absolute value signs. To lowest order in
�u1I, the result for �p1I is

−
��p1I

�x
= � c1�a

8rh
2 �Tm

Ta
	b

+
4c2

3	rh
�au1R�0��



Tm�x�

Ta
�u1I�0,y� , �26�

where b accounts for the temperature dependence of viscos-
b
ity via ��T�=�a�T /Ta� . Assuming that the spaces at the
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ends of the regenerator are open enough so that �p1I and
�p1R cannot have any y dependence at x=0 or xw, i.e.,
�p1I�0,y�=�p1I�xw ,y�=0, the integral of Eq. �26� from 0 to
xw must be zero. The terms inside of the square brackets are
always positive, and therefore �u1I�0,y�=0 and �u1I�x ,y�
=0. This result, combined with the assumption that
�p1I�0,y�=0 and Eq. �26�, shows that �p1I�x ,y�=0.

With the perturbation greatly simplified by the conclu-
sion that �u1I�x ,y�=0,�p1R is isolated from Eq. �25� yielding

−
8rh

2

c1�a

��p1R

�x
= �u1R�0���Tm

Ta
	1+b

+ 2��Tm

Ta
	�

+
�Tm

Ta
u1R�0���1 + b��Tm

Ta
	b

+ �� �27�

to lowest order in �u1R, where �=8c2NR,a /3	c1 and NR,a is
the Reynolds number NR=4�mu1Rrh /�m evaluated at the am-
bient end of the regenerator. Next, Eq. �27� is integrated with
respect to x from 0 to xw under the following assumptions:

�p1R�0,y� = �p1R�xw,y� = 0, �28�

Tm�x� = Ta + �Tw − Ta�x/xw, �29�

�Tm�x,y�/Ta = f�y�sin�	x/xw� , �30�

where f�y� is a yet unknown function of y. Equation �28� is
again a statement that the space at the ends of the regenerator
is open enough so that it cannot support a transverse pressure
gradient. Equation �29� approximates the streaming-free
mean temperature profile as linear. The selection of the sinu-
soidal behavior of �Tm in Eq. �30� is not based on a rigorous
solution of the governing equations. Instead, this particular
functional form simplifies the computation, provides a close
representation of the experimentally measured mean tem-
perature deviation when nonzero acoustic streaming is
present,15 and satisfies the boundary conditions �Tm�0,y�
=�Tm�xw ,y�=0. The result of integrating Eq. �27� from x
=0 to x=xw is

�u1R�0,y� =

−
f�y�u1R�0�

	

2� + 
��,b�
��b+2 − 1�/��� − 1��b + 2�� + �� + 1��

, �31�

where �=Tw /Ta and


��,b� = �1 + b�

0

	

�1 + �� − 1�z/	�bsin z dz . �32�

This result combined with Eq. �23� and the assumed form of
�Tm�x ,y� given in Eq. �30� gives a complete solution for
�u1R�x ,y� in terms of the streaming-free variables and the
unknown function f�y�.

Next, we consider the streaming-velocity perturbation
�u20�x ,y� by investigating the second-order, time-average
mass-flux density perturbation �ṁ20. In contrast to ṁ20, it is
not obvious from the outset that �ṁ20 is a constant through-
out the regenerator. Considering only �ṁ20, conservation of

energy to linear order in the perturbation yields
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�1 − ���scs��Tm = − �cp
��Tm�ṁ20�

�x
, �33�

where the heat capacity of the gas ��mcp has been ignored
relative to the heat capacity of the regenerator screen �1
−���scs. As the local mean temperature of the regenerator
changes in time, the local gas density will also change, i.e.,
��Tm�−�Tm��m /�m. Conservation of mass at linear order in
the perturbation requires that the change in local density is
fulfilled by a gradient in �ṁ20

− ���m =
��ṁ20

�x
. �34�

Combining Eqs. �33� and �34� and the discussion in between
yields

1

�ṁ20

��ṁ20

�x
= − �

1

Tm

�Tm

�x ��1 + �� , �35�

where �=��mcp / �1−���scs. In efficient regenerators, ��1,
and therefore, the change in �ṁ20 with x from one side of
the regenerator to the other is small.

Using Eq. �13� as the general definition of ṁ20, and with
ṁ20=0 in the steady state, one expression for �ṁ20 is

�ṁ20 =
�m

2pm
p1Ru1R��u1R

u1R
−

�u20

u20
� , �36�

where the �p1R / p1R term has been ignored because Eqs. �27�,
�30�, and �31� show that it is smaller than the other two terms
by a factor �p1R�0�− p1R�xw�� / p1R�0�. Recognizing that �ṁ20

and the prefactor on the RHS of Eq. �36� are approxi-
mately independent of x, and using Eqs. �8� and �22�, it
can be shown that

