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I. Introduction

DeltaE–Design Environment for Low-Amplitude ThermoAcoustic Engines–is a computer
program that can predict how a given thermoacoustic apparatus will perform, or can allow
the user to design an apparatus to achieve desired performance. Version 5.4 is currently
running on Windows-based and Macintosh PCs. Older versions were supported across some
of the Unix variants (Solaris, IRIX, Alpha/OSF), but Version 5.4 is not available for Unix
due to lack of demand or lack of an available compiler installation to support it. A Linux
variant may be available by early 2005. DeltaE is substantially menu-oriented. Input data
can be modified or entered via DeltaE’s menu or using any text editor. Results can be
examined via the menus, the operating system’s text utilities, or any spreadsheet or graphics
software.

For good portability, DeltaE is written in FORTRAN-77. The current executable code
for IBM-compatibles requires at least a 386 processor, because it uses a DOS extender to
create a flat 32-bit memory environment. (An older, version 2.1 DeltaE is still available
which requires 333 kbytes of free RAM, and runs comfortably quickly on a 286 with math
coprocessor, or anything more sophisticated.) All calculations are performed in double
precision.

A. How It Works

DeltaE solves the one-dimensional wave equation based on the usual low-amplitude, ‘acoustic’
approximation. It solves the wave equation in a gas or liquid, in a geometry given by the
user as a sequence of segments (no more than 200), such as ducts, compliances, transducers,
and thermoacoustic stacks or regenerators. A glance through the figures below will orient
the reader to the range of cases that DeltaE can handle.

A solution to the appropriate 1-d wave equation is found for each segment, with pressures
and volume flow rates matched at the junctions between segments. In stacks, the wave-
equation solution is found simultaneously with that of the energy-flow equation in order to
find the temperature profile as well as the acoustic pressure. The energy flow through stacks
is determined by temperatures and/or heat flows at adjacent heat exchangers.
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Figure I.1: Driven, lossy plane-wave resonator.

Figure I.2: Driven, radiating Helmholtz resonator.

Figure I.3: Duct network.

Figure I.4: Thermoacoustic refrigerator (Hofler style).
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Figure I.5: Thermoacoustic refrigerator (TALSR style).

Figure I.6: Thermoacoustic refrigerator (Garrett and Hofler style).

3



Figure I.7: So-called “beer cooler.”
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Figure I.8: Thermoacoustic Stirling hybrid engine.

Figure I.9: Double-inlet pulse-tube refrigerator.
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The user of DeltaE enjoys considerable freedom in choosing which variables are com-
puted as ‘solutions.’ For example, in a simple plane-wave resonator (the first example below),
DeltaE can compute the input impedance as a function of frequency, or the resonance fre-
quency for a given geometry and gas, or the length required to give a desired resonance
frequency, or even the concentration in a binary gas mixture required to give a desired
resonance frequency in a given geometry.

Generally, DeltaE does not include any nonlinear effects that arise at high amplitudes,
so be cautious using it when Mach numbers or Reynolds numbers are too high. The principal
exception to this rule is the optional turbulence algorithm in ducts, discussed in Chapter
V. There are a number of other approximations used, which will be discussed below as we
encounter them, and in more detail in Chapter VI.

B. How This Manual is Organized

We will teach the use of DeltaE by increasingly complicated examples in Chapters II—
IV. Chapter II is just acoustics, without thermoacoustics. It serves to introduce DeltaE’s
input/output formats and editing and plotting features. Chapter III gives the most com-
plete discussion of the overall principles behind the thermoacoustics computations, and the
simplest thermoacoustic examples. The agreement of these examples with published experi-
mental data serves as validation of the code. In Chapter IV, features of DeltaE which are
useful in modeling Stirling cycle and more general devices are introduced. Chapter V gives
the most in-depth discussion of the advanced options of DeltaE.

Chapter VI is a segment-by-segment reference chapter for the experienced user, sum-
marizing assumptions built into the computations for each segment, the data format for
each segment, and thermophysical properties. It is our hope that experienced users can
quickly find the information they need in Chapter VI, while new users will find the wordier
explanations of the earlier chapters helpful.

The examples we’ve included are simpler than DeltaE files we use in our own research.
We’ve maintained this simplicity in the User’s Guide to avoid clutter. Experienced users
will find that the number of segments in their DeltaE files grows and grows, as small effects
and non-standard results are included. Some of these examples were run on an MS-DOS
machine, others on a Mac. (While the menu interface differs, the file formats and displays
for both platforms are the same. When there are differences, they will be obvious.) Early
versions of DeltaEwere still being debugged and improved while these examples were being
run, so there may be some minor errors and formatting oddities in these examples.

We assume that the reader of this manual is very comfortable with linear acoustics and
reasonably familiar with thermoacoustics. We will use variables as defined, for example, in
the list of symbols in Refs. [1] or [2].
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II. Basic Acoustics

In this Chapter we use the simplest acoustic segments, such as ducts and endcaps, to intro-
duce DeltaE’s basic features.

A. Plane-Wave Resonator

We begin with a lossy plane-wave resonator, driven from one end by a piston with a fixed
volume flow rate. We call the input file planewav.in (included in the examples directory or
folder). This input file could have been created from scratch using any text editor, though
this one was made by editing one of DeltaE’s own output files. (N.B.: A DeltaE input
file must always be a plain text file, in the native text format of the machine it is running on.
On some systems, integer numbers must be followed by a decimal point, as in the example
below. Also, some systems require the last line in the file to be followed by an end-of-line
character, before the end-of-file character occurs.)

TITLE Example 1: Plane-wave resonator

BEGIN Initialize things
1.000E+05 a Mean P Pa
100. b Freq. Hz
300. c T-beg K
1000. d |p|@0 Pa
90. e Ph(p)0 deg
1.000E-02 f |U|@0 m^3/s
000 g Ph(U)0 deg
helium

ENDCAP First end
1.000E-02 a Area m^2
helium

DUCT The heart of the matter
1.000E-02 a Area m^2
0.354 b Perim m
5.00 c Length m
helium

ENDCAP Second End
1.000E-02 a Area m^2
helium

HARDEND
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000 a R(1/z)
000 b I(1/z)
helium

! The restart information below was generated by a previous run
! You may wish to delete this information before starting a run
INVARS 2 0 4 0 5
TARGS 2 4 1 4 2
SPECIALS 0

Several features of DeltaE input files are illustrated here. Input files should be named
something.IN or something.OUT. These files consist of a set of segments whose order and
format are important. The initial (or ‘zeroth’) segment is always the BEGIN segment, and
the last segment is usually HARDEnd (or SOFTEnd to be discussed in Chapter VI). Intervening
segments describe the geometry and other properties of the acoustic engine. The number
and order of data in each segment is crucial. All units are MKS. Within each line, only the
first number (e.g., “1.e5” or “100.”) or word (e.g., “helium” or “BEGIN”) is important;
the rest of the line can be used as a comment field, with, for example, the units or name
of the variable whose value appears. Whole-line comments can appear anywhere if they
begin with “!” or with 20 or more blanks. Numbers can be in fixed or exponential format.
Segment names are all uppercase, and only the first five characters are interpreted (hence,
the convention here is to write segment names longer then 5 characters with trailing lower
case letters, e.g., HARDEnd). All words must have correct CASE and spelling.

The file shown below works just as well in the computer as the one shown above. However,
with fewer comment annotations and only the minimal 5-character segment names, it is
harder for humans to follow; it also lacks restart information, so DeltaE might have to
prompt us for some more information before proceeding.

TITLE

BEGIN
1.e5
100.
300.
1000.
90.
1.0e-2
0
helium

ENDCA
0.01
helium

DUCT
0.01
0.354
5.00
helium

ENDCA
0.01
helium

8



Figure II.1: A plane-wave resonator; conventional and DeltaE representation.

HARDE
0
0.
helium

BEGIN sets the stage, in this case, with 1-bar room temperature helium gas being driven
at 100 Hz with a pressure amplitude of 1000 Pa and a volume flow rate amplitude of 0.01
m3/s, 90◦ out of phase with the pressure.

Since BEGIN has no geometrical properties, an ENDCAp comes next to account for oscilla-
tory thermal losses at the first end of the resonator. An endcap is just a surface area giving
dissipation. In this example, because we are beginning with a nonzero volume flow rate,
ENDCAp can be imagined as the face of the moving piston.

A lossy duct DUCT comes next. Here, we have made the perimeter
√
4π × area, to make

this a circular duct.

The resonator ends with another ENDCAp for oscillatory pressure dissipation.

The input file then ends with the HARDEnd segment. Its two lines are the real and
imaginary parts of the inverse of the end impedance, 1/Z = U1/p1. Since we have set these
two equal to zero, this is simply a solid immovable boundary, with zero volume flow rate.

Note that the special segments BEGIN and HARDEnd have no geometrical properties; so
ENDCAps are needed to put the thermal dissipation loss at the ends of the resonator.

Figures II.1 show the acoustician’s usual cartoon of a driven plane-wave resonator and
a pictorial representation of how we modeled this resonator for DeltaE. Throughout this
tutorial we use generally conventional symbols to represent ordinary segments such as ducts,
horns, and heat exchangers.
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This input file overdetermines the acoustic system because only some of the variables
listed can be specified independently. You can choose which of these variables DeltaE will
regard as fixed, which it will regard as initial guesses at solution values, and, occasionally,
which it will ignore.

ExecuteDeltaE and respond planwave to the prompt for an input file (on a MacIntosh,
double-click planwave.in, or open it using the “New Model” menu). You may also type
deltae planwave, or deltae planwave.in, to load the file directly. After your required
“carriage return to continue,” DeltaE will respond with:

Loading planwave.in . . .
Example 1: Plane-wave resonator
Ready.

DeltaE can accept either .in or .out files as input files. If you do not type the file suffix,
DeltaE looks first for a .out file. If it does not find it, it looks next for a .in file; if this
is not found, DeltaE reprompts for the file name. (On a MacIntosh, all of these steps are
replaced by a standard file selection dialog.)

On a keyboard menu system (e.g., PC-compatible, VMS, Unix, etc.), the main menu is
displayed next, giving the following options:

Main Menu:
r (r)un model p (p)lot another parameter
w (w)rite current model state P (P)lot status summary
n (n)ew model input file c (c)lear from vectors and plots
R (R)estore vectors C (C)lear|set all guesses&targets
E (E)xtras u (u)se in guess/target vector
d (d)isplay v (v)ector status summary
o (o)utput to printer m (m)odify parameter value
f (f)orm feed printer s (s)pecial modes editing
D (D)OS command shell t (t)hermophysical properties
I (I)nsert segment K (K)ill segment
e (e)xit DeltaE ? show this menu

MAIN: (rpwPncRCEudvomfsDtIKe?)>

(On the MacIntosh, similar options are available on the menu bar for mouse selection.)

Now select “vector status summary” by typing “v”:

Iteration Vectors Summary:
GUESS 0d 0e
name BEGIN:|p| BEGIN:Ph(p)
value 1.00E+03 90.
units Pa deg

TARGET 4a 4b
name HARDE:R(1/z HARDE:I(1/z
units

10



value .00 .00

Potential TARGETS still available are:
Addr Seg:Par-Type Current Value

The GUESS vector, which has two components in this example, shows what DeltaE will
regard as solution variables: the magnitude and phase of the beginning pressure. Their
initial guesses are also shown. (This particular two-dimensional guess vector came from
the computer-generated table at the bottom of the input file. This table is explained more
thoroughly in Chapter III, especially in Sec. III C. If your input file has no such table,
DeltaE can make a reasonable guess at the guess variables you might want to set when
you select (C)lear|set all guesses&targets with no guesses defined yet.)

Basically, DeltaE integrates the wave equation from BEGIN to END. We insist that
DeltaE refine the two-dimensional GUESS vector to find a solution to this acoustics problem
that arrives at the HARDEnd with zero complex volume flow rate. This is accomplished by
getting the ‘0’ values of the real and imaginary parts of the inverse of the impedance in the
HARDEnd segment into DeltaE’s two-dimensional TARGET vector, as shown in this vector
summary table.

The last two lines indicate unselected, still-available targets. These are the only remain-
ing output values for which DeltaE has a reserved input variable available to compare with
it. In this model, all such outputs are already in use.

Most of the thought required to successfully run DeltaE occurs while trying to figure
out which of the variables are appropriate guesses and targets. While the choice of these
variables is almost entirely arbitrary, as long as the number of guesses equals the number
of targets, some choices for the guess vector would be physically nonsensical. For example,
allowing DeltaE to try to achieve resonance in a given length by varying the areas of the
endcaps would be futile. For the examples in subsequent Chapters, the choice of good guess
and target vector members is not always as obvious as it is here.

For now, we will keep these vectors. “Run” the code (type ‘r’), and “(e)xit” from
DeltaE to the operating system to inspect its results, which DeltaE has put in two new
files, planewav.dat and planewav.out. planewav.dat looks like this:

-= Example 1: Plane-wave resonator =-
frequency= 100.000Hz mean pressure= 1.000E+05Pa

Tm(K) Re & Im p1(Pa) Re & Im U1(m^3/s) Hdot(W) Edot(W)
300.0 2910.6 2553.9 0.01000 0.00000 14.55 14.55

!------------------------------------ 1 ------------------------------------
ENDCAP First end
Heat extracted: 7.333E-02 Watts
300.0 2910.6 2553.9 0.00997 -0.00002 14.48 14.48

!------------------------------------ 2 ------------------------------------
DUCT The heart of the matter
Duct wavvec =( 0.623 , -6.207E-03) m^-1
Heat extracted: 14.5 Watts
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300.0 -2908.0 -2556.2 -0.00003 -0.00002 0.07 0.07
!------------------------------------ 3 ------------------------------------
ENDCAP Second End
Heat extracted: 7.331E-02 Watts
300.0 -2908.0 -2556.2 0.00000 0.00000 0.00 0.00

!------------------------------------ 4 ------------------------------------
HARDEND Final
inverse impedance (rho a U/p A)=( -5.863E-10, 4.052E-10)

300.0 -2908.0 -2556.2 0.00000 0.00000 0.00 0.00

Examination of planewav.dat will show that the solution is <(p) = 2911 Pa, =(p) =
2554 Pa. Also shown are temperature, complex p1, and complex U1, acoustic power flow,
and energy flow at the beginning and end of each segment. You can see, for instance, that
the driver delivers 14.55 Watts of power to the resonator, that 0.07 Watts is absorbed on
each end, and that 14.4 Watts is absorbed by the duct. The acoustic power absorbed in
isothermal segments such as these is extracted as heat, e.g. by a water jacket in the real
world.

The output model file, planewav.out, is shown below:

TITLE Example 1: Plane-wave resonator
!--------------------------------- 0 ---------------------------------
BEGIN Initial
1.0000E+05 a Mean P Pa 3972.2 A |p| G( 0d) P
100.0 b Freq. Hz 41.266 B Ph(p) G( 0e) P
300.0 c T-beg K
3872.2 d |p|@0 Pa G
41.266 e Ph(p)0 deg G
1.0000E-02 f |U|@0 m^3/s
0.0000 g Ph(U)0 deg
helium Gas type
ideal Solid type
!--------------------------------- 1 ---------------------------------
ENDCAP First end
1.0000E-02 a Area m^2 3972.2 A |p| Pa

41.266 B Ph(p) deg
9.9721E-03 C |U| m^3/s
-0.1407 D Ph(U) deg
14.481 E Hdot W

helium Gas type 14.481 F Edot W
ideal Solid type -7.1895E-02 G HeatIn W
!--------------------------------- 2 ---------------------------------
DUCT The heart of the matter
1.0000E-02 a Area m^2 3871.8 A |p| Pa
0.3540 b Perim m -138.68 B Ph(p) deg
5.000 c Length m 3.7130E-05 C |U| m^3/s

-138.68 D Ph(U) deg
7.1879E-02 E Hdot W

helium Gas type 7.1879E-02 F Edot W
ideal Solid type -14.409 G HeatIn W
!--------------------------------- 3 ---------------------------------
ENDCAP Second End
1.0000E-02 a Area m^2 3871.8 A |p| Pa

-138.68 B Ph(p) deg
1.6873E-10 C |U| m^3/s

6.6665 D Ph(U) deg
-2.6871E-07 E Hdot W

helium Gas type -2.6871E-07 F Edot W
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ideal Solid type -7.1879E-02 G HeatIn W
!--------------------------------- 4 ---------------------------------
HARDEND Final
0.0000 a R(1/z) = 4G? 3871.8 A |p| Pa
0.0000 b I(1/z) = 4H? -138.68 B Ph(p) deg

1.6873E-10 C |U| m^3/s
6.6665 D Ph(U) deg

-2.6871E-07 E Hdot W
-2.6871E-07 F Edot W
-5.8630E-10 G R(1/z)

helium Gas type 4.0521E-10 H I(1/z)
ideal Solid type 300.0 I T K

! The restart information below was generated by a previous run
! You may wish to delete this information before starting a run
! where you will (interactively) specify a different iteration
! mode. Edit this table only if you really know your model!
INVARS 2 0 4 0 5
TARGS 2 4 1 4 2
SPECIALS 0

(Some digits of lesser significance in DeltaE output examples in this manual may vary
from the numbers that you get running your version of the code. This is primarily due to
differences in floating point arithmetic hardware and software between different compilers
and computers, and the finite tolerance against which DeltaE measures the accuracy of its
results. This can be reduced from the default (see Chapters V and VI for details) to force
iterations to continue until a greater degree of precision is achieved. For tighter tolerance
levels, all significant digits in the finished output file will agree for all versions of the code
with relatively straightforward models.)

Examination of planewav.out will show that it is a slightly modified version of our
planewav.in: It includes the solution values for magnitude and phase of beginning pressure
(3972 Pa. 41.27◦), replacing our original guesses (1000 Pa. 90◦). DeltaE would have made
this file as it is even if we had used the bare-bones, unannotated version of the input file. In
*.out files, DeltaE numbers the segments and ‘letters’ the lines in each segment for our
convenience, and displays names and units for all variables. It adds the obscure table at the
end that reflects our choice of guess and target vectors. The format of DeltaE’s .out file
is acceptable as an input file, so using it as such saves the user a lot of work.

As a new example, we will find the resonance frequency f , which we guess is near 100 Hz.
We’ll use the same old planewav.in, so execute DeltaE again and select it. Display the
vector status summary again.

Iteration Vectors Summary:
GUESS 0d 0e
name BEGIN:|p| BEGIN:Ph(p)
value 1.00E+03 90.
units Pa deg
TARGET 4a 4b
name HARDEND :R(1/z HARDEND :I(1/z
units
value .00 .00
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Now we want f , |p| in segment BEGIN as the 2 components of the guess vector. We will
fix the phase of the beginning p1 at 0, because having p1 and U1 in phase at the driver is
the condition for resonance. So we want to change this table to look like this:

Iteration Vectors Summary:
GUESS 0b 0d
name BEGIN:Freq. BEGIN:|p|
value 1.00E+02 1.00E+03
units Hz Pa
TARGET 4a 4b
name HARDEND :R(1/z HARDEND :I(1/z
units
value .00 .00

We can make this change in guess vector by a “(c)lear” of 0e from the guess vector;
“(u)se” 0b instead; and “(m)odify” 0e to be zero degrees instead of 90◦. (These vectors
happen to be identical to DeltaE’s default, so we could have generated this table by se-
lecting (C)lear|set twice–first to wipe out the old vectors, and then again to set the
defaults.) Now, “(r)un” the calculation. Inspect the results by using “(d)isplay” from
within DeltaE (or by escaping to the operating system, as you did before). You will find
that the resonance frequency is 100.9 Hz.

If you can’t remember the number-letter code for the variable you want when modifying
the vectors, “(d)isplay” all segments, or “(d)isplay” a selected segment number to see a
list of the variables. For example, “(d)isplay” segment 0 to find out which number-letter
code is for frequency:

INPUT # ParType Units Status OUTPUT # ParType Units Status
--------------------------------- 0 ---------------------------------
BEGIN Initialize things
1.000E+05 a Mean P Pa .000 A |p| 0d P
100. b Freq. Hz .000 B Ph(p) 0e P
300. c T-beg K
1.000E+03 d |p|@0 Pa G
90.0 e Ph(p)0 deg G
1.000E-02 f |U|@0 m^3/s
00.0 g Ph(U)0 deg
helium Gas type
ideal Solid type

If you incorrectly remember a number-letter code and are stuck in a modification, you can
either type “return” repeatedly to accept existing values, or type “x” to escape. (If you’re
really stuck, control-C will escape from nearly anywhere.)