�u20�x,y�
u20�x�

=
�u20�0,y�

u20�0�
+

�Tm�x,y�
Tm�x�

. �37�

To complete the solution for �u20�x ,y�, its value at x
=0 still needs to be determined from the second-order, time-
averaged Navier-Stokes equation. We begin by substituting
the full solution from Eqs. �15�–�17�, but with �u1I=0 and
�p1I=0 as established above, into the time-dependent, spa-
tially averaged Navier-Stokes equation for screens,14 expand-
ing to first order in the perturbation, expanding the linear
term to second order in the acoustic amplitude and the non-
linear term to third order, and time averaging. An intermedi-
ate result is

−
��p20

�x
=

c1�mu20

8rh
2 ��u20�0�

u20�0�
+ �1 + b�

�Tm

Tm
�

+ �4c2NR

3	c1
�3�u20�0�

u20�0�
−

�u1R�0�
u1R�0�

+
�Tm

Tm

−
2�p1R

p1R
plus u22 and �u22 terms	� �38�

For the reason given below Eq. �36�, the �p1R / p1R can be
dropped. However, the terms proportional to u22 and �u22

are more problematic. By assuming the density oscilla-

tions at 2� are still isothermal, it can be, shown that
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u22�x�=u22�0��Tm /Ta�, but u22�0� is still undetermined. In
an orifice pulse tube refrigerator �OPTR�, adjustments to
the driving piston’s motion could be made to force
p22�0�= p22�xw�, but, this may not ensure that u22�0� is ac-
tually zero because the nonlinearities in the regenerator, at
interfaces between components, and due to finite motion
of the piston itself are continually generating 2� terms
throughout the system. Without knowledge of u22, there is
no way to calculate �u22. The only way to close the equa-
tions without introducing a whole host of additional equa-
tions that address these nonlinearities is to simply drop the
u22 and �u22.

To extract �u20�0�, Eq. �38� is integrated from x=0 to
xw. Assuming that the spaces at the two ends of the regen-
erator are open enough to disallow a transverse pressure gra-
dient, the integral of the LHS of Eq. �38� is zero. Using Eqs.
�14� and �29�–�31�, and the temperature dependence of �m,
the result of integrating Eq. �38� is

�u20�0� = −
f�y�u20�0�/	

��b+2 − 1�/��b + 2��� − 1�� + 3�� + 1��/4


 � ��� + 1��2� + 
��,b��/4
��b+2 − 1�/�b + 2��� − 1� + �� + 1��

+ 
��,b� + �� . �39�

Equations �14�, �29�, �30�, �37�, and �39� provide a full so-
lution for �u20�x ,y�.

With solutions for �u1R and �u20 in hand, the calculation
can proceed to the energy equation, which reveals the origin
of the instability. Simplified for the two-dimensional geom-
etry considered here, the energy equation is given by

�1 − ���scs
�

�t
�Ts +

��cv

�1 − ���scs
T� = −

� ḣx

�x
−

� ḣy

�y
, �40�

where Ts ,cs, and �s are the temperature, heat capacity, and
density of the regenerator solid matrix, respectively. In good
regenerators, ��cv / �1−���scs�1 so the second term in the
square brackets can be safely ignored. On the slow time scale
of the initial growth of the perturbation, the heat transfer
between the regenerator solid and the gas is adequate to en-
sure �Ts /�t���Tm. Using these approximations, substituting
the full solution into Eq. �40�, and expanding to first order in
the perturbation yields

�1 − ���scs��Tm = −
��ḣx

�x
−

��ḣy

�y
. �41�

Since we have assumed there are no acoustic or stream-
ing flows in the y direction, the energy flux perturbation
along y can be written

��ḣy

�y
= − ky

�2�Tm

�y2 = − kyTasin�	x/xw�
d2f�y�

dy2 . �42�

Here, ky is the effective thermal conductivity of the regen-
erator solid in the y direction, which is much lower than the
thermal conductivity of the regenerator solid ks for three rea-

sons. First, the screen wires do not fill up the entire cross-
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sectional area of the screen. Second, the length of a piece of
wire between two points is longer than the distance between
the points due to the sine-wavelike bending of the wire as it
passes over and under the wires running in the perpendicular
direction. Third, the wires are not all aligned with the direc-
tion of heat flow. Taking all of these effects into account, ky

is given by

ky =
1 − �

2K���
ks, �43�

where

K��� =
2

	



0

	/2

1 + 4�1 − ��2sin2 z dz . �44�

Applying the simplifications mentioned above, substituting
Eqs. �30� and �42� into Eq. �41� and integrating from x=0 to
xw yields an expression for the growth rate �

�1 − ���scsf�y�� =
	

2xw

��ḣx�0� − �ḣx�xw��
Ta

+ ky
d2f�y�

dy2 .

�45�

To complete the calculation, we only need to express �ḣx�0�
and �ḣx�xw� in terms of �Tm, i.e., in terms of Taf�y�.

The streaming-free solution for the energy flux along x

is given by ḣx= �m̃xcpT̃�−kx�T /�x, where kx is the effective
conductivity of the screen in the x direction.14,16 Here, we
have been forced to deviate from our original variable defi-

nitions by the form of the expression for ḣ. Variables with a
tilde are microscopically varying14 and �. . .� indicates a local
spatial average including a reasonable number of pores. Time
averaging, expanding to linear order in the perturbation, and
realizing that we only need the energy flux at x=0 or xw

yields

ḣ2,x = ṁ1Rcp�T̃1R�ũ1R
/2 − kx � Tm/�x � ḣc + ḣk �46�

�ḣx = ḣc� �u1R

u1R
+

��T̃1R�ũ1R

�T̃1R�ũ1R

� + ḣk� ��Tm/�x

�Tm/�x
�

+ �ṁ20cpTm. �47�

We have again deviated somewhat from our original defini-
tions of T1 and �T1 by working with velocity-weighted

averages,14 such as �T̃1R�ũ1R
= �T̃1Rũ1R� / �ũ1R�, instead of

simple spatial averages. In the derivation of Eq. �47�, we

have assumed �T̃1R��̃u1R
= �T̃1R�ũ1R

; this seems plausible since

both ũ1R and �̃u1R flow through the same regenerator matrix
and should experience similar small-scale spatial fluctua-
tions.

The temperature oscillations are computed from Eq. �27�
of Swift and Ward,14 where they assume that the heat capac-
ity of the regenerator solid is much larger than that of the gas
and the gas-to-regenerator heat-transfer coefficient h does
not depend on Reynolds number. We make the additional

2
simplification that ��mcp / �h /rh���rh /��� �1. The result is
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�T̃1R�ũ1R
= −

�mcpu1R��Tm/�x�
h/rh

. �48�

Substituting the full solution into Eq. �27� of Swift and
Ward14 and expanding to first order in the acoustic variables
and linear order in the perturbation, we find

��̃T1R�ũ1R
= �T̃1R�ũ1R

��u1R

u1R
+

��Tm/�x

�Tm/�x
� , �49�

where we have again assumed �T̃1R��̃u1R
= �T̃1R�ũ1R

. In Eq.
�49�, we have dropped a term proportional to ��m because

��̃T1R�u1R
is only needed at x=0 and xw where ��m is zero.

Substituting Eqs. �23�, �30�, �47�, and �49� into Eq. �45� we
find

2xw

	
�1 − ���scsTa�f�y� =

2	ḣ2,xf�y�
� − 1

+ �ṁ20cpTa�1 − ��

+
2xwkyTa

	

d2f�y�
dy2 . �50�

To arrive at this result, the two terms of ḣ2x, ḣc, and ḣk, are
each taken to be independent of x. Equations �22�, �30�, �31�,
�36�, �37�, and �39� can be combined to show that �ṁ20 is
proportional to f�y�, so Eq. �50� shows that f�y� is propor-
tional to sin�n	y /yw� or cos�n	y /yw�. The value of n is
constrained by the temperature boundary conditions im-
posed by the regenerator geometry. For example, n is even
for annular regenerators of circumferential extent yw, to
force continuity of temperature. �The requirement that
��ṁ20dy=0 rules out n=0.� Substituting Eq. �36� evalu-
ated at x=0 into Eq. �50� and using the ideal gas equation
of state, we find

xwywzw�1 − ���scsTa

	2Ea
�

= −
�H/Ea�
1 − �

− n2kyTazwxw/yw

Ea

+
�

� − 1

1 − �

2	
��u1R�0�

u1R�0�
−

�u20�0�
u20�0� 	� f�y� . �51�

Here, H and Ea are the total energy flux and the total acous-
tic power flux at the ambient end of the regenerator, zw is the
short dimension of the regenerator transverse to xw, and � is
the ratio of specific heats of the working gas.

Equation �51� begins to shed some light on when an
instability may arise. All factors on the LHS of Eq. �51�,
other than perhaps � itself, are positive. Therefore, the sign
of � is determined only by the RHS of the equation. The
transverse conductivity term, the term proportional to ky, is
negative for both engines and refrigerators and, therefore,
always contributes to the stability of the streaming and tem-
perature distribution. It is proportional to n2, so it selects the
broadest possible mode for the instability: n=2 for our an-
nular regenerator, n=1 for a wide rectangular regenerator.
�For circular regenerators, f�y� would be something like
J0�kr�cos�n�� with k such that �d /dr�J0�kr�=0 at the circum-

ference of the regenerator, and n=1 would be selected.� For
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engines, ��1,Ea�0, and H�0, making the first term on
the RHS negative. In refrigerators, ��1,Ea�0, and H�0,
so the first term is still negative. Therefore, this term always
contributes to the stability of the streaming distribution. The
third term on the RHS is more difficult to analyze. For values
of �, b, and � over the wide range we have explored, the
difference inside the parentheses divided by f�y� is always
positive. Therefore, for engines, the third term on the RHS is
always negative and this calculation predicts that engines are
inherently immune from streaming instabilities. However,
for refrigerators, the third term on the RHS is positive, lead-
ing to the possibility of a streaming instability. In the case of
refrigerators, a streaming instability will arise �i.e., ��0�
when