DeltaE can use any physically appropriate variables in the guess vector. You can
determine what temperature makes the system resonate at 100 Hz, by putting 0c in the
guess vector. (The answer is 290.7 Kelvin.) Or, by putting 2c in the guess vector, we could
have found out what length the duct needs to be to put the resonance at 100 Hz at 300 K.
An advanced feature to be discussed in Chapter V allows use of the concentration in a binary
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gas mixture to be used (as a member of the guess vector) so that we could determine the
argon concentration that would be required in the helium to make the resonance at 100 Hz.

B. Plotting

DeltaE allows for plotting by automatically incrementing (or decrementing) one or two
independent variables, and tabulating these together with one or more output variables in
a file named something.plt. Users can then manipulate and/or plot that file with their
favorite graphics or spreadsheet software. We illustrate these features with a continuation
of the same example, a plane-wave resonator.

We use the same input file as before, planewav.in. Execute DeltaE and choose this as
input file. Check the vector status summary:

Iteration Vectors Summary:
GUESS 0d 0e
name BEGIN:|p| BEGIN:Ph(p)
value 1.00E+03 90.
units Pa deg
TARGET 4a 4b
name HARDEND :R(1/z HARDEND :I(1/z
units
value .00 .00

Now inspect the Plotted parameter summary (type capital “P”):

Dependent Variables (outputs):
PLOTS 0A 0B
name BEGIN:|p| BEGIN:Ph(p)
units Pa deg

Keep these parameters as the dependent variables to be plotted (they are copies of the
guesses). To set up the independent variables, select “(p)lot another parameter.” We
will make a two-dimensional plot, letting f go from 80 Hz to 339.5 Hz in 1.5-Hz steps in the
inner loop, and using two values of mean pressure–1000 Pa and 100,000 Pa–in the outer
loop. DeltaE prompts for these entries in the “range” selection. As before, if you can’t
remember the segment-number and line-letter codes for frequency and mean pressure, use
“(d)isplay” to find out. After entering these values, check the Plotted parameter summary
again:

Dependent Variables (outputs):
PLOTS 0A 0B
name BEGIN:|p| BEGIN:Ph(p)
units Pa deg
Indpendent Variables (inputs):
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Outer loop: 0a BEGIN:Mean Beg= 1.00E+03 End= 1.00E+05 Step= 9.90E+04
Inner Loop: 0b BEGIN:Freq. Beg= 80. End= 3.40E+02 Step= 1.5

Before beginning, we must also (m)odify the inital pressure amplitude (0d) to a value
that’s reasonable for 1,000 Pa mean pressure. We choose 10 Pa: one percent.

Now do a (r)un. DeltaE will step through the variables selected (taking a minute
or two on a 286, but much less on a newer computer). When it has finished, exit to the
operating system, and find two new files. The file planewav.des gives headings of what has
been tabulated:

BEGIN:Mean BEGIN:Freq. BEGIN:|p| BEGIN:Ph(p)
Pa Hz Pa deg
0a 0b 0A 0B

and planewav.plt is the table of values:

1000. 80.00 3.247 46.93
1000. 81.50 3.543 43.67
1000. 83.00 3.861 39.76
1000. 84.50 4.194 35.11
1000. 86.00 4.529 29.63
.
.
.

1.0000E+05 87.50 -370.7 265.4
1.0000E+05 86.00 -328.6 265.8
1.0000E+05 84.50 -293.7 266.0
1.0000E+05 83.00 -264.1 266.3
1.0000E+05 81.50 -238.6 266.4
1.0000E+05 80.00 -216.4 266.6

Notice that DeltaE alternates the order in which it calculates the points of the inner
loop (frequency, here). This process is motivated by the quality of initial guesses; ‘zig-
zagging’ thus, DeltaE must spend only a brief time searching for the start point of the
inner loop each time it increments the outer loop.

We brought this file into a spreadsheet/graphics program to fix it up for plotting. We
removed minus signs from |p1| whenever they occurred, adding 180◦ to phase(p1) in those
cases to improve the looks of the the graphs. We also plotted |p1|/pm (instead of just |p1|).
The resulting plots are shown in Figs. II.2. (The lower quality-factor curves are for the lower
mean pressure, of course.)
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Figure II.2: Pressure and phase vs frequency for the plane-wave resonator.
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C. Further Simple Features

Here we describe some additional DeltaE features which are relevant to purely acoustic
(not thermoacoustic) apparatus. A list of the most commonly used purely acoustic segment
types (including those introduced previously) is given below. More detailed descriptions of
each are given in Chapter VI.

TITLE Required at the top; comment field is retained in all .DAT and .OUT files.

BEGIN Required immediately after TITLE. This is the “zeroth” segment. It defines global
parameters such as mean pressure and frequency, and initial conditions for p1 and U1.

ENDCAp A surface area with oscillatory-pressure loss in its thermal penetration depth. Usu-
ally used at ends of ducts.

DUCT A duct, with viscous and thermal losses at the wall. Separate entry of area and
perimeter accommodates ducts of any cross-sectional shape.

CONE A cone to adapt between ducts of different sizes. Uses lossy Webster horn equation.

COMPLiance A compliance. With oscillatory-pressure losses on surface.

IMPEDance A lumped-parameter series impedance.

IDUCEr and VDUCEr Current-driven and voltage-driven transducers, with parameters inde-
pendent of frequency.

ISPEAker and VSPEAker Current-driven and voltage-driven electrodynamic transducers, pa-
rameterized by mass, B-L product, etc., so that impedance coefficients depend on
frequency.

IEDUCer and VEDUCer, IESPEaker and VESPEaker The four transducers above are in
branched configurations, where pressure is unchanged by the transducer and the “back
side” of the transducer hangs outside of DeltaE’s computation space. These Enclosed
versions are their series counterparts, with one side of the transducer facing the pre-
vious segment and the other side facing the subsequent segment, so that the volume
flow rate remains constant across the segment.

BRANCh A frequency-independent side-branch impedance.

OPNBRanch A frequency-dependent side-branch impedance with the characteristic radiation
impedance of a duct opening into an infinite or semi-infinite space.

HARDEnd One of the allowed final segments. Used to set U1 = 0 through use of the inverse
of the acoustic impedance in the TARGET vector.
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SOFTEND The other allowed final segment. Used to set p1= 0 through use of the acoustic
impedance in the TARGET vector. Very useful for defining a mirror-image plane in
symmetric apparatus with a pressure node at a center of symmetry.

Each segment must have a gas type and a solid type (even some segments that don’t
actually use such information, such as BRANCh). At present, DeltaE supports air, helium,
neon, He-Xe, He-Ar, and He-Ne mixtures (see Chapter VI), hydrogen, deuterium, nitrogen,
carbon dioxide, natural-gas combustion products (i.e., chimney exhaust), liquid sodium, and
eutectic liquid NaK as gases. Solids include Kapton, mylar, stainless steel, molybdenum,
tungsten, copper, nickel, and ideal. An ideal solid is one that has essentially infinite heat
capacity, density, and thermal conductivity. If no solid type is given in the input file,DeltaE
will assign the ideal solid type. There is also a mechanism for specifying additional, user-
defined fluids and solids; details are given in Chapter V.

The sameas nl feature allows reference to a value (either a number or a gas or solid
type) in another segment. This helps prevent typographical errors in the input file, and is
especially useful in linking dimensions of adjacent segments which you might want to vary
all together while modifying or plotting, such as areas of all segments when increasing the
size of the apparatus. You can give just the segment number, if the parameter letters are
the same (e.g., “sameas 0” is often the gas type in all segments after the zeroth segment),
or segment number and line letter (e.g., “sameas 3a”). If you try to use sameas for two
different types of variables–making a length the same as an area, for example–DeltaE
will give an error message. The following example is for a closed resonator composed of two
ducts joined by a cone:

TITLE illustrating use of sameas
!--------------- 0 ------------------------
BEGIN Initial
1.380E+06 a Mean P Pa
132. b Freq. Hz
586. c T-beg K
6.639E+04 d |p|@0 Pa
.000 e Ph(p)0 deg
.000 f |V|@0 m^3/s
.000 g Ph(V)0 deg

helium Gas type
!--------------- 1 ------------------------
ENDCAP First End
sameas 2a a Area m
sameas 0 Gas type
!--------------- 2 ------------------------
DUCT First Duct
1.292e-2 a Area m

.403 b Perim m
1.0 c Length m
sameas 0 Gas type
!--------------- 3 ------------------------
CONE adapter between ducts
sameas 2a a AreaI m^2
sameas 2b b PerimI m

.100 c Length m
sameas 4a d AreaF m^2
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sameas 4b e PerimF m
sameas 0
!--------------- 4 ------------------------
DUCT Second Duct
0.323e-2 a Area m^2
0.2015 b Perim m
1.0 c Length m
sameas 0
!--------------- 5 ------------------------
ENDCAP Second End
sameas 4a a Area m^2
sameas 0
!--------------- 6 ------------------------
HARDEND

.000 a R(1/z)

.000 b I(1/z)
sameas 0

When you access a parameter specified by sameas using (m)odify, or (p)lot to make
it an independent plot variable, or (u)se it in a guess vector, the sameas relationship is
severed and the parameter is given its current actual value. This is required because the
value at this point will be changed (either by you, or by DeltaE). But if a variable that
is the root of several sameas references is caused to change in any of these three ways, all
sameas references to this root within the model will change with it.
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III. Thermoacoustics

The examples given in the previous Chapter were relatively simple cases of linear acoustics.
In this Chapter, we introduce the full thermoacoustic computing power of DeltaE. After
discussing the principles and assumptions that are built into the computation, we present
example calculations.

A. Principles of Computations

DeltaE deals with one-dimensional strings of acoustic and thermoacoustic elements (see
Chapter V for branches), so the one-dimensional “wave” equation is of the greatest im-
portance. We always assume a time dependence of eiωt, so the “wave” equation is the
second-order Helmholtz differential equation for the complex pressure amplitude p1(x) :

p1 +
a2

ω2
d2p1
dx2

= 0.

(III.1)

It is sometimes easier to think of this second-order equation as two coupled first-order
equations in pressure p1 and volume flow rate U1 :

dp1
dx

= −iωρ
A

U1,

dU1
dx

= −iωA
ρa2

p1. (III.2)

This point of view is taken in Refs. [3] and [2]. In this form, the equations are ready for
numerical integration along x.
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More complexity is added, as needed, for given geometries. For example, in boundary-
layer approximation in a duct or shallow cone, the governing equations are

dp1
dx

= −iωρ
A

·
1− 1− i

2

Π

A
δν

¸−1
U1,

dU1
dx

= −iωA
ρa2

·
1 +

1− i

2

Π

A

γ − 1
1 + �s

δκ

¸
p1. (III.3)

where A is the cross-sectional area, Π is the perimeter, and �s is a correction for thermal
properties of the solid wall that is usually negligible. In a stack, we use Rott’s wave equation:

(1 +
(γ − 1)fκ
1 + �s

)p1 +
ρma

2

ω2
d

dx
(
1− fν
ρm

dp1
dx
)− β

a2

ω2
(fκ − fν)

(1− σ)(1 + �s)

dTm
dx

dp1
dx

= 0, (III.4)

which can be rewritten as two coupled first-order equations:

dp1
dx

= −iωρm
A

(1− fν)
−1 U1,

dU1
dx

= − iωA

ρma
2

µ
1 +

(γ − 1)fκ
1 + �s

¶
p1 +

(fκ − fν)

(1− σ)(1 + �s)
β
dTm
dx

U1. (III.5)

InDeltaE, the computation uses the wave equation that is appropriate for each segment.
DeltaE uses continuity of p1 and U1 to pass from the end of one segment to the beginning of
the next. Within each segment, wave propagation is controlled by local parameters such as
area and perimeter. AlthoughDeltaE uses analytic solutions to the wave equation for some
of the simplest segment types, it usually must integrate the wave equation numerically, so
it is generally correct to imagine DeltaE beginning at the BEGIN segment and numerically
integrating “the wave equation” through each segment, in turn, to the end of the list, using
local parameters, such as area and perimeter, as it goes.

It is clear that the solution p1(x), U1(x) is only determined uniquely if four real boundary
conditions are imposed, because the governing equation can be expressed as two coupled
first-order equations in two complex variables or as a single second order equation in one
complex variable. This is true whether considering a single segment or a one-dimensional
string of segments with each joined to its neighbor(s) by continuity of p1 and U1. If all four
boundary conditions are given at one end of the apparatus (i.e., if we know the complex p1
and complex U1 at the BEGIN segment) then the integration is utterly straightforward. But
usually some of the boundary conditions are given elsewhere. For example, in the plane-
wave resonator in the previous Chapter, the boundary conditions were U1 = (0.01, 0) m/s
at the BEGIN segment, and U1 = (0, 0) at the HARDEnd. In such conditions DeltaE uses a
shooting method,1 by guessing any unknowns among the four numbers defining p1 and U1

1Precisely speaking, DeltaE forms a system of nonlinear equations from the model using the targets that
the user selects and manipulates the guesses to drive the differences between the targets and results to zero.
The routine incorporated in the code is called DNSQ, and it is part of the SLATEC Common Mathematical
Library, which is freely available through the internet software repository at “http://www.netlib.org.” The
algorithm used is a modification of the Powell hybrid method.
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at the BEGIN segment, integrating to the HARDEnd, comparing the results with the boundary
conditions imposed at the HARDEnd, and adjusting its guesses until it comes out right.

The boundary conditions imposed at the HARDEnd are in DeltaE’s TARGET vector. The
unknown conditions at the BEGINning, which DeltaE is supposed to find, are in DeltaE’s
GUESS vector. The number of elements in the TARGET vector must equal the number of
elements in the GUESS vector; otherwise the system is over- or under-determined.

One of DeltaE’s most powerful features is that the elements of the GUESS vector are not
limited to the conventional choices consisting of real and imaginary parts of p1 and U1 at
the BEGINning. Any variables that have an effect on the TARGET variables can be used. This
enables DeltaE to calculate resonance frequencies, geometrical dimensions, temperatures,
or even concentration in binary gas mixtures in order to satisfy given boundary conditions.

To add thermoacoustic computation ability to this linear acoustic picture, only one more
equation is required, i.e., that for the temperature Tm(x). As for p1(x) and U1(x), the
equation for Tm(x) depends on the type of segment, and continuity of Tm(x) is imposed
at the junctions between segments. Most segments, such as ducts and cones, obey simply
dTm/dx = 0. Stacks have a more complicated, but still only first-order, differential equation
for Tm(x), Rott’s energy equation:

Ḣ2 =
1

2
<
"
p1Ũ1

Ã
1− fκ − f̃ν

(1 + �s)(1 + σ)(1− f̃ν)

!#

+
ρmcp|U1|2

2Afluidω(1− σ)|1− fν|2
dTm
dx
=
"
f̃ν +

(fκ − f̃ν)(1 + �sfν/fκ)

(1 + �s)(1 + σ)

#
− (AfluidK +AsolidKs)

dTm
dx

(III.6)

So, for thermoacoustic calculations, DeltaE integrates from BEGINning to HARDEnd, with
respect to five real variables: real Tm(x), complex p1(x), and complex U1(x). It uses the ap-
propriate wave equation and temperature equation for each segment. Within each segment,
wave propagation is controlled by local parameters, such as area and perimeter, and by
global parameters, such as frequency and mean pressure. Spatial evolution of temperature
profile is also controlled by such local parameters, which include energy flow. (Energy flow
includes both longitudinal conduction in the solid elements of an element, and enthalpy flow.
Energy flow is a conceptually difficult parameter because it depends on the heat flows into
adjacent heat exchangers and on acoustic power flowing along the apparatus. It is there-
fore like the frequency in a resonant system, in that it is a parameter that controls wave
propagation in a segment but whose value is determined elsewhere.)
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Figure III.1: Five-inch engine.

B. The 5-Inch Engine

The 5-inch engine is described in detail in [4]. The device described there is used to illustrate
the fully thermoacoustic capabilities of DeltaE here; we reproduce some of the figures in
that paper.

The apparatus is shown in Fig. III.1. Beginning with the input file (5inch.in, in the
examples directory) to illustrate stack and heat exchanger segment types:

TITLE Five-Inch Thermoacoustic Engine

BEGIN Initial
13.8e5 (Pa) mean pressure
100. (Hz) freq
500. Starting Temp
8.e4 Mag(Pa) acoustic pressure @x=0
0. Phase (deg) acoustic pressure @x=0
0. Mag(vdot) vol. veloc @x=0
0. Phase (deg) vol. veloc @x=0
helium gas type

ENDCAP Hot End
0.01292 (m^2) area
sameas 0 gas type

DUCT Hot Duct
sameas 1 (m^2) total area
0.403 (m) perim
0.279 (m) length
sameas 0 gas type

HX Hot HX
sameas 1 (m^2) total area
0.393 gas area/total area
0.060 (m) length
0.483e-3 (m) y0 (this is half the gap)
2210.20 (W) heat
550. (K) temperature
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sameas 0 gas type

STKCIRC Honeycomb Stack
sameas 1 (m^2) total area
0.81 gas area/total area
0.279 (m) length
0.50e-3 (m) radius of each ’circular’ pore
0.05e-3 (m) L:half of sht thcknss
sameas 0 gas type
stainless stack material

HX Cold HX
0.01267 (m^2) total area
0.486 gas area/total area
0.0508 (m) length
0.406e-3 (m) y0
0.0 (W) heat
303. (K) temperature
sameas 0 gas type

DUCT Cold Duct
sameas 5 (m^2) total area
0.399 (m) perim
3.654 (m) length
sameas 0 gas type

ENDCAP Cold End
sameas 5 (m^2) area
sameas 0 gas type

HARDEND
0. Re(zinv)
0. Re(zinv)
sameas 0 gas type

HX’s are assumed to have parallel-plate geometry, with plate spacing 2yo. Other geometry
is given in straightforward format. Wave propagation through heat exchangers is computed
using a complex wavevector including both viscous and thermal dissipation in this geometry.

One additional feature of HX’s is heat flow into the thermoacoustic system from an
external heat source or out of the thermoacoustic system to an external heat sink. Positive
heat flows into the apparatus. Generally, the heat flow determines the change in energy flux
in the heat exchanger. Thus, heat flow can either be fixed (and optionally, an independent
plot variable) or it can be a member of the guess vector. Here, this example will use the hot
heat exchanger’s heat flow as the independent plot variable and the cold heat exchanger’s
heat flow as a simple guessed result that will be largely ignored here.

A second additional feature of the HX’s is the temperature difference between the mean-
gas temperature and the heat exchanger metal temperature, proportional to the heat flow.
Its dependence on the geometry of the heat exchanger is given in Chapter VI. [This tem-
perature difference can presently be computed only within an accuracy of about a factor of
2, even in the acoustic approximation; nevertheless, it is included, to prevent naive users
from being led to designs with heat exchangers of negligible surface area that have negligible
losses and that would appear to have no disadvantages if the temperature difference were
not included. We hope that future revisions of DeltaE will have an accurate calculation
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algorithm for this effect. Meanwhile, however, if you prefer not to use this feature, use the
gas mean temperature instead of the metal temperature by using a RPNTArget (see Section
VI A) to access the temperature in the adjacent stack segment (parameter G or H).] Metal
temperature can be a target or a result. In this example, the cold heat exchanger’s temper-
ature is used as a target and the hot heat exchanger’s temperature is used as a result and
plotted.

Seven types of stacks are allowed: STKSLab for parallel-plate geometry, STKCIrc for
circular pores, STKREct for rectangular and square pores, STKPIns for pin-array stacks, and
STKDUcts for boundary-layer-approximation stacks (with all dimensions much greater than
thermal and viscous penetration depths). STKSCreen and STKPOwerlaw for regenerators for
Stirling systems will be introduced in Chapter IV. The geometry for each type is given in
Chapter VI. Evolutions of Tm, p1, and U1 are computed as described in Refs. [1], [2], [19],
[20].

You can execute DeltaE using the input file above and use (C)lear|set to ask for
default targets:

No vectors defined...do you want enable a default
set of targets&guesses for this model? (y/n) y

Examining the vector summary, we find:

Iteration Vectors Summary:
GUESS 0b 0c 5e
name BEGIN:Freq. BEGIN:T-beg HX:HeatI
value 1.00E+02 5.00E+02 0.000
units Hz K W
TARGET 3f 5f 8a 8b
name HX:Est-T HX:Est-T HARDE:R(1/z HARDE:I(1/z
units K K
value 550.0 303.0 .00 .00

Potential TARGETS still available are:
Addr Seg:Par-Type Current Value

DeltaE has made plausible default choices for guess and target vector elements, but
they are not exactly what we want. Using (c)lear and (u)se, we change the table to

Iteration Vectors Summary:
GUESS 0b 0c 0d
name BEGIN:Freq. BEGIN:T-beg BEGIN:|p|
value 1.00E+02 5.00E+02 8.00E+04
units Hz K Pa
TARGET 5f 8a 8b
name HX:Est-T HARDE:R(1/z HARDE:I(1/z
units K
value 303.0 .00 .00

Potential TARGETS still available are:
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Addr Seg:Par-Type Current Value
3f HX :Est-T = 550.0 K

which will give us a three-dimensional search, with end impedance and cold heat-exchanger
temperature as targets.

Other choices could be made for this table. For instance, the cold-duct length could
be substituted for the frequency in the guess vector. A fourth component, such as the hot
heat-exchanger temperature 3f could be added to the target vector and, simultaneously, the
hot heat-exchanger heat 3e could be added to the guess vector. For now, however, these
vectors will be left as they are, since they reflect the point of view adopted in Ref. [4].

If you run this case, you will get the following .dat file:

-= Five-Inch Thermoacoustic Engine =-
frequency= 121.023Hz mean pressure= 1.380E+06Pa
T(K) Real and Imag p1(Pa) Re & Im U1(m^3/s) Hdot(W) Edot(W)
557.7 73450. 0.0 0.00000 0.00000 0.00 0.00

!------------------------------------ 1 ------------------------------------
ENDCAP Hot End
Heat extracted: 1.22 Watts
557.7 73450. 0.0 -0.00003 0.00000 -1.22 -1.22

!------------------------------------ 2 ------------------------------------
DUCT Hot Duct
Duct wavvec =( 0.549 , -2.010E-03) m^-1
Heat extracted: 10.5 Watts
557.7 72589. 6.9 -0.00032 -0.08748 -11.76 -11.76

!------------------------------------ 3 ------------------------------------
HX Hot HX
Heat exch wavvec =( 0.669 , -0.194 ) m^-1
Heat = 2210.200 (W) metal temp= 563.295 Kelvin
557.7 71424. 482.4 -0.00202 -0.09651 2198.44 -95.37

!------------------------------------ 4 ------------------------------------
STKCIRC Honey Stack
306.4 65548. 3147.5 0.01282 -0.15903 2198.44 169.94

!------------------------------------ 5 ------------------------------------
HX Cold HX
Heat exch wavvec =( 0.858 , -0.162 ) m^-1
Heat = -2113.895 (W) metal temp= 303.000 Kelvin
306.4 62913. 3568.5 0.01215 -0.16675 84.55 84.55

!------------------------------------ 6 ------------------------------------
DUCT Cold Duct
Duct wavvec =( 0.740 , -1.647E-03) m^-1
Heat extracted: 83.9 Watts
306.4 -69442. -4136.6 -0.00002 0.00000 0.64 0.64

!------------------------------------ 7 ------------------------------------
ENDCAP Cold End
Heat extracted: 0.642 Watts
306.4 -69442. -4136.6 0.00000 0.00000 0.00 0.00

!------------------------------------ 8 ------------------------------------
HARDEND
inverse impedance (rho a U/p A)=( -3.410E-12, 2.163E-10)

306.4 -69442. -4136.6 0.00000 0.00000 0.00 0.00

This run will also produce the following .out file:
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TITLE Five-Inch Thermoacoustic Engine
!--------------------------------- 0 ---------------------------------
BEGIN Initial
1.3800E+06 a Mean P Pa 121.0 A Freq. G( 0b) P
121.0 b Freq. Hz G 557.7 B T-beg G( 0c) P
557.7 c T-beg K G 7.3450E+04 C |p|@0 G( 0d) P
7.3450E+04 d |p|@0 Pa G
0.0000 e Ph(p)0 deg
0.0000 f |U|@0 m^3/s
0.0000 g Ph(U)0 deg
helium Gas type
ideal Solid type
!--------------------------------- 1 ---------------------------------
ENDCAP Hot End
1.2920E-02 a Area m^2 7.3450E+04 A |p| Pa

0.0000 B Ph(p) deg
3.3241E-05 C |U| m^3/s
180.0 D Ph(U) deg
-1.221 E Hdot W

sameas 0 Gas type -1.221 F Edot W
ideal Solid type -1.221 G HeatIn W
!--------------------------------- 2 ---------------------------------
DUCT Hot Duct
sameas 1a a Area m^2 7.2589E+04 A |p| Pa
0.4030 b Perim m 5.4761E-03 B Ph(p) deg
0.2790 c Length m 8.7480E-02 C |U| m^3/s

-90.21 D Ph(U) deg
-11.76 E Hdot W

sameas 0 Gas type -11.76 F Edot W
ideal Solid type -10.54 G HeatIn W
!--------------------------------- 3 ---------------------------------
HX Hot HX
sameas 1a a Area m^2 7.1425E+04 A |p| Pa
0.3930 b GasA/A 0.3869 B Ph(p) deg
6.0000E-02 c Length m 9.6528E-02 C |U| m^3/s
4.8300E-04 d y0 m -91.20 D Ph(U) deg
2210. e HeatIn W 2198. E Hdot W
550.0 f Est-T K (t) -95.37 F Edot W

sameas 0 Gas type 2210. G Heat W
ideal Solid type 563.3 H MetalT K
!--------------------------------- 4 ---------------------------------
STKCIRC Honey Stack
sameas 1a a Area m^2 6.5624E+04 A |p| Pa
0.8100 b GasA/A 2.749 B Ph(p) deg
0.2790 c Length m 0.1595 C |U| m^3/s
5.0000E-04 d radius m -85.39 D Ph(U) deg
5.0000E-05 e Lplate m 2198. E Hdot W

169.9 F Edot W
557.7 G T-beg K

helium Gas type 306.4 H T-end K
stainless Solid type 265.3 I StkEdt W
!--------------------------------- 5 ---------------------------------
HX Cold HX
1.2670E-02 a Area m^2 6.3014E+04 A |p| Pa
0.4860 b GasA/A 3.246 B Ph(p) deg
5.0800E-02 c Length m 0.1672 C |U| m^3/s
4.0600E-04 d y0 m -85.83 D Ph(U) deg
0.0000 e HeatIn W 84.55 E Hdot W
303.0 f Est-T K = 5H? 84.55 F Edot W

helium Gas type -2114. G Heat W
ideal Solid type 303.0 H MetalT K
!--------------------------------- 6 ---------------------------------
DUCT Cold Duct
sameas 5a a Area m^2 6.9565E+04 A |p| Pa
0.3990 b Perim m -176.6 B Ph(p) deg
3.654 c Length m 1.8467E-05 C |U| m^3/s
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-176.6 D Ph(U) deg
0.6423 E Hdot W

helium Gas type 0.6423 F Edot W
ideal Solid type -83.90 G HeatIn W
!--------------------------------- 7 ---------------------------------
ENDCAP Cold End
sameas 5a a Area m^2 6.9565E+04 A |p| Pa

-176.6 B Ph(p) deg
8.5383E-11 C |U| m^3/s
-85.69 D Ph(U) deg
-4.6811E-08 E Hdot W

helium Gas type -4.6811E-08 F Edot W
ideal Solid type -0.6423 G HeatIn W
!--------------------------------- 8 ---------------------------------
HARDEND
0.0000 a R(1/z) = 8G? 6.9565E+04 A |p| Pa
0.0000 b I(1/z) = 8H? -176.6 B Ph(p) deg

8.5383E-11 C |U| m^3/s
-85.69 D Ph(U) deg
-4.6811E-08 E Hdot W
-4.6811E-08 F Edot W
-3.4102E-12 G R(1/z)

helium Gas type 2.1633E-10 H I(1/z)
ideal Solid type 306.4 I T K

! The restart information below was generated by a previous run
! You may wish to delete this information before starting a run
! where you will (interactively) specify a different iteration
! mode. Edit this data only if you really know your model!
INVARS 3 0 2 0 3 0 4
TARGS 3 5 6 8 1 8 2
SPECIALS 0

The .dat file is a segment-by-segment listing of results of the run. The three members of
the guess vector (f , Tbegin, and |p1|begin), which we had guessed would be near 100 Hz, 500
Kelvin, and 80,000 Pa, have turned out to be 121.020 Hz, 557.6 Kelvin, and 73,419 Pa; these
values appear in the first few lines of 5inch.dat. Temperature; real and imaginary pressure
and volume flow rate; energy flow; and acoustic power flow are listed at each transition
between segments. Be sure the complex volume flow rate at HARDEnd is zero, as required by
two members of the target vector.

Some segments have additional information listed in the .dat file. Ducts and heat
exchangers list wavevector (mostly real in the wide-open ducts; with large imaginary com-
ponents in the much more lossy heat exchangers). Heat exchangers also list heat flow and
metal temperature. Note that the metal is hotter than the gas in the hot heat exchanger,
where the (positive) heat flows from metal to gas, and that the metal is cooler than the gas
in the cold heat exchanger, where the (negative) heat flow is from gas to metal. Note also
that DeltaE successfully hit the target metal temperature of 303 Kelvin in the cold heat
exchanger.

Now examine the energy (Hdot) and acoustic power (Edot) flow columns in 5inch.dat.
The hot endcap absorbs 1.2 W of acoustic power, and the hot duct absorbs 11.8 − 1.2 =
10.6 W of acoustic power. The minus signs on energy and acoustic power indicate energy
flows ‘up’ the apparatus, toward the BEGINning.
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The hot heat exchanger absorbs 95.4 − 11.8 = 83.6 W of acoustic power. Because
2210.2 W of heat are added through it, the energy flow must increase by that amount;
hence, the energy flow changes from −11.8 W to 2198.4 W in the hot heat exchanger.

The energy flow remains constant at 2198.4 W through the stack, which produces 169.9−
(−95.4) = 265.3W of acoustic power. Part of that power (95.4 W) flows up to supply work
to the hot parts of the engine; the rest (169.9 W) flows down to supply work to the cold
parts of the engine.

An examination of the cold heat exchanger listing parallels that of the hot heat exchanger,
and the cold duct and endcap parallel the hot ones.

Some of this information is also available in the .out file, where it appears in a format
that can be used as an input file for subsequent runs. The .out file is also a segment-
by-segment listing, with a restart table appended. In the segment-by segment listing, the
variables on the left are used in the input file. They include anything that can be used as a
guess or target. Anything that was used as guess or independent plot variable contains its
most recent value instead of the initial value supplied by the .in file. The variables on the
right can be used as dependent variables in plots and can be compared to targets. We will
encounter examples of each as we examine typical segments of this file.

The left portion of the BEGIN segment is in the .in-file format. Freq, T-beg, and |p| are
marked with “G” signifying their membership in the guess vector. They also appear in the
right column, marked with “P,” signifying their status as default dependent plot variables.
The right column of the BEGIN segment is a special case: it contains a copy of each guess
vector variable with the values that were used in DeltaE’s last iteration. To identify their
origin, the units for each of these ‘output’ variables are replaced by the address (e.g., “0b”)
that they were copied from. This occurs only in the BEGIN segment.

Now examine the cold heat-exchanger segment. Again, the left column is the familiar
input-file format. Est-T is marked “=5H?” to show that it is indeed a target variable, to be
compared to the computed MetalT variable that appears in the right column.

HARDEnd has two more examples of the markers that indicate target variables. There, the
target values are 0.0, and DeltaE’s solution has reached −3.4e− 12 and 2.2e− 10, which
it judges to be close enough to zero.

The restart table at the end is translated thus:

INVARS 3 0 2 0 3 0 4 means 3 variables: 0b, 0c, 0d

TARGS 3 5 6 8 1 8 2 means 3 variables: 5f, 8a, 8b

This is an encoded version of the same information that is indicated by the guess and target
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flags, explained above, and is visible in the vector status summary table. Here, DeltaE
would find this information automatically when using this .out file as a new input file.

To plot some results for this 5-inch engine case, execute DeltaE with this file again and
modify the Plot summary to be

Dependent Variables (outputs):
PLOTS 0A 0B 0C 3H 8A
name BEGIN:Freq. BEGIN:T-beg BEGIN:|p| HX:Metal HARDE:|p|
units Hz K Pa K Pa
Indpendent Variables (inputs):
Outer loop: 3e HX:HeatI Beg= 9.50E+02 End= 50. Step= -33.

Accomplishing this process required that we “plot another parameter” three times to add
3H and 8A to the dependent variable list and establish 3e as independent variable and set
its initial, final, and step values. (T-beg and |p| are of minor interest now, but could not
be deleted from the list of plot variables because members of the guess vector appear here
by default.)

Next, we modified mean pressure to be 19.2 bar, and ran the code. When completed, we
modified mean pressure to 13.8 bar, and ran it again, appending the new results to the .plt
file. Three more runs with mean pressures of 9.6, 6.9, and 5.2 bar completed the data set.
We exited from DeltaE, and checked to see that it has created the .des and .plt files:

HX:HeatI BEGIN:Freq. BEGIN:T-beg BEGIN:|p| HX:Metal HARDE:|p|
W Hz K Pa K Pa
3e 0A 0B 0C 3H 8A

950.0 120.6 562.7 5.9741E+04 566.2 5.6827E+04
916.7 120.5 562.6 5.8637E+04 566.1 5.5777E+04
883.4 120.5 562.6 5.7511E+04 566.0 5.4706E+04
850.1 120.5 562.5 5.6362E+04 565.9 5.3614E+04
816.8 120.5 562.5 5.5190E+04 565.7 5.2499E+04
.
.
.

We read this .plt file into a spreadsheet/graphics program for minimal massaging: convert
pressure amplitude at the cold end from Pascals to bar, and then square that number;
subtract 303 Kelvin from Th, and add the heat leak to the room to Qh. Plotting these
results then yields the curves shown in Fig. III.3, resembling Figs. 5, 6, and 7 in Ref. [4].
These curves differ slightly from those in the article, because of DeltaE’s inclusion of the
small gas-to-metal temperature differences in the heat exchangers.

More detailed comparison between DeltaE computations and measurements with this
apparatus can be found in [5].
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Figure III.2: 5-inch engine results. Lines are DeltaE results; points are from experimental data.
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Figure III.3: Hofler’s thermoacoustic refrigerator.

C. Hofler’s Thermoacoustic Refrigerator

Tom Hofler’s thermoacoustic refrigerator was described in detail in his Ph. D. thesis, Ref. [6].
The work was also summarized in Ref. [7]. We use this case to further illustrate capabilities
of DeltaE, generating curves similar to Figs. 16 and 17 in Ref. [6] (Figs. 5 and 6 in Ref.
[7]).

The apparatus is shown in Fig. III.3. We began with an input file (hofler.in, in the
examples directory) whose geometry is that of Hofler’s “long” apparatus:

TITLE Hofler’s 1986 thermoacoustic refrigerator

! Geometry comes from Hofler thesis, pages 28, 64, 68, 115, 130, 133.

BEGIN
1.0e6 Pa Mean P
500. Hz Freq.
300. K T-beg
3.0e4 Pa |p|@0
0.0 deg Ph(p)0
5.0e-4 m3/s |U|@0
0.000 deg Ph(U)0
helium Gas

ENDCAP driver end 1
1.134e-3 m2 Area
SAMEAS 0 Gas

DUCT room temp duct 2
SAMEAS 1 Area
0.119 m Perim
4.26e-2 m Length
SAMEAS 0 Gas

HX room temp heat exchanger 3
SAMEAS 1 Area
0.600 GasA/A
6.35e-3 m Length
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1.9e-4 m y0
-20.0 W HeatIn
300. K Est-T (I hope this was the experimental value.)
SAMEAS 0 Gas

STKSLAB Stack 4
SAMEAS 1 Area
0.724 GasA/A
7.85e-2 m Length
1.8e-4 m y0
4.0e-5 m Lplate
SAMEAS 0 Gas
kapton Solid

HX Cold heat exchanger 5
SAMEAS 1 Area
0.67 GasA/A
2.54e-3 m Length
2.55e-4 m y0
3.0 W Heatin
200. K Est-T
SAMEAS 0 Gas

DUCT Cold Duct 6
3.84e-4 m2 Area
0.0694 m Perim
0.167 m Length
SAMEAS 0 Gas

CONE 7
SAMEAS 6 Initial Area
SAMEAS 6 In Perim
6.68e-2 m Length
1.16e-3 m2 Final area
0.121 m Final perim
SAMEAS 0

COMPLIANCE end bulb 8
0.049 m2 Area
1.06e-3 m3 Volume
SAMEAS 0 Gas

HARDEND
0.000 R(1/z)
0.000 I(1/z)
SAMEAS 0 Gas type

Note the use of segment type STKSLab to model the parallel-plate stack geometry, and the use
of segment types CONE and COMPLiance to model parts of the cold portion of the resonator.

Executing DeltaE with this input file, we used (C)lear|set to ask for default targets,

No vectors defined...do you want enable a default
set of targets&guesses for this model? (y/n) y

and examine the vector status summary:

Iteration Vectors Summary:
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GUESS 0b 0c 5e
name BEGIN:Freq. BEGIN:T-beg HX:HeatI
units Hz K W
value 5.00E+02 3.00E+02 3.00
TARGET 3f 5f 9a 9b
name HX:Est-T HX:Est-T HARDE:R(1/z HARDE:I(1/z
units K K
value 300.0 200.0 0.000 0.000
result 0.000 0.000 0.000 0.000
Potential TARGETS still available:
Addr Seg:Par-Type Current Value

Again, we are not fully satisfied with DeltaE’s default choice of elements of this table. We
add the driver’s volume flow rate as a guess, to ensure that enough acoustic power is supplied
to the system. And we remove the cold heat load as a guess and the cold temperature as a
target. After making the necessary changes, the vector summary looks like

Iteration Vectors Summary:
GUESS 0b 0c 0f
name BEGIN:Freq. BEGIN:T-beg BEGIN:|U|
units Hz K m^3/s
value 5.00E+02 3.00E+02 5.00E-04
TARGET 3f 9a 9b
name HX:Est-T HARDE:R(1/z HARDE:I(1/z
units K
value 3.00E+02 .00 .00

Potential TARGETS still available are:
Addr Seg:Par-Type Current Value
5f HXLAST:Est-T = 200.0 K

Running this case produced the following .dat file:

-= Hofler’s 1986 thermoacoustic refrigerator =-
frequency= 499.183Hz mean pressure= 1.000E+06Pa

T(K) Real and Imag p1(Pa) Re & Im U1(m^3/s) Hdot(W) Edot(W)
300.7 30000. 0.0 0.00051 0.00000 7.66 7.66

!------------------------------------ 1 ------------------------------------
ENDCAP Driver end 1
Heat extracted: 3.464E-02 Watts
300.7 30000. 0.0 0.00051 0.00000 7.62 7.62

!------------------------------------ 2 ------------------------------------
DUCT Room temp duct
Duct wavvec =( 3.09 , -1.301E-02) m^-1
Heat extracted: 0.153 Watts
300.7 29740. -93.8 0.00049 -0.00273 7.47 7.47

!------------------------------------ 3 ------------------------------------
HX Room temp duct heat
Heat exch wavvec =( 3.67 , -0.890 ) m^-1
Heat = -9.640 (W) metal temp= 300.000 Kelvin
300.7 29573. -69.3 0.00044 -0.00302 -2.17 6.66

!------------------------------------ 4 ------------------------------------
STKSLAB Stack 4
218.6 26127. 640.8 0.00025 -0.00678 -2.17 1.05

!------------------------------------ 5 ------------------------------------
HX Cold HX
Heat exch wavvec =( 4.03 , -0.505 ) m^-1
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Heat = 3.000 (W) metal temp= 218.857 Kelvin
218.6 25948. 662.0 0.00024 -0.00689 0.83 0.83

!------------------------------------ 6 ------------------------------------
DUCT Cold Duct 6
Duct wavvec =( 3.63 , -2.005E-02) m^-1
Heat extracted: 0.678 Watts
218.6 1754. 21.0 0.00027 -0.00862 0.15 0.15

!------------------------------------ 7 ------------------------------------
CONE 7
Heat extracted: 0.127 Watts
218.6 -4216. -138.7 0.00027 -0.00841 0.02 0.02

!------------------------------------ 8 ------------------------------------
COMPLIAN End Bulb 8
Heat extracted: 2.251E-02 Watts
218.6 -4216. -138.7 0.00000 0.00000 0.00 0.00

!------------------------------------ 9 ------------------------------------
HARDEND 9
inverse impedance (rho a U/p A)=( 3.213E-10, 1.141E-09)
218.6 -4216. -138.7 0.00000 0.00000 0.00 0.00

Close examination of this result for reasonableness reveals a problem: The stack is pump-
ing 2.2 W of energy uphill, but 3.0 W of heat is being removed from the cold heat exchanger!
How can this be? The problem is in our use of DUCT and CONE in the cold portion of the
apparatus. In the default “isothermal” mode we have used thus far in the User’s Guide,
DeltaE assumes that these segments are held isothermal by external means. In this case,
in the duct, cone, and compliance, where 0.83 W of acoustic power is dissipated into heat,
some external means removes that heat. In Hofler’s experiment, of course, no such “external
means” existed; a good thermal connection between these parts and the cold heat exchanger
caused this heat to appear as a load on the cold heat exchanger.