H

Ea
�

�

� − 1

�1 − ��2

2	
��u1R�0�

u1R�0�
−

�u20�0�
u20�0� 	� f�y�

− n2�1 − ��
kyTazwxw

yw
� Ea, �52�

with �u1R�0� / f�y�u1R�0� given by Eq. �31� and
�u20�0� / f�y�u20�0� given by Eq. �39�. One interesting re-
sult is that for a regenerator with a linear flow resistance,
i.e., c2=0 in Eq. �26�, �=0, �u1R�0� /u1R�0�
=�u20�0� /u20�0�, and there is no instability of the type de-
scribed here. The conclusion is that a parallel plate regen-
erator with uniform plate spacing and a Reynolds number
less than about 2000 does not suffer from this type of
instability.

III. APPARATUS

Since the acoustic streaming instability is sometimes ex-
pected in refrigerators but never in engines, we have built an
orifice pulse tube refrigerator �OPTR� to specifically search
for it. Figure 2 shows a scale drawing of the OPTR used in
these measurements. It consists of three heat exchangers, a
regenerator, and a pulse tube. The rest of the hardware in-
cludes a piston driven by a linear motor,17 an experimental
offset, and a variable acoustic network. The system is filled
with 30-bar helium gas and driven at a fixed frequency of
45 Hz. The 0.10-m diameter piston �not shown� is located
directly beneath the experimental offset.

The offset is simply an open cylinder that allows for
impedance matching between the OPTR and the piston/linear
motor. It also allows access to the inner cooling-water chan-
nel of the aftercooler. The offset also has a port for measur-
ing acoustic pressure using a piezoresistive transducer.18

Above the offset is the aftercooler, which is the principal
ambient heat exchanger. It is made from a 5.1-cm-thick brass
block drilled with a total of 90 3.2-mm-diameter holes in two
circular rows. Annular cooling-water channels are located
just inboard and outboard of the holes.

Above the aftercooler is the regenerator. It is made from
plain square-weave stainless-steel screen with an inner diam-
eter of 5.5 cm and outer diameter of 7.4 cm. The screen is
cut by wire electrical-discharge machining, cleaned, and then
packed into the regenerator housings with an annular die to a

height of xw=5.08 cm. The inner and outer housings around

1904 J. Acoust. Soc. Am., Vol. 120, No. 4, October 2006
the regenerator have wall thicknesses of 1.65 and 1.32 mm,
respectively. On each end, four layers of 20-mesh copper
screen with a wire diameter of 0.4 mm are inserted as simple
spacers to allow room for the flow to spread out after exiting
the heat exchangers. Temperatures are measured with 40 1.0-
mm-diameter sheathed type-K thermocouples located every
45� around the azimuth at the five axial positions as shown in
Fig. 2. The thermocouples are inserted into tight-fitting pock-
ets drilled halfway through the regenerator’s annular thick-
ness, and the stainless-steel sheaths are soft soldered to
slightly larger, short tubes that are brazed to the outer hous-
ing, thereby making a leak-tight seal. The top and bottom
sets of eight are centered in the copper spacers. The other
three sets are in the regenerator itself, just inside the copper
spacers and at the axial midpoint.

Two different regenerators are tested. The first has a po-
rosity of 0.686 and a hydraulic radius8 of 22.2 �m. The sec-
ond has a porosity of 0.686 and a hydraulic radius of
13.9 �m. In both regenerators, the hydraulic radius is much

FIG. 2. Scale drawing of the orifice pulse tube refrigerator used in this
study. All components from the aftercooler to the ambient manifold are
annular. The rest of the components are circular. The four adapter tubes
transition the annular geometry back to circular.
smaller than the thermal penetration depth, about 204 �m at
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300 K, ensuring good thermal contact between the helium
gas and the screen. The first regenerator never showed an
instability. Data from it are only discussed briefly, and the
rest of this article focuses on the second regenerator.

Above the regenerator is the cold heat exchanger. It is
made from a 1.9-cm-thick block of oxygen-free high-
conductivity copper drilled with a total of 180 2.4-mm-
diameter holes in three circular rows. A channel around the
outside of the heat exchanger allows for cooling or heating
of the heat exchanger with liquid or gaseous nitrogen or a
water-antifreeze mixture as necessary. Eight type-K thermo-
couples are inserted into drilled pockets around the perimeter
near the lower face of the cold heat exchanger at the same
angular locations as in the regenerator.

The annular pulse tube is located above the cold heat
exchanger. Its stainless-steel inner and outer shells are nearly
identical to the regenerator housings. The pulse tube pro-
vides thermal insulation between the cold and ambient heat
exchangers while transmitting acoustic power out of the cold
zone. The surfaces facing the helium gas are polished to
ensure that the surface roughness is much less than the vis-
cous and thermal penetration depths. Several layers of cop-
per screen at either end of the pulse tube serve as flow
straighteners. Temperature in the pulse tube is measured with
16 type-K thermocouples spot welded to the outer wall every
45° around the azimuth at two axial locations.

Above the pulse tube is the secondary ambient heat ex-
changer, which is similar in construction to the aftercooler. It
consists of a drilled brass block with a cooling-water channel
around its outside. Next, an annular manifold and four 6.4-
mm-diameter tubes adapt the annular geometry back to a
tubular geometry. A flow straightener in the manifold keeps
the flow from the four tubes from jetting through the second-
ary ambient heat exchanger. A second acoustic pressure sen-
sor is located in the manifold.

Above the four adapter tubes, 3.4 m of 12.7-mm-
diameter inertance tubing extends to a 2.3-liter compliance
tank forming an acoustic network19 used to set the volumet-
ric flow rate at the aftercooler. A third pressure sensor is
located in compliance. All three pressure sensors are cali-
brated using a steady pressure measured with a National In-
stitute of Standards and Technology traceable Bourdon-tube
pressure gauge.

IV. PRELIMINARY MEASUREMENTS

Several quantities must be measured accurately to make
a comparison with the theory: �, �, Ea, H, and ky. For the
first three of these, we require accurate measurements of the
temperature, complex pressure p1a, and volumetric velocity
U1a at the ends of the regenerator.

Thermocouples in the copper spacers, regenerator, cold
heat exchanger, and pulse tube are calibrated in situ by sub-
merging the entire assembly in baths of known temperature:
liquid nitrogen �75 K at Los Alamos atmospheric pressure�
and a dry ice-acetone bath �195 K�. A third calibration point
is obtained by letting the insulated system sit undisturbed
overnight �with the cooling water shut off� and reading all of

the thermocouples in the morning. Quadratic fits to the tem-
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perature deviations are used to interpolate the corrections
between the calibration points. The range of the temperature
corrections is ±3 K and ±8 K at dry ice-acetone and liquid-
nitrogen temperatures, respectively.

The measurement of the complex pressure amplitude is
straightforward. All pressure sensors in the OPTR are read
out with the same lock-in amplifier, ensuring accurate mag-
nitude and phase information. The magnitude and phase of
the pressure amplitude in the experimental offset changes
very little along its length, so the pressure measured at this
sensor provides the complex pressure amplitude at both the
piston face p1,p and the ambient end of the regenerator p1a.

The complex volumetric-velocity amplitude is more dif-
ficult to determine. A mutual-inductance-based linear
variable-displacement transducer �LVDT� �Ref. 20�, on the
linear motor provides a measure of the complex displace-
ment amplitude of the piston. The flow rate at the piston face
U1,p is then determined from knowledge of the piston area
and angular frequency of the oscillation, �. However, U1

changes significantly between the piston face and the ambi-
ent face of the regenerator. Most of the change is in the
imaginary part and is due to the compliance of the experi-
mental offset. This change is easily accounted for by mea-
suring the total volume between the piston face and the af-
tercooler, and knowing � , p1,a, and the mean pressure.
However, there is also a change in the real part of U1 due to
thermal and viscous dissipation on the experimental offset
wall Eoffset, as well as dissipation due to leakage through the
clearance seal between the compressor’s piston and cylinder
Eseal. Instead of trying to compute each source of dissipation,
a set of measurements is carried out to determine the com-
bined effect of all of them. At the top of the experimental
offset, the OPTR is replaced by a variable acoustic load con-
sisting of a 2.2-liter tank connected to the offset by a water-
cooled globe valve.21 By adjusting the valve, varying
amounts of acoustic power Eload can be dissipated in the
load. Pressure sensors in the tank and offset are used to ob-
tain Eload.

21 The acoustic power leaving the piston face Ep is
determined from measurements of U1,p using the LVDT and
p1,a using the pressure sensor in the experimental offset.
Both measurements are made using the lock-in amplifier,
which allows for accurate determination of the phase be-
tween p1,a and U1,p. With the load valve closed, Ep=Eoffset

+Eseal. As the load valve is opened, the additional power
drawn by the load must originate at the piston face. There-
fore, Ep=Eoffset+Eseal+Eload. If p1,a is held constant for each
valve setting, Eseal and Eoffset should be nearly constant.
Therefore, if Ep is plotted versus Eload for various valve set-
tings, the result should be a straight line of slope 1 and an
Ep-axis intercept of Eoffset+Eseal. Figure 3 shows the results
of these measurements. Each set of data is fitted with a
straight line, and the slopes range from 1.00 to 1.05 demon-
strating the accuracy of the Ep and Eload measurements. The
fitted intercepts giving Eoffset+Eseal are displayed in Fig. 4.