There are three methods to deal with this problem, i.e., to account for the fact that heat
dissipated in these segments must show up in the cold heat exchanger. The first is to simply
subtract the 0.83 W from the 3 W when we want to know the “actual” net refrigeration
power available at the cold heat exchanger. This is not very elegant. The second is to
use the insulated segment types INSDUct and INSC0ne instead of DUCT and CONE. However,
these segments do not work well in all circumstances and, beginning with DeltaE Version
5.0, we are discouraging their use. The third, and preferred, method is to enable DeltaE’s
“insulated” mode of operation, which is a new feature beginning with Version 5.0.

In the “conduction” mode that has been used in the User’s Guide until now, ducts, cones,
and similar segments can reject heat to environment, as necessary, as if a water jacket or air
cooler or other external means can conduct heat away to a thermal reservoir at the segment’s
local temperature. [Note, for example, that Ḣ2 changes from the beginning to the end of
all duct segments, and Ḣ2 = Ė2 at end of all duct segments, in the planewave-resonator
example of Chapter II and the 5-inch engine example of the present chapter.]

In the “insulated” mode, ducts, cones, and similar segments are laterally thermally in-
sulated, just like stacks, so that Ḣ2 at the end of the segment must be the same as at the
beginning of the segment. This mode corresponds to the usual experimental state of affairs,
such as in Hofler’s refrigerator, where the heat created in a duct by dissipation of acoustic
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power must somehow find its way to a nearby heat exchanger.

To use the thermally insulated mode, insert segment INSULate somewhere before the
segments that you want to insulate. This will change the behavior of Ḣ2 in most subsequent
segments. To return to conduction mode later in the model, insert segment CONDUct.

So, to let DeltaE recognize the thermally insulated nature of the bottom end of Hofler’s
refrigerator, we insert INSULate just before the cold heat exchanger. We target the exiting
Ḣ2 in the HARDEND segment to be zero, so that no energy can flow out of the end of the
model. Corresponding to this target, we use the cold heat exchanger’s heat flow as a guess.
After making the necessary changes, the vector summary looks like

Iteration Vectors Summary:
GUESS 0b 0c 0f 6e
name BEGIN:Freq. BEGIN:T-beg BEGIN:|U| HX:HeatI
units Hz K m^3/s W
value 5.00E+02 3.00E+02 5.00E-04 3.000
TARGET 3f 9a 9b 10c
name HX:Est-T HARDE:R(1/z HARDE:I(1/z HARDE: Hdot
units K W
value 300.0 0.00 0.00 0.00

Running this case produced

-= Hofler’s 1986 thermoacoustic refrigerator =-
frequency= 499.183Hz mean pressure= 1.000E+06Pa

Tm (K) Re & Im p1 (Pa) Re & Im U1(m3/s) Hdot(W) Edot(W)
300.7 30000.0 0.0 0.00051 0.00000 7.66 7.66

!------------------------------------ 1 -------------------------------------
ENDCAP driver end 1
Heat extracted: 3.464E-02 Watts
300.7 30000.0 0.0 0.00051 0.00000 7.62 7.62

!------------------------------------ 2 -------------------------------------
DUCT room temp duct 2
Duct wavvec =( 3.09 , -1.308E-02) m^-1
Heat extracted: 0.155 Watts
300.7 29740.5 -93.9 0.00049 -0.00273 7.47 7.47

!------------------------------------ 3 -------------------------------------
HX room temp heat exchanger 3
Heat exch wavvec =( 3.67 , -0.890 ) m^-1
Heat = -9.640 (W) metal temp= 300.000 Kelvin
300.7 29573.0 -69.4 0.00044 -0.00302 -2.17 6.66

!------------------------------------ 4 -------------------------------------
STKSLAB Stack 4

218.6 26127.4 640.8 0.00025 -0.00678 -2.17 1.05
!------------------------------------ 5 -------------------------------------
INSUL insulate the tail

218.6 26127.4 640.8 0.00025 -0.00678 -2.17 1.05
!------------------------------------ 6 ------------ ++ therm insul mode ++
HX Cold heat exchanger 5
Heat exch wavvec =( 4.03 , -0.505 ) m^-1
Heat = 2.171 (W) metal temp= 218.771 Kelvin
218.6 25948.4 661.9 0.00024 -0.00689 0.00 0.83

!------------------------------------ 7 ------------ ++ therm insul mode ++
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DUCT Cold Duct 6
Duct wavvec =( 3.63 , -2.019E-02) m^-1
218.6 1754.3 20.9 0.00027 -0.00862 0.00 0.15

!------------------------------------ 8 ------------ ++ therm insul mode ++
CONE 7

218.6 -4215.9 -138.6 0.00027 -0.00841 0.00 0.02
!------------------------------------ 9 ------------ ++ therm insul mode ++
COMPLIANCEend bulb 8

218.6 -4215.9 -138.6 0.00000 0.00000 0.00 0.00
!------------------------------------ 10 ------------ ++ therm insul mode ++
HARDEND 9
inverse impedance (rho a U/p A)=( -1.232E-17, 1.452E-16)

218.6 -4215.9 -138.6 0.00000 0.00000 0.00 0.00

Thus, the acoustic power dissipated in the cold portion showed up automatically in the cold
heat exchanger.

To generate plots for comparison to Hofler’s data, we return to conduction mode, by
eliminating the INSULATE segment, because Hofler added the dissipation in these components
to his applied heat load for plotting. We let the heat at the cold heat exchanger be the
independent variable, ranging from 2 to 8 W in 0.5 W steps. To plot the temperature ratio
and the coefficient of performance (COP) relative to Carnot’s COP, we include acoustic
power at segment 1, Tc, and Th in the list of plotted variables:

Dependent Variables (outputs):
PLOTS 0A 0B 0C 0D 1F 3H 5H
name BEGIN:Freq. BEGIN:T-beg BEGIN:|U|@0 BEGIN:HeatI ENDCA:Edot HX:Metal HX:
units Hz K m^3/s W W K K
Indpendent Variables (inputs):
Outer loop: 5e HXLAS:HeatI Beg= 2.0 End= 8.0 Step= 0.50

(The first three dependent variables listed are unclearable defaults that we ignore.) After
running this case, we changed |p1| to 0.015 of pm, changed the range of Qc to 0.7 to 3.7 W
in steps of 0.5 W, and ran it again. Exiting DeltaE, we found the following .des and .plt
files for the first case:

HXLAS:HeatI BEGIN:Freq .BEGIN:T-beg BEGIN:|U|@0 ENDCA:Edot HXFRS:Metal
HXLAS:Metal

W Hz K m^3/s W K K
5e 0A 0B 0C 1F 3H 5H

2.000 493.1 300.6 4.7359E-04 7.069 300.0 212.9
2.500 496.2 300.6 4.9203E-04 7.346 300.0 215.9
3.000 499.2 300.7 5.1039E-04 7.321 300.0 218.9
3.500 502.1 300.7 5.2869E-04 7.896 300.0 221.8

.

.

.

Reading this file into spreadsheet/graphics software, and forming Tc/Th and COPR, yielded
the curves in Figs. III.4. These plots come reasonably close to the measurements presented
in Figs. 16 and 17 of Hofler’s thesis.
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Figure III.4: Hofler refrigerator results. Lines are DeltaE results; points are from experimental
data presented in Hofler’s thesis. Squares , p1 = 0.015pm. Circles, p1 = 0.03pm.
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Returning to insulated mode, we now use this example to introduce some more segment
types. We add a more realistic driver to the system, using VSPEAKer. We edit the input file,
adding VSPEAKer near the beginning. We deleted the ENDCAp segment that was near the
beginning because VSPEAker accounts for the oscillatory pressurization losses on its surface
area.

We also added a difference target using segment RPNTArget at the end. This feature will
be described more fully in Chapter V. The first line of an RPNTArget segment (line “a”) is the
target value. The second line (line “b”) is an instruction line expressing the desired algebraic
procedure in Reverse Polish Notation, the parenthesis-free algebra encoding technique used
by Hewlett-Packard calculators. Briefly, as numbers are encountered in the instruction line
they are pushed onto a stack, and as arithmetic operators such as + and − are encountered
they combine the previous numbers on the stack appropriately and put the result back on
the stack. In the present example, the RPN instruction line causes the difference between
results 1B and 1L to be calculated; the RPNTARget targeting feature allows this result to be
targeted to zero.

TITLE Hofler’s 1986 thermoacoustic refrigerator, w speaker
BEGIN 0
1.000E+06 a Mean P Pa
500. b Freq. Hz
300. c T-beg K
3.000E+04 d |p|@0 Pa
150.0 e Ph(p)0 deg
.000 f |U|@0 m^3/s
.000 g Ph(U)0 deg

helium Gas type
ideal Solid type

VSPEAKER 1
6.000E-04 a Area m^2
6.00 b R ohms
.000 c L H
8.00 d B x L T-m
5.000E-03 e M kg
.000 f K N/m
.000 g Rm N-s/m
20. h AplVol V

SAMEAS 0 Gas type
ideal Solid type

DUCT room temp duct 2
1.134E-03 a Area m^2
.119 b Perim m
4.260E-02 c Length m

SAMEAS 0 Gas type
ideal Solid type

HX room temp heat excha 3
SAMEAS 2a a Area m^2

.600 b GasA/A
6.350E-03 c Length m
1.900E-04 d y0 m
-10. e HeatIn W
300. f Est-T K

SAMEAS 0 Gas type
ideal Solid type
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STKSLAB Stack 4
SAMEAS 2a a Area m^2

.724 b GasA/A
7.850E-02 c Length m
1.800E-04 d y0 m
4.000E-05 e Lplate m

SAMEAS 0 Gas type
kapton Solid type

INSULATE

HX Cold heat exchanger
SAMEAS 2a a Area m^2

.670 b GasA/A
2.540E-03 c Length m
2.550E-04 d y0 m
2.19 e HeatIn W
200. f Est-T K

SAMEAS 0 Gas type
ideal Solid type

DUCT Cold duct
3.840E-04 a Area m^2
6.940E-02 b Perim m
.167 c Length m

SAMEAS 0 Gas type
ideal Solid type

CONE
SAMEAS 6a a AreaI m^2
SAMEAS 6b b PerimI m
6.680E-02 c Length m
1.160E-03 d AreaF m^2
.121 e PerimF m

SAMEAS 0 Gas type
ideal Solid type

COMPLIANCE end bulb
4.900E-02 a Area m^2
1.060E-03 b Volum m^3

SAMEAS 0 Gas type
ideal Solid type

HARDEND
.000 a R(1/z)
.000 b I(1/z)

SAMEAS 0 Gas type
ideal Solid type

RPNTARGET
.000 a Target

1B 1L -

The mass, resistance, and force constant for the speaker roughly reflect the values given in
Hofler’s thesis. We estimate it will take about 20 V to drive it.

We used the difference target RPNTArget segment to maintain resonance, by ensuring
that the phases of p1 and U1 are equal at the driver. We did this by forcing their difference,
computed by subtracting the values appearing as results 1B and 1L, to be zero, the value
given in line 10a. Examination of a VSPEAKer segment output
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VSPEAKER
6.0000E-04 a Area m^2 3.0000E+04 A |p| Pa
6.000 b R ohms 153.8 B Ph(p) deg
0.0000 c L H 5.0874E-04 C |U| m^3/s
8.000 d B x L T-m 153.8 D Ph(U) deg
5.0000E-03 e M kg 7.631 E Hdot W
0.0000 f K N/m 7.631 F Edot W
0.0000 g Rm N-s/m 31.17 G EdotIn W
22.63 h AplVol V G 22.63 H Volts V

2.800 I Amps V
-10.30 J Ph(Ze) deg
5.0996E-04 K |Ux| m^3/s

sameas 0 Gas type 153.8 L Ph(-Ux deg
ideal Solid type -23.54 M HeatIn W

shows us that lines 1B and 1L contain the necessary information.

Running DeltaE with this input file, we modified guesses and targets to arrive at

Iteration Vectors Summary:
GUESS 0b 0c 0e 1h 3e 6e
name BEGIN:Freq. BEGIN:T-beg BEGIN:Ph(p) VSPEA:AplVo HX:HeatI HX:HeatI
units Hz K deg V W W
value 5.00E+02 3.00E+02 150. 20. -10.0 2.00
TARGET 3f 6f 10a 10b 10c 11a
name HX:Est-T HX:Est-T HARDE:R(1/z HARDE:I(1/z HARDE:Hdot RPNTA:Tar
units K K
value 3.00E+02 218.89 0.00 0.00 0.00 0.00

This shows our six-dimensional search. It is the most complicated vector summary table
we have yet encountered, so we pause to discuss how we chose our vectors. We definitely
needed the three HARDEnd impedances in the target vector (there is no hole in the end of
the apparatus that would allow U1 or Ḣ2 to escape). Experimentally, we maintain the hot
heat exchanger at 300 Kelvin; but DeltaE computes that as a result of each integration
pass, so it must also be a target. We have chosen a point of view where we want to choose
the cold temperature to be 218.80 K and have DeltaE tell us the cooling power at that
temperature, but DeltaE computes Tc as a result of each integration and requires Qc as an
input for each integration, so we must use TC as a target and Qc as a guess. So far we have
discussed five targets and one guess, so we require at least four more guesses. Look first at
the BEGIN segment for candidate guesses. Clearly the beginning temperature should be a
guess: we need to guess beginning T to arrive at the first HX T correctly. Next, we must guess
the frequency to maintain resonance. But how is resonance determined experimentally? By
comparing the phases of p1 and U1 at the driver: hence, we added their difference = 0 as
a sixth target. We need the phase of p1 at the beginning to be a guess, since the phase of
everything is determined relative to that of the speaker voltage phase, which is fixed at 0◦.
The heat rejected in the first heat exchanger must be guessed because we don’t control it
experimentally yet it is required by DeltaE in each pass. By now we have six targets and
five guesses; we needed one more guess. Our guess could be |p1| at the beginning, which
would be an experimental result if we controlled the drive voltage. Instead, however, we let
the drive voltage be the guess because the experimenter used it to get |p1| to be 0.03 pm.
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Although most situations we encounter are not this confusing, choosing the vector mem-
bers is never easy for a complicated thermoacoustic system. To choose them wisely, there
is no substitute for careful thought about the system and what you want it to do. We
offer a few general guides for this careful thought process. It is helpful to think about what
variables are (or could be, in principle) experimentally controlled and what variables are
experimentally observed. These must be compared with the variables that DeltaE needs
as inputs during each integration pass through the system and those that DeltaE computes
as results during each integration pass.

Table III.1: Interpreting input and result variables: experimental viewpoint

Experimentally
Controlled Variable

Experimentally
a Result

Variable needed as
input for each pass
of DeltaE’s integra-
tion

simply fixed in
input file

guess

Variable computed
as result of each
pass of DeltaE’s
integration

target
simply a result
in output files

Table III.2: Interpreting input and result variables: design viewpoint.

Variable we want to
think of as fixed

Variable we want to
think of as a result

Variable needed as
input for each pass
of DeltaE’s integra-
tion

simply fixed in
input file

guess

Variable computed
as result of each pass
of DeltaE’s
integration

target
simply a result
in output files

Note that our definition of an experimental result is more general than usual. In the
Hofler refrigerator case, we considered the drive voltage an experimental result because it
is determined experimentally by the condition that the pressure amplitude have the desired
value. The viewpoint expressed in this Table III.1 is appropriate for comparison of DeltaE
and experimental data. In this case, geometrical parameters are simply fixed. Targets are
experimentally fixed or controlled variables that are results of a single pass of numerical inte-
gration, chosen from among Tm, p1, and U1 (everywhere but in BEGIN); current magnitudes
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and phases in VDUCERs and voltage magnitudes and phases in IDUCERs; etc. Guesses are
known or unknown experimental results chosen from among f , the magnitude and phase of
U1-BEGIN and p1-BEGIN, Tm-BEGIN, heats at heat exchangers, and the magnitude and phase
of voltage at VDUCERs, etc.

To understand which variables are candidate guesses and which are candidate targets,
you must know which are needed by DeltaE for each pass of its integration, and which are
computed by DeltaE during each pass. To achieve this understanding, there is no good
substitute for studying the summaries of the computation algorithms for each segment, as
discussed briefly at the beginning of this chapter and more fully in Chapter VI.

When designing hardware instead of analyzing it, a different viewpoint may be adopted.
In this case, many geometrical parameters are not yet fixed, but desired operating temper-
atures, powers, frequency, etc. have been chosen. Often, several geometrical parameters
are included as guesses, and more temperatures and other numerical results are included
as targets. Hence, another useful way to think about guesses and targets is represented by
Table III.2.