The entire system is modeled with DeltaE.22 To account
for the dissipation in the piston seal and experimental offset,
an extra side-branch acoustic resistance that dissipates Eseal

+Eoffset from Fig. 4 is added to the DeltaE model at the

piston end of the experimental offset. In combination with a
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segment that models the compliance of the offset, the extra
resistance makes appropriate changes to U1,p to give U1,a,
which also modifies Ep to give Ea. For each data point, mea-
surements of U1,p , p1,a , p1,net, and p1,t are compared with cal-
culations using the DeltaE model. Here, p1,net and p1,t are the
complex pressure amplitudes in the ambient manifold just
below the acoustic network and in the compliance tank, re-
spectively. Typical results are shown in Fig. 5. The phase of
p1,a has been arbitrarily set to zero, and �p1,a� is forced to be
the same in the model and experiment. The measured U1,p

phasor is in good agreement with the model. The only other
measure of U1 in the system is the pressure oscillation in the
compliance tank. The good agreement between the measure-
ment of p1,t and the model indicates U1 into the tank is close
to the model predictions. With agreement between measure-
ment and model predictions for U1 at the piston and in the

FIG. 3. Acoustic power leaving the piston face Ep versus the power dissi-
pated in the variable acoustic load Eload for several different �p1,a / pm�. The
lines are least squares fits to the data. The slopes of the lines range from 1.0
to 1.05, demonstrating the accuracy of determining Ep from p1,a and LVDT
measurements of the piston location. The Ep intercept at each value of
�p1,a / pm� determines the acoustic dissipation due to boundary-layer pro-
cesses in the experimental offset and piston seal leakage.

FIG. 4. Acoustic power dissipated by boundary-layer processes in the ex-
perimental offset and by piston seal leakage vs �p1,a / pm�. The fit to the data

is used to interpolate between the data points.
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compliance tank, the model predictions of U1,a �which deter-
mines �� and U1 throughout the system can be used with
some confidence.

In principle, the total energy flux H through the regen-
erator could be determined from the difference between Ea

and the measured heat rejected at the aftercooler. However,
this would not provide a very accurate measure because H is
relatively small compared to both of these quantities. There-
fore, we resort to our knowledge of U1 and p1 throughout the
system to numerically compute22 H. However, for this com-
putation to be accurate, we must know the flow impedance
and heat-transfer properties of the regenerator, which depend
on rh and �. By measuring the total mass of the screen in the
regenerator and its volume, � is accurately determined. The
hydraulic radius is determined from � and the diameter of
the screen wire dw as quoted by the manufacturer, via rh

= �dw /4�� / �1−��, yielding 13.9 �m for the second regen-
erator. The acoustic pressure drop across the OPTR p1,a

− p1,net is used as a check of this value of rh. Figure 5 shows
the typically 80% agreement between the measurements of
p1,a− p1,net and the numerical computation.22 A 20% uncer-
tainty in p1,a− p1,net implies a 10% uncertainty in rh, which in
turn implies a 20% uncertainty in our computed values of H.

V. EXPERIMENTS

To search for the instability, we vary the ratio H /Ea. We
interpret any azimuthal dependence of the steady-state tem-
perature in the midplane of the regenerator as a sign that an
instability has arisen, has grown in time, and has stopped
growing when it reaches a balance with some other nonlinear
effect that is beyond the scope of this paper. Data are taken
by keeping both Ta and Tw �i.e., �� nearly fixed while varying
�p1,a�. Under these conditions, Ea goes approximately as

�p1,a�2. The hydrodynamically transported energy flux ḣc in

Eq. �46� also grows as �p1,a�2. However, ḣk, the thermal-
conduction component of the energy flux in Eq. �46�, stays
fixed. Therefore, by varying �p1,a�, we can vary H /Ea in Eq.

FIG. 5. Measured and calculated acoustic pressure and volumetric velocity
phasors throughout the experimental system at �p1,a / pm � =0.07 and Tc

=77 K.
�52� while keeping � fixed. At each acoustic amplitude, the
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system is allowed to reach a steady state indicated by negli-
gible changes in temperature of any of the thermocouples in
the regenerator. All the thermocouple temperatures, the
acoustic pressures, and the piston amplitude are then re-
corded. The temperatures at the ambient and cold end of the
regenerator and �p1,a� are used as inputs to the numerical
model that calculates H. The acoustic power Ea is deter-
mined as described in the previous section.

At low amplitude where H is dominated by ḣk and H /Ea

is large, the temperature at the axial midpoint of the regen-
erator is found to be roughly independent of the azimuthal
angle. As �p1,a� is increased, the angular temperature distri-
bution changes little until a critical �p1,a� is reached, where a
sine-wavelike angular temperature distribution appears. If
�p1,a� is increased beyond the critical value, the amplitude of
the temperature variation increases. A typical set of data for
Ta�300 K and Tc�77 K is shown in Fig. 6. Here, the tem-
perature at the axial midpoint at each angle, Tmid,n is normal-
ized by the temperatures at the ambient and cold ends Ta,n

and Tc,n, respectively, by

�n =
Tmid,n − �Ta,n + Tc,n�/2

Ta,n − Tc,n
− Zn. �53�

Any residual bias from systematic errors in the thermocouple
calibration is removed by subtracting off from each �n a zero
Zn which is obtained by averaging data sets whose �p1,a� are
clearly below the critical value. The resulting �n values are
plotted in Fig. 6 for several �p1,a�. A numerical calculation
indicates that a sinusoidally y-dependent streaming mass flux
with a peak of only 0.003 Re��1u1

*� /2 would cause the
changes in temperature observed at �p1 / pm � =0.08.