Now we return to our example. Running this case produces the following dat file:

-= Hofler’s 1986 thermoacoustic refrigerator =-
frequency= 499.302Hz mean pressure= 1.000E+06Pa

Tm (K) Re & Im p1 (Pa) Re & Im U1(m3/s) Hdot(W) Edot(W)
300.7 -26910.5 13259.8 0.00000 0.00000 0.00 0.00

!------------------------------------ 1 -------------------------------------
VSPEAKER the loudspeaker
( 22.6 , 0.000E+00) Volts,( 2.76 , 0.501 ) Amps
Heat extracted: I^2 R= 23.5 , u^2 Rm= 0.000E+00, B-Layer= 1.833E-02 Watts.
300.7 -26910.5 13259.8 -0.00046 0.00022 7.63 7.63

!------------------------------------ 2 -------------------------------------
DUCT room temp duct 2
Duct wavvec =( 3.09 , -1.308E-02) m^-1
Heat extracted: 0.155 Watts
300.7 -26636.1 13229.4 0.00076 0.00267 7.48 7.48

!------------------------------------ 3 -------------------------------------
HX room temp heat exchanger 3
Heat exch wavvec =( 3.67 , -0.890 ) m^-1
Heat = -9.670 (W) metal temp= 300.000 Kelvin
300.7 -26496.6 13133.4 0.00094 0.00290 -2.19 6.67

!------------------------------------ 4 -------------------------------------
STKSLAB Stack 4

218.7 -23719.3 10973.0 0.00278 0.00620 -2.19 1.06
!------------------------------------ 5 -------------------------------------
INSUL insulate the tail

218.7 -23719.3 10973.0 0.00278 0.00620 -2.19 1.06
!------------------------------------ 6 ------------ ++ therm insul mode ++
HX Cold heat exchanger 5
Heat exch wavvec =( 4.03 , -0.506 ) m^-1
Heat = 2.191 (W) metal temp= 218.888 Kelvin
218.7 -23568.0 10874.9 0.00283 0.00629 0.00 0.83

!------------------------------------ 7 ------------ ++ therm insul mode ++
DUCT Cold Duct 6
Duct wavvec =( 3.63 , -2.020E-02) m^-1
218.7 -1582.7 756.5 0.00357 0.00786 0.00 0.15

!------------------------------------ 8 ------------ ++ therm insul mode ++
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CONE 7
218.7 3843.1 -1739.1 0.00348 0.00766 0.00 0.02

!------------------------------------ 9 ------------ ++ therm insul mode ++
COMPLIANCEend bulb 8

218.7 3843.1 -1739.1 0.00000 0.00000 0.00 0.00
!------------------------------------ 10 ------------ ++ therm insul mode ++
HARDEND 9
inverse impedance (rho a U/p A)=( -6.143E-16, -2.581E-15)
218.7 3843.1 -1739.1 0.00000 0.00000 0.00 0.00

!------------------------------------ 11 ------------ ++ therm insul mode ++
RPNTARG difference, to keep phase in driver ok
RPN stack: = 0.0000 ,
Opstring= 1B 1L -

218.7 3843.1 -1739.1 0.00000 0.00000 0.00 0.00

This run also produces the following .out file:

TITLE Hofler’s 1986 thermoacoustic refrigerator
!--------------------------------- 0 ---------------------------------
BEGIN
1.0000E+06 a Mean P Pa 499.30 A Freq. G( 0b) P
499.30 b Freq. Hz G 300.67 B T-beg G( 0c) P
300.67 c T-beg K G 153.77 C Ph(p) G( 0e) P
3.0000E+04 d |p| Pa 22.634 D AplVol G( 1h) P
153.77 e Ph(p) deg G -9.6705 E HeatIn G( 3e) P
0.0000 f |U| m^3/s 2.1909 F HeatIn G( 6e) P
0.0000 g Ph(U) deg

helium Gas type
ideal Solid type
!--------------------------------- 1 ---------------------------------
VSPEAKER the loudspeaker
6.0000E-04 a Area m^2 3.0000E+04 A |p| Pa

6.0000 b R ohms 153.77 B Ph(p) deg
0.0000 c L H 5.0899E-04 C |U| m^3/s
8.0000 d B x L T-m 153.77 D Ph(U) deg

5.0000E-03 e M kg 7.6348 E Hdot W
0.0000 f K N/m 7.6348 F Edot W
0.0000 g Rm N-s/m 31.180 G WorkIn W
22.634 h AplVol V G 22.634 H Volts V

2.8004 I Amps A
-10.308 J Ph(Ze) deg
5.1021E-04 K |Ux| m^3/s

sameas 0 Gas type 153.77 L Ph(-Ux deg
ideal Solid type -23.546 M HeatIn W
!--------------------------------- 2 ---------------------------------
DUCT room temp duct 2
1.1340E-03 a Area m^2 2.9741E+04 A |p| Pa

0.1190 b Perim m 153.59 B Ph(p) deg
4.2600E-02 c Length m 2.7747E-03 C |U| m^3/s

74.032 D Ph(U) deg
7.4796 E Hdot W

sameas 0 Gas type 7.4796 F Edot W
ideal Solid type -0.1552 G HeatIn W
!--------------------------------- 3 ---------------------------------
HX room temp heat exchanger 3
1.1340E-03 a Area m^2 2.9573E+04 A |p| Pa

0.6000 b GasA/A 153.63 B Ph(p) deg
6.3500E-03 c Length m 3.0513E-03 C |U| m^3/s
1.9000E-04 d y0 m 72.138 D Ph(U) deg
-9.6705 e HeatIn W G -2.1909 E Hdot W
300.00 f Est-T K = 3H? 6.6718 F Edot W

sameas 0 Gas type -9.6705 G Heat W
ideal Solid type 300.00 H MetalT K
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!--------------------------------- 4 ---------------------------------
STKSLAB Stack 4
1.1340E-03 a Area m^2 2.6134E+04 A |p| Pa

0.7240 b GasA/A 155.17 B Ph(p) deg
7.8500E-02 c Length m 6.7911E-03 C |U| m^3/s
1.8000E-04 d y0 m 65.855 D Ph(U) deg
4.0000E-05 e Lplate m -2.1909 E Hdot W

1.0554 F Edot W
300.67 G T-beg K

sameas 0 Gas type 218.69 H T-end K
kapton Solid type -5.6164 I StkEdt W
!--------------------------------- 5 +++++++++ therm insul mode +++++++++
INSUL insulate the tail

2.6134E+04 A |p| Pa
155.17 B Ph(p) deg
6.7911E-03 C |U| m^3/s
65.855 D Ph(U) deg
-2.1909 E Hdot W
1.0554 F Edot W
0.0000 G HeatIn W

!--------------------------------- 6 +++++++++ therm insul mode +++++++++
HX Cold heat exchanger 5
1.1340E-03 a Area m^2 2.5956E+04 A |p| Pa

0.6700 b GasA/A 155.23 B Ph(p) deg
2.5400E-03 c Length m 6.8957E-03 C |U| m^3/s
2.5500E-04 d y0 m 65.761 D Ph(U) deg

2.1909 e HeatIn W G 7.2831E-14 E Hdot W
218.89 f Est-T K = 6H? 0.8292 F Edot W

sameas 0 Gas type 2.1909 G Heat W
ideal Solid type 218.89 H MetalT K
!--------------------------------- 7 +++++++++ therm insul mode +++++++++
DUCT Cold Duct 6
3.8400E-04 a Area m^2 1754.2 A |p| Pa
6.9400E-02 b Perim m 154.45 B Ph(p) deg

0.1670 c Length m 8.6296E-03 C |U| m^3/s
65.584 D Ph(U) deg

7.2831E-14 E Hdot W
sameas 0 Gas type 0.1494 F Edot W
ideal Solid type 0.0000 G HeatIn W
!--------------------------------- 8 +++++++++ therm insul mode +++++++++
CONE
sameas 7a a AreaI m^2 4218.3 A |p| Pa
sameas 7b b PerimI m -24.348 B Ph(p) deg
6.6800E-02 c Length m 8.4165E-03 C |U| m^3/s
1.1600E-03 d AreaF m^2 65.580 D Ph(U) deg

0.1210 e PerimF m 7.2831E-14 E Hdot W
sameas 0 Gas type 2.2523E-02 F Edot W
ideal Solid type 0.0000 G HeatIn W
!--------------------------------- 9 +++++++++ therm insul mode +++++++++
COMPLIANCE end bulb 8
4.9000E-02 a SurfAr m^2 4218.3 A |p| Pa
1.0600E-03 b Volum m^3 -24.348 B Ph(p) deg

2.8626E-16 C |U| m^3/s
-127.74 D Ph(U) deg
7.2831E-14 E Hdot W

sameas 0 Gas type -1.3982E-13 F Edot W
ideal Solid type 0.0000 G HeatIn W
!--------------------------------- 10 +++++++++ therm insul mode +++++++++
HARDEND

0.0000 a R(1/z) =10G? 4218.3 A |p| Pa
0.0000 b I(1/z) =10H? -24.348 B Ph(p) deg
0.0000 c Hdot W =10E? 2.8626E-16 C |U| m^3/s

-127.74 D Ph(U) deg
7.2831E-14 E Hdot W
-1.3982E-13 F Edot W
-6.1433E-16 G R(1/z)
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sameas 0 Gas type -2.5806E-15 H I(1/z)
ideal Solid type 218.69 I T K
!--------------------------------- 11 +++++++++ therm insul mode +++++++++
RPNTARG difference, to keep phase in driver ok

0.0000 a Target =11A? 0.0000 A RPNval
1B 1L -

! The restart information below was generated by a previous run
! You may wish to delete this information before starting a run
! where you will (interactively) specify a different iteration
! mode. Edit this table only if you really know your model!
INVARS 6 0 2 0 3 0 5 1 8 3 5 6 5
TARGS 6 3 6 6 6 10 1 10 2 10 3 11 1
SPECIALS 0

These acoustic and thermal results are the same as for without the speaker, except that
everything is shifted in phase by −26 degrees. This shift occurred because we had set the
phase of U1 at the driver, arbitrarily, at zero before, but now the phase of the speaker voltage
determines the zero of phase for the system, and the nonzero imaginary part of its mechanical
impedance causes a phase shift between the voltage and the flow rate. New results appear in
the VSPEAker segment; note for example that |I|2R/2 is the difference between the acoustic
power into the segment ( 1/2<(IṼ )) and the acoustic power out of it.

D. Further Thermoacoustic Features

In this section we list the commonly used thermoacoustic segment types. More details on
each, and a complete list, can be found in Chapter VI.

STKCIrc A stack with circular pores. We use this to model hexagonal honeycomb stacks.

STKSLab A stack with parallel-plate geometry.

STKREct A stack with rectangular (box) pore geometry.

STKPIns A stack comprised of an array of pins parallel to x.

STKDUct A stack with lateral dimensions much larger than δκ, computed in boundary-layer
approximation.

STKSCreen A screen regenerator for Stirling systems.

HX A parallel-plate heat exchanger.

TX Tube-array heat exchanger, with the thermoacoustic working fluid inside the tubes.

SX Stacked-screen heat exchangers, valid only for δκ greater than hydraulic radius.
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PX Power-law heat exchangers, with friction factor and heat-transfer coefficient characterized
by power laws in Reynolds number.

DUCT A duct, with hydraulic radius much greater than δκ.

CONE A cone.

E. Advanced Operations

These menu options are not necessary for operation of the code, but they offer substantial
conveniences for experienced users.

(I)nsert segment. DeltaE will prompt you for the correct number of parameters, giving
the parameter name and units. This function is not perfectly interactive. If you make
errors in typing in new parameter values, you will be left with a segment that is partly
the same as the previous occupant of this spot. You may be able to recover by using
the (m)odify value option in the main menu for numerical parameters. In the worst
case (a bad segment type, for example), you may have to (K)ill the mistyped segment
and start over again. (I)nsert before #segments+1 is permitted to add a segment
at the very end.

(K)ill segment. This option simply removes a segment from your model. It works on any
type of segment, and it does nothing intelligent with any lengths that are removed.

(R)estore vectors. Before beginning iterations during a (r)un operation, DeltaE saves
copies of the guess vector values. Whenever an unsuccessful run overwrites the guess
vector (leaving you and DeltaE hopelessly lost), you can use this option to restore all
the parameters that were changed to their starting point. Simply (R)estore, modify
some value(s), and try again. There are warnings about trying to use this option after
the vector table has been edited, which of course would make no sense.

If you do not respond ‘y’es to the prompt about vector restoration and you have one
or both plot loops enabled, you will be given an additional option:

Restore to state before last (B)egin or (r)un (y|n)? n
Restore from a recently plotted point? y

DeltaE will now proceed to display the .plt file one line at a time. After each line
this prompt appears:

Return to this state (y|n|Q)? y
Typing ‘y’ at this point causes the independent plot variable(s) and all members of the
guess vector to be returned to those values displayed in the file. Typing ‘n’ (or simply
<CR>) causes the next line to be displayed. ‘Q’ skips to the end of the file and makes
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no changes. No outputs are changed when this option is executed, so the model must
be (r)un again to update them; however, be sure to disable the outer plot loop first if
you want only one point. (Alternatively, you can change the step or endpoints of the
plot loop and start plotting again.)

This option only works on the current (open) plot file, and it is not useful until after
a run which has produced plot points.

(E)xtras The following model editing features are found under the (E)xtras submenu.
Some less commonly used options (described in the next chapter) are also in this menu:

(S)plit segment. This option automates the laborious process of splitting a duct
segment (or anything else that has a length) into two segments, each having half
of the original length, correcting the sameas and math segment references, and
correcting the iteration and plot vectors. [To partition the lengths unequally,
it is convenient to use (s)pecial modes editing after splitting, to link the
first length to the second, then (m)odify the first length, then clear (zero) the
parameter linking before using the length in the iteration or optimization vector,
if that is the intention.] All math segments, vectors, or sameas references to
the segment specified are incremented by one; that is, the identifying number of
the original segment is incremented by one, and the ‘clone’ segment is effectively
inserted before it.

(F)lip model. For the same reason that DeltaE is most useful in the first place
(i.e., because an adequate set of boundary conditions is almost never known
at the most convenient point to start calculations), the number of guesses and
targets can sometimes be reduced by starting the integration of a model from
what you previously considered the ‘bottom.’ Orifice pulse tube refrigerators (de-
scribed in Chapter IV), are a particularly good example because they ‘end’ with
a known impedance, but the ‘beginning’ driving impedance is less well known.
The (F)lip model operation automates switching back and forth between these
two approaches to a solution, sparing the user from an effort that is otherwise
tedious and very error prone. (F)lip reverses the order of every segment between
the BEGIN and the last HARDEND or SOFTEnd. Segments within TBRANches are left
in their original order, however. sameas, math segment and plot references are
all adjusted and an attempt is made to reform the guess and target vectors.

Additional menu options are described at the end of Chapter V.
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IV. Stirling Systems

Rott’s equations implemented in DeltaE are valid for any phase difference between oscil-
latory pressure and oscillatory velocity, and any degree of thermal contact in the “stack.”
Hence, DeltaE can be used to model Stirling thermodynamic systems, in which p1 and
U1 are substantially in phase, as well as thermoacoustic devices in which the phases p1
and U1 differ by nearly 90◦. The principal additional DeltaE segment needed is one for
stacked screen beds, because stacked screen regenerators are more common than parallel-
plate, circular, or rectangular pore regenerators. In our opinion, the principal shortcomings
of DeltaE for Stirling applications are DeltaE’s acoustic approximation (which leads to
reduced accuracy at high pressure amplitudes) and its inability to predict end effects and
streaming-driven convective heat transport in pulse tubes (a shortcoming shared by many
other design programs). Its main virtues are speed and easy integral modeling of some
auxiliary components such as ducts, dead volumes, and linear motors.

Harmonic analysis of Stirling systems is discussed by I. Urieli and D. M. Berchowitz in
Ref. [8] and by A. J. Organ in Ref. [9].

A. Principles of Computation–Stacked Screens

The full details of the stacked-screen computation method implemented in DeltaE are
described in Ref. [10]. As usual in DeltaE, for each pass through DeltaE’s integration we
adopt the point of view described at the beginning of Chapter III: We regard p1, U1, and
Tm as the dependent variables of interest. Given their values at one end, we can generate
p1(x), U1(x), and Tm(x) throughout the regenerator, using equations of the form

dp1/dx = F1(p1, U1, Tm, H2, geometry), (IV.1)

dU1/dx = F2(p1, U1, Tm,H2, geometry), (IV.2)

dTm/dx = F3(p1, U1, Tm,H2, geometry). (IV.3)

The exact forms of these equations are displayed in Chapter VI below. Because p1 and U1
are complex, Eqs. (IV.1)-(IV.3) actually represent 5 real first-order differential equations.
Equation (IV.1) is based largely on the screen friction factor data of Kays and London, Ref.
[11]. Equation (IV.2) is based on the continuity equation, and Eq. (IV.3) on the equation
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for time-averaged energy flux H2 through the regenerator; both of the latter use the screen
heat transfer coefficient data from Kays and London. The equations are not accurate for
hydraulic radius on the order of δκ or greater.

The segment type implementing this algorithm is called STKSCreen. The corresponding
heat exchanger, comprising stacked screens, is called SX, in which p1 and U1 are computed
using Eqs. (IV.1) and (IV.2), with dTm/dx = 0. As with the parallel-plate heat exchange
segments HX, an estimated gas-to-metal temperature difference, proportional to the heat
exchanger’s heat flow, is also incorporated.

B. Stirling Cryocooler

The sample file Stirling.out represents a simple 55 Hz, 2 MPa helium Stirling cry-
ocooler with stacked-screen regenerator and heat exchangers. This apparatus is illustrated
in Fig. IV.1. First, we examine Stirling.out:

TITLE Bare bones Stirling cryocooler
!--------------------------------- 0 ---------------------------------
BEGIN Initialize things 0
2.0000E+06 a Mean P Pa 300.14 A T-beg G( 0c) P
55.000 b Freq. Hz 2.8459E+05 B |p| G( 0d) P
300.14 c T-beg K G -43.119 C Ph(p) G( 0e) P
2.8459E+05 d |p| Pa G -35.833 D HeatIn G( 1e) P
-43.119 e Ph(p) deg G
3.6500E-04 f |U| m^3/s

0.0000 g Ph(U) deg
helium Gas type
ideal Solid type
!--------------------------------- 1 ---------------------------------
SX aftercooler 1
sameas 2a a Area m^2 2.8085E+05 A |p| Pa

0.6000 b VolPor -43.835 B Ph(p) deg
1.0000E-03 c Length m 3.6265E-04 C |U| m^3/s
sameas 2d d r_H m -0.3900 D Ph(U) deg
-35.833 e HeatIn W G 2.0777 E Hdot W
300.00 f Est-T K = 1H? 36.973 F Edot W

sameas 0 Gas type -35.833 G Heat W
copper Solid type 300.00 H MetalT K
!--------------------------------- 2 ---------------------------------
STKSC regenerator 2
1.1670E-04 a Area m^2 2.2845E+05 A |p| Pa

0.6860 b VolPor -53.178 B Ph(p) deg
5.0000E-02 c Length m 6.2225E-05 C |U| m^3/s
1.3900E-05 d r_H m -49.487 D Ph(U) deg

0.3000 e KsFrac 2.0777 E Hdot W
7.0928 F Edot W

300.14 G T-beg K
sameas 0 Gas type 79.960 H T-end K
stainless Solid type -29.880 I StkEdt W
!--------------------------------- 3 ---------------------------------
SX cold heat exch 3
sameas 2a a Area m^2 2.2804E+05 A |p| Pa

0.6000 b VolPor -53.184 B Ph(p) deg
1.0000E-03 c Length m 6.2000E-05 C |U| m^3/s
sameas 2d d r_H m -52.000 D Ph(U) deg
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Figure IV.1: The Stirling cryocooler.

0.0000 e HeatIn W 7.0677 E Hdot W
80.000 f Est-T K = 3H? 7.0677 F Edot W

sameas 0 Gas type 4.9900 G Heat W
copper Solid type 80.000 H MetalT K
!--------------------------------- 4 ---------------------------------
RPNTARG U sub 1 at cold end 4
6.2000E-05 a Target = 4A? 6.2000E-05 A RPNval
3C

!--------------------------------- 5 ---------------------------------
RPNTARG phase(U) at cold end 5
-52.000 a Target = 5A? -52.000 A RPNval
3D

! The restart information below was generated by a previous run
! You may wish to delete this information before starting a run
! where you will (interactively) specify a different iteration
! mode. Edit this table only if you really know your model!
INVARS 4 0 3 0 4 0 5 1 5
TARGS 4 1 6 3 6 4 1 5 1
SPECIALS 0

The real segments consist of a first heat exchanger, at 300 K, the regenerator, and a
second heat exchanger at 80 K. All three are stacked screens. The other segments–BEGIN
and the RPNTARGETs–simply define the boundary conditions.

We obtained the hydraulic radius rh and volumetric porosity φ for the screens by hand,
using expressions from Organ’s book:

φ = 1− πmd

4

q
1 + (md)2

rh =
d

4

φ

1− φ

where d is wire diameter and m is mesh number (i.e., number of wires per unit length). The
regenerator is a little over 1 cm in diameter and is 5 cm long. The heat exchangers are the
same diameter but only 1 mm long.

DeltaE estimates the temperature difference between the helium gas and the copper
screen wires in the heat exchangers, but it has no provision for estimating the temperature
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difference between the screen wires and the “housing” in which they are mounted (due to
the finite thermal conductance of the screen wires themselves). This is not a serious concern
for small machines, but should be checked by hand on a case-by-case basis.

Line e in the regenerator segment, “KsFrac,” is the fudge factor by which longitudinal
conduction through the regenerator is adjusted due to the spatially intermittent thermal
contact between adjacent screens and due to the conduction of the pressure-vessel wall.
Following Ref. [12], we often set KsFrac somewhere between 0.1 and 0.3.