To accurately determine the location of the transition to
streaming, the magnitude of the temperature variation in Fig.

FIG. 6. Normalized measured temperatures around the azimuth at the axial
midpoint of the regenerator for various �p1,a / pm� and Tc=77 K. See the text
for how the temperatures have been normalized. The appearance of a sine-
wavelike distribution at higher �p1,a / pm� signals the onset of an acoustic
streaming instability.
6 is determined from a Fourier transform via
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�A�2 = �	

4 �
n=1

8

�ncos�n	/4��2

+ �	

4 �
n=1

8

�nsin�n	/4��2

,

�54�

and �A�2 is plotted versus Ea /H in Fig. 7. Consistent with Eq.
�52�, as Ea /H becomes larger a critical value is reached
where �A�2 begins to rapidly grow. There is some rounding
near the transition, and the critical value �Ea /H�crit is defined
as the �A�2=0 intercept of a line fitted to the data points
beyond the visible rounding.

The same data taking and analysis procedure is applied
to data sets with Ta�300 K and Tc spanning 77 to 285 K.
The results for �H /Ea�crit versus � are plotted as the circles in
Fig. 8. The detailed acoustic and thermal conditions are
shown in Table I. Operating conditions above and to the right
of the circles in Fig. 8 do not show azimuthal temperature
variations, whereas operating conditions below and to the

FIG. 7. The amplitude squared of the Fourier transform of the temperature
data in Fig. 6. The line is a least squares fit to the last three data points. The
�A�2=0 intercept is defined to be the onset of the instability, i.e., �H /Ea�crit.

FIG. 8. �H /Ea�crit versus �. Each point is an experimental value obtained
from a data set like that of Fig. 7. The thin and bold lines are Eq. �52� with
and without the transverse conduction term, respectively. To check the re-
peatability of the measurements, the group of three points near �=0.25 were
taken under nearly identical acoustic conditions, as was the pair of points
near �=0.60. The primary sources of uncertainty in �H /Ea�crit are the scatter
in the individual temperature measurements used to determine �A�2 and the
choice of how many points in the plots of �A�2 vs Ea /H to include in the

linear fit �see Fig. 7�.
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left of the circles show azimuthal variations presumably due
to the acoustic streaming instability described earlier. The
first regenerator, with a 22.2 �m hydraulic radius, always
yielded a higher �H /Ea� for a particular �, i.e., above and to
the right of the data points in Fig. 8, and never showed an
instability.

Comparing the experimental results in Fig. 8 with Eq.
�52� is not straightforward because � is not the only indepen-
dent parameter on the right-hand side of Eq. �52�. The other
independent parameter is �, which is a measure of the Rey-
nolds number at the ambient end of the regenerator. Experi-
mentally, � can be varied by using a valve �not shown in Fig.
2� in the acoustic network to vary the impedance of the net-
work. However, increasing � by a factor is two is not fea-
sible because the pressure drop across the regenerator would
become comparable to �p1,a�, violating one of the assump-
tions in the calculation. Decreasing � by a factor of two is
also not possible for several reasons. First, lower values of �
imply smaller �U1,a� at the same �p1,a�. The consequence
would then be large phase shifts in U1 from the ambient to
the cold end of the regenerator, violating our assumption that
p1 and U1 are in phase throughout the regenerator. Second, to
maintain the phase of p1,a relative to U1,a near zero would
require an acoustic network that had nearly the same inertial
component �i.e., reactive component� while reducing the dis-
sipative component by a factor of two. This is not possible at
the current power level. Therefore, we are restricted to the
narrow range of � allowed by the current apparatus.

In Fig. 8, experimental values of � range from about
0.35 at the lowest � to 0.15 at the highest. The variation in �
is somewhat subtle. At a particular �p1,a�, the volumetric flow
rate at the cold end of the regenerator U1,c is fixed by the
dimensions of the inertance tube and the compliance tank.
Equation �8� shows that U1,a=U1,c /�. Therefore, U1,a and �
are smaller for large � and larger for small �. Instead of
calculating an instability threshold for each data point, we
present two curves in Fig. 8; one for the threshold with �
=0.35 and another for �=0.15. To help distinguish the mag-
nitude of the two contributions on the right-hand side of Eq.
�52�, the bold curves only take into account the first term
while the thin curves also take into account the transverse
conduction term. Just as with the experimental data, operat-
ing points below and to the left of the curves are unstable
while those above and to the right are stable.