Our point of view with respect to boundary conditions in this example is most easily
displayed by running DeltaE on this file and examining the vector summary

Iteration Vectors Summary:
GUESS 0c 0d 0e 1e
name BEGIN:T-beg BEGIN:|p| BEGIN:Ph(p) SX:HeatI
units K Pa deg W
value 3.00E+02 2.93E+05 -43. -37.
TARGET 1f 3f 4a 5a
name SX:Est-T SX:Est-T RPNT:Targe RPNT:Targe
units K K
value 3.00E+02 80. 6.20E-05 -52.
result .00 .00 .00 .00

and the BEGIN segment above. Here, we are considering the volume flow rates (both mag-
nitudes and phases) at the two ends to be given, as if we have in mind an “alpha” Stirling
machine, with two pistons determining the volumes of the compression and expansion spaces,
respectively. The volume flow rate at the hot end is set by lines f and g in the BEGIN segment.
The 0◦ phase of line 0g essentially determines the zero of phase for the entire system. The
volume flow rate 3.65×10−4 m3/s of line 0f, (together with the frequency set in line 0b),
implies a volumetric stroke of 2.1 cm3 peak-to-peak at the hot end. The RPNTARGETs at the
cold end ensure that DeltaE’s shooting method arrives there with the desired cold piston
stroke and phase. To arrive at these two targets, DeltaE adjusts two guesses: the pressure
amplitude and phase in the BEGIN segment (and hence throughout the cooler). We also
insist that the metal temperatures in the two heat exchangers be 300 K and 80 K; DeltaE
achieves these two targets by adjusting two more guesses: the heat extracted at the hot heat
exchanger, and the temperature in the BEGIN segment.

DeltaE predicts that, under these circumstances, the cooler will reject 36 W at the hot
heat exchanger and will have a cooling power of 5 W. This cooling power accounts for heat
conduction and enthalpy flow through the regenerator, but does not account for any heat
load imposed by frictional irreversibilities in the cold piston, nor any heat load imposed by
the regenerator case conduction unless it is included in KsFrac.

We now make or suggest a few simple modifications to this file to illustrate additional
features of DeltaE.

To discover what temperature the cooler would maintain with a heat load of 10 W
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instead of 5 W, we (c)lear 3f–the cold heat exchanger temperature–from the target list.
Instead, we (u)se 3e–the cooling power–as a target, and (m)odify it to 10 W. Running
DeltaE shows that under these circumstances the cold temperature will be 232 K. Using
3e as an independent plot variable running from 10 W to 2 W with steps of, say, 0.5 W, and
using 3H (cold metal temperature) as dependent plot variable will generate a table of cold
temperature (and other defaults) vs heat load:

gross cooling metal temp
power @ cold hx
SX:HeatI BEGIN:T-beg BEGIN:|p| BEGIN:Ph(p) SX:HeatI SX:Metal

W K Pa deg W K
3e 0A 0B 0C 0D 3H

10.00 300.1 4.3154E+05 -71.57 -24.00 232.0
9.500 300.1 4.1420E+05 -70.09 -24.73 212.4
9.000 300.1 3.9704E+05 -68.40 -25.56 193.6
8.500 300.1 3.8016E+05 -66.45 -26.48 175.7
8.000 300.1 3.6368E+05 -64.22 -27.51 158.8
7.500 300.1 3.4778E+05 -61.67 -28.66 142.9
7.000 300.1 3.3265E+05 -58.75 -29.91 128.1
6.500 300.1 3.1853E+05 -55.43 -31.28 114.4
6.000 300.1 3.0571E+05 -51.69 -32.76 101.9
5.500 300.1 2.9449E+05 -47.52 -34.35 90.41
5.000 300.1 2.8518E+05 -42.94 -36.03 79.98
4.500 300.2 2.7809E+05 -37.99 -37.79 70.53
4.000 300.2 2.7348E+05 -32.74 -39.63 61.99
3.500 300.2 2.7154E+05 -27.31 -41.54 54.28
3.000 300.2 2.7240E+05 -21.81 -43.51 47.32
2.500 300.2 2.7609E+05 -16.38 -45.54 41.02
2.000 300.2 2.8252E+05 -11.14 -47.62 35.32

Insertion of two ’SPEAker segments before the aftercooler and after the cold heat ex-
changer would model use of linear motors driving pistons there.

Finally, in the next chapter “Advanced Features” we will use TBRANCH and UNION to
change this model from an “alpha” Stirling machine to a “beta” or “gamma,” with one
power piston on the hot end and a displacer piston in parallel with the heat exchange
elements.

C. Pulse Tube Refrigerator

Changing a Stirling cryocooler into an orifice pulse tube refrigerator (OPTR) is a simple
matter of replacing the cold piston with a pulse tube, heat exchanger, orifice, and reservoir
volume in series. Figure IV.2 represents such a cooler. The sample file optr.in represents
a 300 Hz, 3 MPa helium orifice pulse tube refrigerator. After running DeltaE on optr.in,
we find the following .out and .dat files:

TITLE an early cooler design, not optimal
!--------------------------------- 0 ---------------------------------
BEGIN Start with 8% p osc
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Figure IV.2: An Orifice Pulse Tube Refrigerator (OPTR).

3.0000E+06 a Mean P Pa 300.10 A T-beg G( 0c) P
300.00 b Freq. Hz 7.1461E-03 B |U| G( 0f) P
300.10 c T-beg K G 50.447 C Ph(U) G( 0g) P
2.4000E+05 d |p| Pa -491.47 D HeatIn G( 1e) P

0.0000 e Ph(p) deg 5.4026 E HeatIn G( 3e) P
7.1461E-03 f |U| m^3/s G -60.005 F HeatIn G( 6e) P
50.447 g Ph(U) deg G

helium Gas type
ideal Solid type
!--------------------------------- 1 ---------------------------------
SX Aftercooler
1.0290E-03 a Area m^2 2.2897E+05 A |p| Pa

0.6900 b VolPor -3.5853 B Ph(p) deg
1.2500E-02 c Length m 6.0475E-03 C |U| m^3/s
6.4500E-05 d r_H m 44.215 D Ph(U) deg
-491.47 e HeatIn W G 54.602 E Hdot W
300.00 f Est-T K = 1H? 465.06 F Edot W

helium Gas type -491.47 G Heat W
copper Solid type 300.00 H MetalT K
!--------------------------------- 2 ---------------------------------
STKSCRN Regenerator
sameas 1a a Area m^2 1.6394E+05 A |p| Pa

0.7300 b VolPor -21.105 B Ph(p) deg
5.5000E-02 c Length m 1.3356E-03 C |U| m^3/s
2.4000E-05 d r_H m -24.425 D Ph(U) deg

0.3000 e KsFrac 54.602 E Hdot W
109.29 F Edot W
300.10 G T-beg K

helium Gas type 149.97 H T-end K
stainless Solid type -355.76 I StkEdt W
!--------------------------------- 3 ---------------------------------
SX Cold heat exchanger
sameas 4a a Area m^2 9.4430E+04 A |p| Pa

0.6900 b VolPor -19.397 B Ph(p) deg
2.0000E-03 c Length m 1.3349E-03 C |U| m^3/s
6.4500E-05 d r_H m -24.686 D Ph(U) deg

5.4026 e HeatIn W G 60.005 E Hdot W
150.00 f Est-T K = 3H? 62.761 F Edot W

helium Gas type 5.4026 G Heat W
copper Solid type 150.00 H MetalT K
!--------------------------------- 4 ---------------------------------
STKDU Pulse tube
5.6870E-05 a Area m^2 S=-2 9.8911E+04 A |p| Pa
2.6740E-02 b Perim m Fnc( 4a) -55.206 B Ph(p) deg

0.2000 c Length m 1.2941E-03 C |U| m^3/s
1.0000E-05 d WallA m^2 -42.669 D Ph(U) deg

60.005 E Hdot W
62.472 F Edot W
149.97 G T-beg K

helium Gas type 300.19 H T-end K
stainless Solid type -0.2886 I StkEdt W
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!--------------------------------- 5 +++++++++ therm insul mode +++++++++
INSULATE assume the impedance and compliance are thermally insulated

9.8911E+04 A |p| Pa
-55.206 B Ph(p) deg
1.2941E-03 C |U| m^3/s
-42.669 D Ph(U) deg
60.005 E Hdot W
62.472 F Edot W
0.0000 G HeatIn W

!--------------------------------- 6 +++++++++ therm insul mode +++++++++
SX Hot heat exchanger
sameas 4a a Area m^2 2.6246E+04 A |p| Pa

0.6900 b VolPor -103.37 B Ph(p) deg
5.0000E-03 c Length m 1.2907E-03 C |U| m^3/s
6.4500E-05 d r_H m -42.956 D Ph(U) deg
-60.005 e HeatIn W G 1.7588E-08 E Hdot W
300.00 f Est-T K = 6H? 8.3624 F Edot W

helium Gas type -60.005 G Heat W
copper Solid type 300.00 H MetalT K
!--------------------------------- 7 +++++++++ therm insul mode +++++++++
IMPEDANCE The orifice
1.0000E+07 a Re(Zs) Pa-s/m^3 2.2824E+04 A |p| Pa

0.0000 b Im(Zs) Pa-s/m^3 -132.83 B Ph(p) deg
1.2907E-03 C |U| m^3/s
-42.956 D Ph(U) deg
1.7588E-08 E Hdot W

sameas 0 Gas type 3.3401E-02 F Edot W
ideal Solid type -8.3290 G HeatIn W
!--------------------------------- 8 +++++++++ therm insul mode +++++++++
COMPLIANCE Reservoir volume
1.2680E-02 a SurfAr m^2 2.2824E+04 A |p| Pa
1.5000E-04 b Volum m^3 -132.83 B Ph(p) deg

3.4260E-10 C |U| m^3/s
-7.7865 D Ph(U) deg

1.7588E-08 E Hdot W
sameas 0 Gas type -2.2447E-06 F Edot W
ideal Solid type 0.0000 G HeatIn W
!--------------------------------- 9 +++++++++ therm insul mode +++++++++
HARDEND The end

0.0000 a R(1/z) = 9G? 2.2824E+04 A |p| Pa
0.0000 b I(1/z) = 9H? -132.83 B Ph(p) deg
0.0000 c Hdot W = 9E? 3.4260E-10 C |U| m^3/s

-7.7865 D Ph(U) deg
1.7588E-08 E Hdot W
-2.2447E-06 F Edot W
-3.3335E-09 G R(1/z)

helium Gas type 4.7538E-09 H I(1/z)
ideal Solid type 300.19 I T K

! The restart information below was generated by a previous run
! You may wish to delete this information before starting a run
! where you will (interactively) specify a different iteration
! mode. Edit this table only if you really know your model!
INVARS 6 0 3 0 6 0 7 1 5 3 5 6 5
TARGS 6 1 6 3 6 6 6 9 1 9 2 9 3
SPECIALS 2 4 -2 7 -5

-= an early cooler design, not optimal =-
frequency= 300.000Hz mean pressure= 3.000E+06Pa

Tm (K) Re & Im p1 (Pa) Re & Im U1(m3/s) Hdot(W) Edot(W)
300.1 240000.0 0.0 0.00455 0.00551 546.07 546.07

!------------------------------------ 1 -------------------------------------
SX Aftercooler
Heat = -491.469 (W) metal temp= 300.000 Kelvin
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300.1 228521.3 -14318.5 0.00433 0.00422 54.60 465.06
!------------------------------------ 2 -------------------------------------
STKSCRN Regenerator

150.0 152943.7 -59030.9 0.00122 -0.00055 54.60 109.29
!------------------------------------ 3 -------------------------------------
SX Cold heat exchanger
Heat = 5.403 (W) metal temp= 150.000 Kelvin
150.0 89070.2 -31361.3 0.00121 -0.00056 60.00 62.76

!------------------------------------ 4 -------------------------------------
STKDU Pulse tube

300.2 56442.0 -81226.7 0.00095 -0.00088 60.00 62.47
!------------------------------------ 5 -------------------------------------
INSULATE assume the impedance and compliance are thermally insulated

300.2 56442.0 -81226.7 0.00095 -0.00088 60.00 62.47
!------------------------------------ 6 ------------ ++ therm insul mode ++
SX Hot heat exchanger
Heat = -60.005 (W) metal temp= 300.000 Kelvin
300.2 -6069.1 -25534.5 0.00094 -0.00088 0.00 8.36

!------------------------------------ 7 ------------ ++ therm insul mode ++
IMPEDANCE The orifice
Imped. work = 8.33 Watts
300.2 -15515.1 -16739.5 0.00094 -0.00088 0.00 0.03

!------------------------------------ 8 ------------ ++ therm insul mode ++
COMPLIANCEReservoir volume

300.2 -15515.1 -16739.5 0.00000 0.00000 0.00 0.00
!------------------------------------ 9 ------------ ++ therm insul mode ++
HARDEND The end
inverse impedance (rho a U/p A)=( -3.334E-09, 4.754E-09)

300.2 -15515.1 -16739.5 0.00000 0.00000 0.00 0.00

The Stirling part of the system is modeled as a stacked-screen regenerator STKSCREEN
and two stacked-screen heat exchangers SX. We model the pulse tube itself as a STKDUCT,
using Rott’s wave equation and enthalpy flux equation in boundary-layer approximation,
because the tube diameter is À δκ. (We will discuss this approximation shortly.) The heat
exchanger at the hot end of the pulse tube is the HX. The orifice and reservoir volume are
easily modeled as a DeltaE IMPEDance and COMPLiance, respectively. Our use of zero for
the imaginary part of the IMPEDance reflects our intention that this orifice will truly be
resistive, with pressure drop in phase with mass flux.

For purposes of illustration here, we regard the geometry of the apparatus as given, and
will explore its performance. The vector summary indicates our point of view:

Iteration Vectors Summary:
GUESS 0c 0f 0g 1e 3e 6e
name BEGIN:T-beg BEGIN: |U| BEGIN:Ph(U) SX:HeatI SX:HeatI HX:HeatI
units K m^3/s deg W W W
value 300.10 7.1461E-03 50.477 -491.47 5.4025 -60.005
TARGET 1f 3f 5f 9a 9b 9c
name SX:Est-T SX:Est-T SX:Est-T HARDE:R(1/z HARDE:I(1/z HARDE:Hdot
units K K K W
value 3.00E+02 1.50E+02 3.00E+02 0.00 0.00 0.00

Three of the 5 targets fix the hot and cold temperatures at 300 K and 150 K. We leave the
amplitude of the oscillatory pressure at the BEGINning at 8% of mean pressure, and leave
the frequency fixed at 300 Hz. Hence, we are asking: What is the cooling power at 150 K,
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and how much input power, volumetric flow rate, etc. are required, for fixed frequency and
pressure amplitude? The result, given in the file listings above: 5.4 W of cooling power,
requiring 546 W of input power from the compressor.

Our choice of Re(Zs) = 1 × 107 for the orifice impedance above was random. To find
a better orifice setting, we can use Re(Zs) as an independent plot variable, letting it range
from 1× 107 to 1× 108. The cooling power peaks at 7.6 W for Re(Zs) = 4.7× 107.

As with most OPTRmodels we have worked with inDeltaE, this one is not particularly
“robust.” A change of a typical variable by 20% or 30% will likely cause DeltaE to get
hopelessly lost. Hence the steps we used in the plotting of Re(Zs) were small: 1× 106. Part
of the “‘fragility” of OPTR models (as compared to thermoacoustic models) in DeltaE is
due to the fact that small changes in variables near the BEGINning, such as p1, U1, and
the heat removed at the aftercooler, have a large effect on temperatures at the end of the
pulse tube. Some of the fragility is due to the fact that OPTR models typically have a
large number of guesses and targets. When you encounter a fragile DeltaE model, try to
reduce the number of guesses and targets as much as possible (particularly in initial design
explorations when you are more lost than DeltaE ) and, once you have a convergent model,
make only small changes in variables. Tighten up DeltaE’s convergence tolerance if you
have to use more than 5 guesses and 5 targets. To accomplish a large change in a variable,
use (p)lot to break it up into many small steps. A fast computer and frequent hard-disk
saving of satisfactory converged models will minimize frustration.

Examination of the pulse tube segment in the .dat file above shows a possible prob-
lem: The pulse tube figure of merit, which Radebaugh defines as Ḣ/Ẇ , is high: Ḣ/Ẇ '
60.0 W/62.5 W' 0.95. A more common experimental value of pulse tube figure of merit
is 0.7. DeltaE knows nothing about jet- or streaming-driven convection, and pulse-tube
experimentalists are only beginning to learn how to reliably avoid such convection. For a
discussion of streaming-driven convection, see Refs. [13] or [14], and [15].

To force DeltaE to accomodate a reduced pulse tube figure of merit, you can introduce
an RPNTARGET and an additional guess/target pair. The RPNTARGET instruction line can
compute the ratio of Ḣ2 to Ė2 in the pulse tube, and the target value in line “a” can be set
to something like 0.7. You can simulate the thermal loading of streaming-driven convection,
etc. by letting DeltaE guess an unphysically large value for the cross section of the pulse
tube metal wall (line 4d), which then conducts significant heat from hot to cold, allowing
DeltaE to meet its target of 0.7. We will not do so here.

We can improve the overall performance of this refrigerator by a simple means, similar
in principle to the second orifice of a double-inlet pulse tube refrigerator: adding a small
duct between the orifice and reservoir volume adds inertance to the impedance of the end
of the system; proper choice of the length/area of this duct can phase shift the mass flow
through the orifice significantly. This is entirely analogous to putting an inductor in series
with an RC circuit, and is well known in the pulse-tube community. Adding an inertance
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to our model, and adjusting its area/length and Re(Zs) of the orifice for maximum cooling
power brings the cooling power up to 11.8 W in the .out file below.