The qualitative agreement between measurements and

TABLE I. Acoustic and thermal conditions for the d

Tc �K� � �H /Ea�crit H �W� p1,a

76 0.25 0.119 15.7 1
75 0.25 0.109 17.4 1
75 0.25 0.103 20.3 1
151 0.50 0.077 9.6 1
171 0.57 0.069 7.6 1
188 0.62 0.056 7.7 1
189 0.63 0.059 7.2 1
224 0.74 0.049 4.2 1
276 0.90 0.026 4.1 2
calculations in Fig. 8 is encouraging. Both experiment and
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calculation show an instability for operation below a critical
value of H /Ea, and both show that �H /Ea�crit decreases as �
increases. However, the quantitative agreement is not very
good. As the bold curves show, the disagreement is not sim-
ply due to an overestimate of the stabilizing effect of trans-
verse conduction. Instead, we may be underestimating the
destabilizing effects of streaming or simply leaving out one
or more important effects. The exact solutions for oscillating
flow and heat transfer in a screen regenerator are unknown,
forcing us to use steady-flow correlations in a oscillating
flow.14 Inaccuracies certainly result, and the effects on this
subtle calculation are difficult to estimate. In addition, since
we cannot solve the equations for the perturbation exactly,
we have assumed the functional form of the temperature per-
turbation profile based on observations of a different system
when streaming was present. Although we believe this form
to be close to reality, perhaps the instability threshold would
be significantly changed by picking a different functional
form. The calculation we have presented assumes that p1 and
U1 are in phase throughout the regenerator. The data in Table
I show that U1,a leads p1,a by approximately 40°. The effect
of this phase difference is difficult to estimate without in-
cluding it at all stages of the calculation. Finally, we assumed
the transverse acoustic and streaming velocity perturbations
are both zero. In reality this is certainly not the case because,
although not presented in this paper, the solutions arrived at
in this calculation show a y-dependent p1 and p2,0 inside the
regenerator, i.e., everywhere but x=0 or x=xw. Quick initial
estimates show that the energy flows driven by the resulting
transverse acoustic and streaming flows are either stabilizing
or have no effect. However, more detailed calculations are
required to verify these estimates.

VI. CONCLUSIONS

A calculation has been presented showing that an acous-
tic streaming instability can arise in the regenerators of
oscillating-wave refrigerators, while engines are immune.
The calculation begins by assuming that a region “A” near
the midplane of the regenerator becomes a little hotter than it
should while region “B” �also near the midplane but some
transverse distance away� becomes a little cooler. Some of
the consequences of such a mean temperature perturbation
will always remove heat from region A and deposit heat in
region B, leading to a suppression of the original perturba-

Fig. 8.

103U1,a �m3/s� Phase U1,a �deg� �

2.45 42.1 0.29
2.65 38.9 0.32
3.10 41.8 0.36
2.00 44.3 0.24
1.78 43.6 0.21
1.84 39.0 0.22
1.76 42.4 0.21
1.31 38.8 0.15
1.71 37.5 0.19
ata in

�kPa�

45
55
71
74
71
92
86
68
33
tion. Referring to Eq. �51�, these include transverse thermal
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conduction through the regenerator screen �proportional to
ky� and the axial total energy flux H �proportional to
dTm /dx�. The other term in Eq. �51�, �u1R�0� /u1R�0�
−�u20�0� /u20�0�, is proportional to the second-order stream-
ing mass-flux perturbation. Under all conditions we have ex-
plored, the resulting steady mass flux is always positive �i.e.,
directed from Ta to Tw in regions where the midplane tem-
perature is higher�. In engines, heat is extracted from region
A and deposited in region B by this term, which suppresses
the mean temperature perturbation and leads to the stability
of engines to this type of perturbation. However, the opposite
is true in refrigerators where additional heat is deposited in
the region A and removed from region B. The details of the
state of the refrigerator’s regenerator dictate whether the heat
flux perturbation due to this streaming can overcome the
stabilizing effects of transverse thermal conduction and axial
total energy flux. If it does, the perturbation grows, resulting
in an instability in refrigerators.

When a perturbation is present, the changes in the heat
flux due to the transverse thermal conduction and the axial
energy flux are easily understood. However, the second-order
streaming mass-flux perturbation is more complicated. It is
nonzero because the nonlinear flow resistance of the regen-
erator results in different flow resistances for the first-order
acoustic flow and the second-order streaming flow and be-
cause these resistances change with mean temperature in dif-
ferent ways.

The calculation of the instability threshold is difficult
because the three effects mentioned above are all about the
same size. A small inaccuracy in the calculation of any one
of three can lead to a significant inaccuracy in the result for
the instability threshold. An accurate numerical calculation
could presumably predict the instability threshold. However
we chose to attempt an analytical calculation to gain under-
standing by identifying the specific stabilizing and destabi-
lizing mechanisms.

An orifice pulse tube refrigerator with a well-
instrumented regenerator was built to determine the instabil-
ity threshold. The calculation described above and the ex-
perimentally determined threshold show qualitative
agreement, but quantitative agreement is still lacking. Pos-
sible routes of additional theoretical investigation include
better models for the flow and heat transfer in regenerators,
determining the exact solution for the x dependence of the
mean-temperature perturbation, and including acoustic and
streaming flow transverse to the main acoustic axis.
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