TITLE an early cooler design, not optimal
!--------------------------------- 0 ---------------------------------
BEGIN Start with 8% p osc
3.0000E+06 a Mean P Pa 300.10 A T-beg G( 0c) P
300.00 b Freq. Hz 7.1857E-03 B |U| G( 0f) P
300.10 c T-beg K G 52.308 C Ph(U) G( 0g) P
2.4000E+05 d |p| Pa -473.81 D HeatIn G( 1e) P

0.0000 e Ph(p) deg 11.820 E HeatIn G( 3e) P
7.1857E-03 f |U| m^3/s G -65.216 F HeatIn G( 6e) P
52.308 g Ph(U) deg G

helium Gas type
ideal Solid type
!--------------------------------- 1 ---------------------------------
SX Aftercooler
1.0290E-03 a Area m^2 2.2942E+05 A |p| Pa

0.6900 b VolPor -3.7072 B Ph(p) deg
1.2500E-02 c Length m 6.0644E-03 C |U| m^3/s
6.4500E-05 d r_H m 46.419 D Ph(U) deg
-473.81 e HeatIn W G 53.395 E Hdot W
300.00 f Est-T K = 1H? 445.98 F Edot W

helium Gas type -473.81 G Heat W
copper Solid type 300.00 H MetalT K
!--------------------------------- 2 ---------------------------------
STKSCRN Regenerator
sameas 1a a Area m^2 1.6913E+05 A |p| Pa

0.7300 b VolPor -21.847 B Ph(p) deg
5.5000E-02 c Length m 1.1990E-03 C |U| m^3/s
2.4000E-05 d r_H m -23.612 D Ph(U) deg

0.3000 e KsFrac 53.395 E Hdot W
101.34 F Edot W
300.10 G T-beg K

helium Gas type 149.92 H T-end K
stainless Solid type -344.63 I StkEdt W
!--------------------------------- 3 ---------------------------------
SX Cold heat exchanger
sameas 4a a Area m^2 1.1295E+05 A |p| Pa

0.6900 b VolPor -21.520 B Ph(p) deg
2.0000E-03 c Length m 1.1980E-03 C |U| m^3/s
6.4500E-05 d r_H m -23.928 D Ph(U) deg
11.820 e HeatIn W G 65.216 E Hdot W
150.00 f Est-T K = 3H? 67.600 F Edot W

helium Gas type 11.820 G Heat W
copper Solid type 150.00 H MetalT K
!--------------------------------- 4 ---------------------------------
STKDU Pulse tube
5.6870E-05 a Area m^2 S=-2 1.1299E+05 A |p| Pa
2.6740E-02 b Perim m Fnc( 4a) -48.674 B Ph(p) deg

0.2000 c Length m 1.1917E-03 C |U| m^3/s
1.0000E-05 d WallA m^2 -47.588 D Ph(U) deg

65.216 E Hdot W
67.318 F Edot W
149.92 G T-beg K

helium Gas type 300.21 H T-end K
stainless Solid type -0.2825 I StkEdt W
!--------------------------------- 5 +++++++++ therm insul mode +++++++++
INSULATE assume the orifice and compliance are insulated

1.1299E+05 A |p| Pa
-48.674 B Ph(p) deg
1.1917E-03 C |U| m^3/s
-47.588 D Ph(U) deg
65.216 E Hdot W
67.318 F Edot W
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0.0000 G HeatIn W
!--------------------------------- 6 +++++++++ therm insul mode +++++++++
SX Hot heat exchanger
sameas 4a a Area m^2 4.1777E+04 A |p| Pa

0.6900 b VolPor -52.215 B Ph(p) deg
5.0000E-03 c Length m 1.1904E-03 C |U| m^3/s
6.4500E-05 d r_H m -48.036 D Ph(U) deg
-65.216 e HeatIn W G -1.7318E-08 E Hdot W
300.00 f Est-T K = 6H? 24.799 F Edot W

helium Gas type -65.216 G Heat W
copper Solid type 300.00 H MetalT K
!--------------------------------- 7 +++++++++ therm insul mode +++++++++
IMPEDANCE The orifice
3.5000E+07 a Re(Zs) Pa-s/m^3 3044.3 A |p| Pa

0.0000 b Im(Zs) Pa-s/m^3 -137.98 B Ph(p) deg
1.1904E-03 C |U| m^3/s
-48.036 D Ph(U) deg

-1.7318E-08 E Hdot W
sameas 0 Gas type 1.7313E-03 F Edot W
ideal Solid type -24.797 G HeatIn W
!--------------------------------- 8 +++++++++ therm insul mode +++++++++
DUCT inertance
2.8000E-02 a Area m^2 3051.3 A |p| Pa

0.5932 b Perim m -137.98 B Ph(p) deg
3.1620E-02 c Length m 1.7223E-04 C |U| m^3/s
3.0000E-04 d Srough -48.166 D Ph(U) deg

-1.7318E-08 E Hdot W
sameas 0 Gas type 8.4762E-04 F Edot W
ideal Solid type 0.0000 G HeatIn W
!--------------------------------- 9 +++++++++ therm insul mode +++++++++
COMPLIANCE Reservoir volume
1.2680E-02 a SurfAr m^2 Fnc( 9b) 3051.3 A |p| Pa
1.5000E-04 b Volum m^3 S=-5 -137.98 B Ph(p) deg

3.6063E-07 C |U| m^3/s
159.11 D Ph(U) deg

-1.7318E-08 E Hdot W
sameas 0 Gas type 2.5056E-04 F Edot W
ideal Solid type 0.0000 G HeatIn W
!--------------------------------- 10 +++++++++ therm insul mode +++++++++
HARDEND The end

0.0000 a R(1/z) =10G? 3051.3 A |p| Pa
0.0000 b I(1/z) =10H? -137.98 B Ph(p) deg
0.0000 c Hdot W =10E? 3.6063E-07 C |U| m^3/s

159.11 D Ph(U) deg
-1.7318E-08 E Hdot W
2.5056E-04 F Edot W
2.0818E-05 G R(1/z)

helium Gas type -4.0698E-05 H I(1/z)
ideal Solid type 300.21 I T K

! The restart information below was generated by a previous run
! You may wish to delete this information before starting a run
! where you will (interactively) specify a different iteration
! mode. Edit this table only if you really know your model!
INVARS 6 0 3 0 6 0 7 1 5 3 5 6 5
TARGS 6 1 6 3 6 6 6 10 1 10 2 10 3
SPECIALS 2 4 -2 9 -5

Beginning with DeltaE version 4.10, the JOIN segment can be used at the ends of a pulse
tube to model the temperature overshoots and adiabatic-isothermal interface losses there.
See Chapter VI, Section B.

Tektronix researchers used DeltaE to model a 350 Hz orifice pulse tube refrigerator, as
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described in Ref. [16].

D. Etched Foil Regenerators

The segment STKPOwerlaw is intended to model regenerators for which the friction factor
and heat transfer coefficient are power laws in Reynold’s number. This includes etched foil
regenerators, as described in [17]. For input syntax and mathematical details, see the end
of section VI.B.5.
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V. Advanced Features

This chapter introduces additional features of DeltaE that expand its power and conve-
nience for the user who is already comfortable with the basics. Here we explain “math
segments” that allow the increased control over the endpoints of DeltaE’s iterations and
incorporate some basic math functions; active branches that permit simultaneous calcu-
lation of side branches and main ducts for complicated models; additional fluid options,
including binary gas mixtures; parameter linking so that iterations can be performed while
maintaining certain geometric relationships in the model; and several other useful features
and tunable parameters.

A. RPNTArgets (Math Segments)

DeltaE reserves a place for a special input parameter to hold a target value in the segment
types that have outputs commonly used in targets. These parameters are: heat exchanger
temperatures and heat flows, and complex impedances in HARD- and SOFTEnd segments
(UNIONs, introduced in the next section, are a special case). The code knows, internally, to
pair these input values with the appropriate output results of the segment for comparison.
The experienced user, however, will soon hunger for more possibilities once a model is
defined and converging to meet these basic targets. An application may call for acoustic
power, pressure, or velocity (magnitude or phase) to be specified at a certain location, or
some derived function of outputs may be desired for targeting or plotting. Math segments
are used for these purposes. We most often use them to generate a new type of output based
on other outputs in the model; in this case, the first ‘target’ parameter is simply ignored.
Math segments have one real input and one real output which DeltaE recognizes as a
potential target/result pair. The other input parameters to these segments are one or more
addresses, or, in the case of RPNTArget’s, a symbolic equation that can include addresses.

There are 8 types of math segments: RPNTArget, FREETarget, QUOTArget, COPRTarget,
EFFRTarget, PRODTarget, DIFFTarget, and VOLMTarget. We highly recommend RPNTArget
because it is much more versatile than the other math segments; it can be written to act like
any of the other math segments (except VOLMTarget). For complicated functions, RPNTArget
targets can be cascaded. The other, obsolete math segments are still included in DeltaE
for backwards compatibility. Their use is described only in Chapter VI.
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The “target” parameter of math segments, like that of any other targets, can be used as
the independent variable in a plotting loop. Math segments should be placed after all the
results that they reference in the model, so that, during each pass of DeltaE through the
segments (which are always treated sequentially), the math segments will be updated with
the most recent results. Math segments do not end with fluid and solid names like other
segments.

RPNTArget is a new feature (beginning in version 3.9), sufficiently versatile that it effec-
tively makes all other math segment types obsolete. RPNTArget allows complicated mathe-
matics, and can perform such mathematics on inputs (including guesses) from other segments
and on constants, as well as on results from other segments.

The first line of an RPNTArget segment (line “a”) is the target parameter. It may also
be used as a convenient location for a frequently changed constant or a guess when it is
referenced within the formula of the segment. The second line (line “b”) is an instruction
line expressing the desired algebraic procedure in Reverse Polish Notation, the parenthesis-
free algebra encoding technique used by Hewlett-Packard pocket calculators. For example,
to generate the particle displacement amplitude

|ξ1| =
|U1|
ωA

(V.1)

at the end of, say, segment 5, an RPNTArget after segment 5 could be written

!-------------------------- 6 ------------------
RPNTARGET magU1 over omega A (units: meters)
0.01
5C 2 / PI / 0b / 5a /

Those familiar with Reverse Polish Notation will recognize that the instruction line could
just as well be written

5C 2 PI * 0b * 5a * /

or even

5C 2 PI 0b 5a * * * /

Extensions to the code as of version 4.3 also enable us to write the instruction line like
this:

U1 mag w / 5a /

64



Here we exploit the internal state variables w (ω) and U1 (U1). In the case of the latter,
it is important that no physical segments (ducts, stacks, etc.) are present between the
point of interest and the RPNTARGET, as these would alter the volume flow rate and other
state variables. A complete list of available state variables and also local thermophysical
parameters (density, sound speed, etc.) is given Table 6.2.

A complete lesson in Reverse Polish Notation can be found in instruction manuals for most
HP pocket calculators. Briefly, as numbers are encountered in the instruction line, they are
pushed onto a stack; when a unary operator such as cos, log, or sqrt is encountered, it
pops a single number off the stack, acts on it, and pushes the result onto the stack; when a
binary operation such as + or * is encountered, it pops two numbers off the stack, combines
them appropriately, and pushes the result back onto the stack. When a simple instruction
line has been processed, there is only one number remaining on the stack; this number is
the “result” of the RPNTArget segment. (It is sometimes desirable to intentionally leave
intermediate results on the stack to be accessed elswhere. This is perfectly permissible, and
will be demonstrated in an example, below.)

To further illustrate the use of RPNTArgets, consider how one could compute engine
efficiency relative to Carnot’s efficiency. (This can also be accomplished with the now-
obsolete EFFRTarget, described in Sec. VI B.7.) If W =5F, Qh =3G, Th =3H, and Tc =5H,
W
Qh

Th
Th−Tc becomes

!--------------------------------- 10 ---------------------------
RPNTARG Efficiency/Carnot Efficiency
0.000 a Target

5F 3G / 3H 3H 5H - / *

We could also have written

5F 3G / 3H # 5H - / *

using the stack push operator, #.

For a more complicated use, suppose we are interested in COPR2Qc as an overall figure of
merit for a refrigerator, whereQc is cooling power and COPR is the coefficient of performance
relative to Carnot’s coefficient of performance. We can generate both COPR and the product
COPR2 ∗Qc as follows, utilizing the addresses used in the refrigerator example in Sec. III.C:

!--------------------------------- 10 ---------------------------
RPNTARG COP/COP_Carnot and itself squared times cooling power
0.000 a Target (t) 8.45 A RPNval

0.0130 B RPNval
5G 1F / 3H 5H - 5H / * # SQRD 5G *
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This example demonstrates how the stack, composed of the segment’s output parameters,
grows when the number of “pushes” exceedes the number of stack popping operations. In
this case ‘#’, the push command, causes the COPR value to be duplicated and pushed to
parameter B. The copy in parameter A (also equal to 0.0130) is overwritten by the SQRD
operation, then multiplied by 5G (Qc).

For another example, illustrating some interesting links between and within DeltaE
segments, consider a turbulent flow restriction, which has a pressure drop proportional to
the square of velocity. To model this, we would like an acoustic impedance whose real part
is proportional to the velocity through it. To cause DeltaE to accomplish this, use

!--------------------------------- 3 ---------------------------
RPNTARG Line (a) depends on rho and the geom of the restriction
2.2500E+08 a Target (t) 2.2500E+08 A RPNval
3a 2C *
!--------------------------------- 4 ---------------------------
IMPEDANCE this mimics an orifice with turbulent pressure drop
sameas 3A a Re(Zs) Pa-s/m^3

0.0000 b Im(Zs) Pa-s/m^3
sameas 0 Gas type
ideal Solid type

DeltaE allows for complex arithmetic within RPNTARGETs, though all other input and
output paramters are real. It is possible to implement a calculation such as finding fk for a
parallel-plate stack (compare with the first of Eqs. VI.22). We make the input parameter,
3a, equivalent to the plate half-spacing y0 here:

!--------------------------------- 3 ---------------------------
RPNTARG Thermal function for parallel plate geom
2.0000E-04 a Target (t) ( 0.9244 , -0.2392 ) A
3a dk / (1,1) * tanh lstx /

Here (1,1) illustrates the entry of a complex constant, (1+ i). δκ is another of the local
state variables that can be accessed, through dk).

DeltaE’s RPNTArget segment recognizes the common trigonometric and other special
functions present on most pocket calculators, as well as hyperbolic and Bessel functions that
are not readily available. Most functions accept complex arguments. Other operators are
given to convert a complex output to a real number in the usual coordinates (real, imaginary,
magnitude, phase). For a complete listing, see Tables 2—4 in Chapter VI.

Whenever the instruction line of an RPNTArget is entered during an (I)nsert operation
or edited during a (m)odify operation, entering a response of ‘?’ will print a summary
similar to the following:

Valid RPN commands are:
Basic: + - * / ^ ~ inv
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Figure V.1: Modified “beer cooler.”

log exp exp tenx sqrt sqrd abs
Trig: cos acos sin asin tan atan pi

cosr acosr sinr asinr tanr atanr sinh cosh tanh
Bessel: i J0 J1 Y0 Y1
Stack: # lstx a<>b sto rcl min max
Complex: mag real imag arg argr conj i
State: tm w f pm n1 p1 U1
Thermo: gamma a rho cp k0 mu beta dk dn rhos cs ks
INVALID: @@Z ==== NoOp (error codes)

and then repeat the input prompt. The error codes in the last line are keys to what DeltaE
writes when its parser is unable to intepret instruction strings.

B. Active Branches

Although BRANCh and OPNBRanch have their uses, they are often inadequate for describing
the variations in branch impedance with operating conditions. For example, the branch
might be a Helmholtz resonator whose impedance changes significantly with frequency. Fur-
ther, BRANCh and OPNBRanch are wholly inadequate when branches involve thermoacoustic
components. The TBRANch segment addresses these inadequacies by allowing DeltaE to
integrate its way down a side branch through a series of segments and then return to the
trunk and continue integrating there as before.

As an example, consider the modification shown in Fig. V.1 to the basic “beer cooler”
(heat-driven thermoacoustic refrigerator) shown in Fig. I.7. We might want to investigate
whether performance would improve by adding the side branch so that the entire volume flow
rate required by the prime-mover stack would no longer have to flow through the refrigerator
stack and much of the resonator dissipation would show up at ambient temperature instead
of at the cold heat exchanger.
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DeltaE uses the TBRANch segment for cases like this. When it encounters a TBRANch,
DeltaE treats subsequent segments as the sequential members of the branch, until it reaches
a HARDEnd or SOFTEnd. It then “returns to the trunk,” treating the rest of the segments
as trunk members. So the sequence of segments for the example of Fig. V.1 might be as
follows:

TITLE
BEGIN 0
ENDCAP 1
DUCT 2
HX 3
STKSLAB 4
HX 5
TBRANCH 6
CONE 7
DUCT 8
COMPLIANCE 9
HARDEND 10

HX 11
STKSLAB 12
HX 13
DUCT 14
COMPLIANC 15
HARDEND 16

Segments 6 through 10 comprise the side branch; the others comprise the trunk.

The method of computation is as follows. At a branch, the branch impedance determines
how the (complex) volume flow rate splits up at the branch. Often, we use the branch
impedance as a pair of guesses that DeltaE adjusts in its usual way to get the complex
impedance at the next ’END to come out right. (If asked to do so, DeltaE should select
both of these guess and target pairs as part of a default set. If not, you should enable
them.) TBRANCHed models tend to have guess and target vectors of high dimension, since
every ’END contributes two targets (and a few more targets are almost always needed for
temperatures, heats, etc.). Stacks and heat exchangers can also be used in branches, and,
of course, branches can have subbranches of their own.

TBRANch has a companion segment type, TEE, that takes the filename of another valid
DeltaE input file as its only parameter. When DeltaE encounters a TEE, it loads the
named file into the model, and replaces the BEGIN segment of the branch file with a TBRANch
segment. It tries to guess starting values for the complex branch impedance, and then adjusts
the addresses in any sameas declarations and math segments occurring in the branch (or
after the branch point) by the number of segments in the branch. Once the file has been
read in, the TEE segment disappears–the .out file and (d)isplayed segments will be the
composite model.

When rewriting our previous example to use a TEE segment, the model has the form

TITLE
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BEGIN 0
ENDCAP 1
DUCT 2
HX 3
STKSLAB 4
HX 5
TEE 6
branch.in
HX 7
STKSLAB 8
HX 9
DUCT 10
COMPLIANC 11
HARDEND 12

where we have omitted the parameters of all but the TEE segment. The file branch.in is a
valid DeltaE input file, which we have run and debugged separately, and which looks like
this:

TITLE
BEGIN 0
CONE 1
DUCT 2
COMPLIANCE 3
HARDEND 4

The file may have any name (e.g., branch.in, branch.out, branch.tee), but it must be
specified with the complete suffix.

The two models above will combine to produce the same model as our first example.
This approach is recommended, especially for nontrivial branches containing stacks, etc., so
that the two simpler submodels can be evaluated first. The impedance thatDeltaE chooses
for the TBRANch may need immediate attention; guess and target vectors, math segments,
and sameas references should also be checked carefully. Special modes (see below) that link
length parameters across the branch point will not be handled properly, and must be redone
with new segment numbers.

The multiply-connected duct network of Fig. I.3 can also be handled byDeltaE, through
use of TBRANch and UNION. The UNION segment is used to tell DeltaE to “connect” a
TBRANch’s SOFTEnd (or HARDEnd) back to the trunk at the location of the UNION segment.
The branch’s SOFTEnd impedance targets are no longer used; instead, the two real input
variables (b and c) of the UNION segment should always be active targets. It does not matter
what the initial values of these parameters are; as soon as DeltaE processes the segment,
it copies in the current values of the complex pressure at the SOFTEnd referenced by the
number in parameter a of the UNION segment. These values are compared to the local
complex pressure result, at this UNION, in the trunk, and iteration should drive the model
until their difference is zero. In other words, when a branch and trunk meet at a UNION,
they must share the same complex p1. As before, a guessed branch impedance usually
determines how the (complex) volume flow rate splits up at the TBRANch. Volume flow rates
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Figure V.2: “Gamma”-style Stirling machine.

are summed at the UNION. (The UNION segment is somewhat similar to the math segments
of the previous section, except that it grabs two results simultaneously, from fixed locations
within the referenced segment. Also, the ‘target’ values are not specified by the user, since
they vary dynamically depending on what is happening at the attached ’End segment.)

As an example of use of TBRANch and UNION, we return to the Stirling cryocooler ex-
ample of the previous chapter, and convert it to a “gamma” style Stirling machine, with a
compressor piston at the hot end and a displacer piston connecting the hot and cold ends.
In the previous example, PU power flowed in at the BEGIN and out at the ...END; with a
displacer piston, the cold-end PU power is returned automatically to the hot end, reducing
the hot-end PU power requirement.

The apparatus layout is illustrated in Fig. V.2; the correspondingDeltaE file is gamma.in,
its layout is

TITLE
BEGIN
TBRANCH

IESPEAKER (the displacer)
SOFTEND

SX
STKSCREEN
SX
UNION (’connects’ to softend above)
HARDEND

and the corresponding .out file is

TITLE Stirling cooler w displacer piston, illustrating TBRANCH--UNION
!--------------------------------- 0 ---------------------------------
BEGIN Initialize things
2.0000E+06 a Mean P Pa 300.14 A T-beg G( 0c) P
55.000 b Freq. Hz 2.8533E+05 B |p| G( 0d) P
300.14 c T-beg K G -42.649 C Ph(p) G( 0e) P
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2.8533E+05 d |p| Pa G -4.5438E+09 D Re(Zb) G( 1a) P
-42.649 e Ph(p) deg G -7.4853E+08 E Im(Zb) G( 1b) P
3.3000E-04 f |U| m^3/s 1255.7 F K G( 2f) P

9.0000 g Ph(U) deg 4.2171E-02 G Rm G( 2g) P
helium Gas type -35.859 H HeatIn G( 4e) P
ideal Solid type
!--------------------------------- 1 ---------------------------------
TBRANCH branch to displacer
-4.5438E+09 a Re(Zb) Pa-s/m^3 G 2.8533E+05 A |p| Pa
-7.4853E+08 b Im(Zb) Pa-s/m^3 G -42.649 B Ph(p) deg

6.1959E-05 C |U| m^3/s
128.00 D Ph(U) deg
-8.7218 E Hdot W

sameas 0 Gas type -8.7218 F Edot W
ideal Solid type 37.933 G Edot_T W
!--------------------------------- 2 ---------------------------------
IESPEAKer a spring-mounted, driven moving mass
1.0000E-05 a Area m^2 2.2888E+05 A |p| Pa

1.0000 b R ohms -52.607 B Ph(p) deg
0.0000 c L H 6.2000E-05 C |U| m^3/s
1.0000 d B x L T-m 128.00 D Ph(U) deg

1.0000E-02 e M kg -7.0950 E Hdot W
1255.7 f K N/m G -7.0950 F Edot W
4.2171E-02 g Rm N-s/m G 2.9421 G WorkIn W

1.0000 h |I| A 7.0133 H Volts V
-90.000 i Ph(I) deg 1.0000 I Amps A

32.964 J Ph(Ze) deg
7.1788E+04 K |Px| Pa

sameas 0 Gas type 170.81 L Ph(Px) deg
ideal Solid type -1.3159 M HeatIn W
!--------------------------------- 3 ---------------------------------
SOFTEND reconnect at UNION

0.0000 a Re(z) (t) 2.2888E+05 A |p| Pa
0.0000 b Im(z) (t) -52.607 B Ph(p) deg

6.2000E-05 C |U| m^3/s
128.00 D Ph(U) deg
-7.0950 E Hdot W
-7.0950 F Edot W
-11.289 G Re(z)

sameas 0 Gas type 0.1196 H Im(z)
ideal Solid type 300.14 I T K
!--------------------------------- 4 ---------------------------------
SX aftercooler
sameas 5a a Area m^2 2.8160E+05 A |p| Pa

0.6000 b VolPor -43.360 B Ph(p) deg
1.0000E-03 c Length m 3.6173E-04 C |U| m^3/s
sameas 5d d r_H m 4.7835E-02 D Ph(U) deg
-35.859 e HeatIn W G 2.0740 E Hdot W
300.00 f Est-T K = 4H? 37.001 F Edot W

sameas 0 Gas type -35.859 G Heat W
copper Solid type 300.00 H MetalT K
!--------------------------------- 5 ---------------------------------
STKSC regenerator
1.1670E-04 a Area m^2 2.2929E+05 A |p| Pa

0.6860 b VolPor -52.602 B Ph(p) deg
5.0000E-02 c Length m 6.2199E-05 C |U| m^3/s
1.3900E-05 d r_H m -49.476 D Ph(U) deg

0.3000 e KsFrac 2.0740 E Hdot W
7.1203 F Edot W

300.14 G T-beg K
sameas 0 Gas type 79.960 H T-end K
stainless Solid type -29.881 I StkEdt W
!--------------------------------- 6 ---------------------------------
SX cold heat exch
sameas 5a a Area m^2 2.2888E+05 A |p| Pa

0.6000 b VolPor -52.607 B Ph(p) deg
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1.0000E-03 c Length m 6.2000E-05 C |U| m^3/s
sameas 5d d r_H m -52.000 D Ph(U) deg

0.0000 e HeatIn W 7.0950 E Hdot W
80.000 f Est-T K = 6H? 7.0950 F Edot W

sameas 0 Gas type 5.0210 G Heat W
copper Solid type 80.000 H MetalT K
!--------------------------------- 7 ---------------------------------
UNION displacer cold end

3.0000 a TendSg 2.2888E+05 A |p| Pa
2.2888E+05 b |p|End Pa = 7A? -52.607 B Ph(p) deg
-52.607 c Ph(p)E deg = 7B? 4.5040E-18 C |U| m^3/s

-66.598 D Ph(U) deg
5.0016E-13 E Hdot W

sameas 0 Gas type 5.0016E-13 F Edot W
ideal Solid type 0.0000 G End-T K
!--------------------------------- 8 ---------------------------------
RPNTARGET displacer U
6.2000E-05 a Target = 8A? 6.2000E-05 A RPNval
6C

!--------------------------------- 9 ---------------------------------
RPNTARGET displacer phase
-52.000 a Target = 9A? -52.000 A RPNval
6D

!--------------------------------- 10 ---------------------------------
HARDEND the end 10

0.0000 a R(1/z) =10G? 2.2888E+05 A |p| Pa
0.0000 b I(1/z) =10H? -52.607 B Ph(p) deg

4.5040E-18 C |U| m^3/s
-66.598 D Ph(U) deg
5.0016E-13 E Hdot W
5.0016E-13 F Edot W
1.0366E-15 G R(1/z)

helium Gas type -2.5827E-16 H I(1/z)
ideal Solid type 79.960 I T K

! The restart information below was generated by a previous run
! You may wish to delete this information before starting a run
! where you will (interactively) specify a different iteration
! mode. Edit this table only if you really know your model!
INVARS 8 0 3 0 4 0 5 1 1 1 2 2 6 2 7 4 5
TARGS 8 4 6 6 6 7 2 7 3 8 1 9 1 10 1 10 2
SPECIALS 0

We are using an IESPEAker segment as the displacer piston, because a linear motor and
a loudspeaker share the same physical transduction mechanism.

Our guess/target vector summary is the largest we have yet encountered in this user’s
guide–eight each:

Iteration Vectors Summary:
GUESS 0c 0d 0e 1a 1b 2f
name BEGIN:T-beg BEGIN: |p| BEGIN:Ph(p) TBRAN:Re(Zb TBRAN:Im(Zb IESPE: K
units K Pa deg Pa-s/m^3 Pa-s/m^3 N/m
value 3.00E+02 2.86E+05 -43. -4.55E+09 -7.62E+08 1255.7
GUESS 2g 4e
name IESPE: Rm SXFRS:HeatI
units N-s/m W
value -7.87E+08 -36.
TARGET 4f 6f 7b 7c 8a 9a
name SX:Est-T SX:Est-T UNION:|p|En UNION:Ph(p) RPNTA:Targe RPNTA:Targe
units K K Pa deg
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value 3.00E+02 80. 2.29E+05 -52. 6.20E-05 -52.
result .00 .00 .00 .00 .00 .00
TARGET 10a 10b
name HARDE:R(1/z HARDE:I(1/z
units
value .00 .00
result .00 .00

One can think of these guesses and targets as paired up in the following way. The
T-begin guess lets DeltaE hit the T-hot target; these two are so nearly equal, and so
trivially related, that they could easily be dropped from the vectors if necessary. The two
branch-impedance guesses and the two IESPEAKER guesses let DeltaE reach four targets:
the two p targets at the UNION and the two U FREETargets that essentially determine the
displacer piston’s motion. The heat removed at the hot heat exchanger determines the
temperature at the cold heat exchanger. Finally, the two p guesses in the BEGIN segment
allow DeltaE to achieve U = 0 at the HARDENd at the end of the apparatus.

Running this file produced the .out file listed above, and the .dat file below:

-= Stirling cooler w displacer piston, illustrating TBRANCH--UNION =-
frequency= 55.000Hz mean pressure= 2.000E+06Pa

Tm (K) Re & Im p1 (Pa) Re & Im U1(m3/s) Hdot(W) Edot(W)
300.1 209863.6 -193308.3 0.00033 0.00005 29.21 29.21

!------------------------------------ 1 -------------------------------------
TBRANCH branch to displacer
TTTTTTTTTTTTTTTTTTTT Branching into Tee Level= 1 TTTTTTTTTTTTTTTTTTTT
300.1 209863.6 -193308.3 -0.00004 0.00005 -8.72 -8.72

!------------------------------------ 2 -------------------------------------
IESPEAKer a spring-mounted moving mass
( 3.82 , -5.88 ) Volts,( -4.371E-08, -1.00 ) Amps
Heat extracted: I^2 R= 0.500 , u^2 Rm= 0.811 , B-Layer= 5.322E-03 Watts.
300.1 138996.6 -181846.5 -0.00004 0.00005 -7.10 -7.10

!------------------------------------ 3 -------------------------------------
SOFTEND reconnect at UNION
impedance (p A/rho a U)=( -11.3 , 0.120 )
300.1 138996.6 -181846.5 -0.00004 0.00005 -7.10 -7.10

TTTTTTTTTTTTTTTTTTTT Returning to Trunk Level= 0 TTTTTTTTTTTTTTTTTTTT
300.1 209863.6 -193308.3 0.00036 0.00000 37.93 37.93

!------------------------------------ 4 -------------------------------------
SX aftercooler
Heat = -35.859 (W) metal temp= 300.000 Kelvin
300.1 204736.2 -193338.2 0.00036 0.00000 2.07 37.00

!------------------------------------ 5 -------------------------------------
STKSC regenerator

80.0 139260.2 -182160.8 0.00004 -0.00005 2.07 7.12
!------------------------------------ 6 -------------------------------------
SX cold heat exch
Heat = 5.021 (W) metal temp= 80.000 Kelvin

80.0 138996.6 -181846.5 0.00004 -0.00005 7.10 7.10
!------------------------------------ 7 -------------------------------------
UNION displacer cold end
Union P match difference= 9.022E-10 Pa; 1.421E-13 deg.

80.0 138996.6 -181846.5 0.00000 0.00000 0.00 0.00
!------------------------------------ 8 -------------------------------------
RPNTARGET displacer U
RPN stack: = 6.2000E-05,
Opstring= 6C

80.0 138996.6 -181846.5 0.00000 0.00000 0.00 0.00
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!------------------------------------ 9 -------------------------------------
RPNTARGET displacer phase
RPN stack: = -52.000 ,
Opstring= 6D

80.0 138996.6 -181846.5 0.00000 0.00000 0.00 0.00
!------------------------------------ 10 -------------------------------------
HARDEND the end 10
inverse impedance (rho a U/p A)=( 1.037E-15, -2.583E-16)

80.0 138996.6 -181846.5 0.00000 0.00000 0.00 0.00

The user might next generate cooling power curves by using the cold temperature target
as an independent plot variable and the cooling power as dependent plot variable; or the user
might explore the frequency dependence of the cooler, by using frequency as an independent
plot variable; or the user might want to add more realism to the model by including the
large dead volumes shown in the figure near the pistons. If inertial and viscous effects are
presumed negligible in those volumes, they can be modeled as COMPLIANCEs:

TITLE
BEGIN
COMPLIANCE

TBRANCH
IESPEAKER (the displacer)
SOFTEND

SX
STKSCREEN
SX
COMPLIANCE
UNION (’connects’ to softend above)
HARDEND

The user will soon discover that this is a surprisingly robust model, considering the large
number of guesses and targets: the model tolerates steps in independent variables of several
percent without getting lost.

TBRANCH and UNION are intended for duct networks, where temperature is constant and
hence p1 and U1 are the variables of interest. For more complex systems, such as this one,
the segments HBRANCH and HUNION are energy-conserving versions of TBRANCH and UNION.
Definitely use them if you are branching at locations where Ḣ 6= Ẇ , such as at a branch to a
second stage regenerator within a two-stage pulse tube refrigerator. HBRANCH incorporates a
potential guess Hbran, giving the fraction of the incoming energy that goes into the branch.
Use Hbran as a guess to hit a target down the branch, such as a temperature. HUNION
incorporates an additional potential target, that the temperature in the trunk at the union
be equal to that at the associated branch end.

C. Turbulence

A turbulence algorithm can be enabled in DUCTs and CONEs, by use of an otherwise hidden
input parameter: parameter d in DUCTs and parameter f in ’CONEs, the relative roughness
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(roughness height divided by pipe diameter). Set the roughness equal to zero for smooth
walls, or to some small value greater than zero for rough walls. To ensure a laminar cal-
culation, set the roughness equal to −1 (which will cause the parameter to be hidden once
again).

The turbulence algorithm follows the quasi-steady approximation, the spirit of the as-
sumptions of Iguchi et al., Ref. [18]. It assumes that oscillatory-flow losses can be calculated
by using the Moody friction factor (valid for steady flow) at each instant of time during the
oscillatory flow. This assumption has little experimental validation in the range of Reynolds
number and R/δν of interest in thermoacoustics, but we believe it provides a useful estimate,
better than no estimate at all. For more details, see Sec. VI B.1.

D. Variable Gas Mixtures

Several binary mixtures of gases have proven useful in thermoacoustic devices because of
their improved Prandtl numbers and the option to adjust the resonance by changing the
sound speed. DeltaE’s fluid library contains three such mixtures: He-Xe, He-Ar, and He-
Ne. These fluids are specified by a string on a line after a segment’s numerical parameters,
as are other fluids, but the string contains a 5-character field that represents the fraction of
helium in the mixture (for example, 0.981hexe or 0.889hear, containing 98.1% and 88.9%
helium, respectively).

If all but the first of the fluids (in the BEGIN segment) are specified using sameas 0
statements, it is possible to use the helium fraction of the mixture as an iteration variable
for resonance tuning. Simply select 0i (Version 5) or 0j (Version 6) from the (u)se menu
option (it may instead be a plot variable, if you choose). In the .out file, the fluid written
out will reflect the final concentration used.

Our equations for He-Xe properties are not valid for Xe fractions between 0.5 and 0.999.

E. User-Defined Fluid/Solid

DeltaE has a provision that allows users to specify ‘external’ fluids or solids that are not
part of its internal library of thermophysical properties. Properties are derived, according
to current operating conditions, from Eqs. V.2, V.3 and V.4 (below) using coefficients read
from a user-written text file. Up to five distinct external fluids and five external solids can
be used at one time.

The file can have any name valid under the operating system under which DeltaE is
running, and it should end with the extension .tpf. If the root filename is the same as
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any predefined fluids, DeltaE will replace its internal calculations for that fluid with those
given in the user file. To request a user-defined fluid, simply use the root file name as you
would any other fluid. The .tpf file should be in the same directory or folder as the model
file. The name of the fluid is set to the root filename of the external fluid file.

The file format is similar to the segment definitions we have used in models described in
previous chapters in that comment lines can be added with an initial ‘!’ and blank lines are
ignored. Each property is specified by a line containing 1—10 real coefficients which are read
in as C0−9, where unused trailing parameters are set to zero. It is critical that the properties
be arranged in this order: ρ, cp, K, a2, and µ. We also need the ratio of specific heats, γ,
and the expansion coefficient β, but these are calculated internally from

β = −1
ρ

∂ρ

∂T
and γ − 1 = Tβ2a2

cp
. (V.2)

Each of the five properties is derived from its 10 coefficients using the following equation:

property = C0 + C1
pm

T + pmC2
+ C3T + C4T

2 + C5T
C6 + C7p

2
mT

C8 + pmC9, (V.3)

where T and pm are the absolute temperature (K) and mean pressure (Pa) for each point at
which a segment using the fluid is evaluated.

Equation V.3 is a compromise between simplicity and flexibility; it is intended for use in
a variety of simple expressions for gases and liquids and has a uniform syntax for specifying
all 5 properties. There is only a limited mean pressure dependence, suitable for nearly ideal
gases; for more complicated mean pressure dependence, multiple .tpf files should be written
for each mean pressure range used.

To illustrate the use of these coefficients, consider the example below. To replace the
(ideal) helium gas in a model with a more accurate representation that calculates density
and sound speed using the first coefficient of the virial expansion for helium, we can write
the following file, call it helium.tpf, and put it in the same directory as our model:

! external fluid; He with first virial coeff for (B=12cc/mole)
! Equation is:
! C0 + C1*pm/(T+C2*pm) + C3*T + C4*T^2 + C5*T^C6 + pm^2 *C7*T^C8 + pm*C9
! Density, rho (m^3):
0. 4.814e-4 1.44e-6

! isobaric heat capacity, cp (J/kg/K):
5192.

! Thermal conductivity, k0 (W/m/K):
0. 0. 0. 0. 0. 0.0025672 0.716
! Square of sound speed, a^2 (m^2/s^2):
0. 0. 0. 3461.92 0. 0. 0. 0. 0. .0100

! Viscosity, mu (kg/s/m):
0. 0. 0. 0. 0. 0.412e-6 0.68014
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The coefficients for density were determined using

ρ =
pmM

R(T +Bpm/R)
,

where R = 8.314 J/mole-K, M = .0040026 kg/mole, and the first virial coefficient B =
1.2× 10−5m3/mole. We set C1 = M/R and C2 = B/R. For squared sound speed, we need
to satisfy

a2 =
γRT

M

µ
1 + 2

Bpm
RT

¶
,

so we set C3 = γR/M , and C9 = 2Bγ/M , where γ = 5
3
. See Sec. C.1 in Chapter VI to

compare this with how helium properties are calculated in DeltaE’s internal routine.

For equations that cannot be manipulated to fit the format of Eq. V.3, we suggest
generating a table of data near the expected operating conditions and using curve-fitting
tools to generate appropriate coefficients.

User-defined solids follow an identical format, except that only the first three lines are
required to specify ρs, cs, and Ks. The meaning of coefficients C1 and C2 are also redefined
to provide an exponential capability, so the equation for solids is

property = C0 + C1 exp(−TC2) + C3T + C4T
2 + C5T

C6 + C7p
2
mT

C8 + pmC9. (V.4)

It is a good idea to check each new external fluid or solid by using the (t)hermophysical
command available in the main menu (external fluids or solids show up first and are se-
lected with negative integers). Users can also insert the THERMophysical segment using the
fluid/solid to display the properties in the .out and .dat files, or to plot them (see below).

F. Parameter Linking (Special Modes)

DeltaE is versatile in the way it uses different model parameters as guesses to meet its
targets: length or volume (to achieve resonance at fixed frequency), stack length and po-
sition (to meet an efficiency and amplitude), or stack diameter (to get adequate power),
for example. When such geometric variables are released to the solver for manipulation (or
when they are made to change in a plot loop), there are often certain geometric relationships
to other parameters that we would like to see maintained. For example, if the area of a duct
increases, we must increase the associated perimeter as well. Another common wish is to
lengthen a segment while simultaneously shortening another segment to keep overall length
constant. Also, in a stack made of a constant thickness material in a duct of fixed diameter,
we cannot blindly vary the pore size and expect the porosity to remain the same–this could
lead to a misleading optimization if we are faced with these constraints. If we go to the
trouble to calculate a porosity for our initial segment, we want DeltaE to respect it for the
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values it chooses as we run the model. ‘Special modes’ were introduced to link parameters
for just these purposes.

A special modes dialog appears automatically whenever a parameter linking capability
is possible for a variable that is chosen as a guess vector member:

MAIN: (rpwPncTCgudvomfst e?)> u
Guess/Target Address=? ( 0a) 4d
Selection: STKCIR:r0

Add to the guess vector (y/n)? y
Special modes can be enabled as this parameter is varied
(Only one mode per segment possible):
Mode Description

0 Normal mode (no inter-related parameters)
-1 Adjust porosity while y0(r0) varies (const. Area, L0)

Mode=? ( 0) -1

By selecting -1 for the special mode, we have asked DeltaE to remember the following
constant before it begins iterating:

const = r0/poros− r0
where r0, poros are the pore size and porosity of our initial stack. We assume that the
effective plate material thickness 2L0 is given by (2L0) = r0(1/poros − 1). During the
iteration, as r0 is changed, DeltaE assumes porosity changes as an ideal porosity would
and calculates it from the following:

poros = r0/(r0+ const),

and the effective plate thickness is maintained.

If we create a plot varying the area of our first INSDUct (parameter 2a, in most of the
examples of the previous chapters), the dialog looks like

MAIN: (rpwPncTCgudvomfst e?)> p
define plot variables. One or two inputs (a-j)
and up to 10 outputs (A-J) can be plotted)
Plot Parameter Address=? ( 0A)2a

use for outer or inner (2d) plot loop (o/i)? o
Outer (or 1-D) Plot Loop:
Independent variable is DUCT:Area
Plot begins at DUCT:Area = 1.2920E-02 m^2
New value (<CR> to keep)=?
Plot ends at DUCT:Area = 1.2920E-02 m^2
New value (<CR> to keep)=? 2e-2
with a step of: 1.00
New value (<CR> to keep)=? 1e-3
Special modes can be enabled as this parameter is varied
(Only one mode per segment possible):
Mode Description

0 Normal mode (no inter-related parameters)
-2 Maintain consistent Perimeter as initial Area varies

Mode(n)=? ( 0)-2
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By selecting -2 for the special mode, we have asked DeltaE to remember the constant:

const = perim2/area

and, later, to calculate the perimeter from

perim =
√
area ∗ const.

This relationship keeps circular ducts circular and maintains the aspect ratio of rectangular
ducts.

A very complicated example, even if somewhat confusing, can give some idea of the
power of parameter linking. Interesting iterations can be done by using sameas parameters
in combination with length parameter linking. For example, if segments 2 and 7 are DUCTs,
and segments 4 and 5 are STKSLabs of equal length (but different material or porosity,
perhaps), we can iterate using stack length, keep these lengths equal, and keep the overall
length and stack center position constant by doing the following:

1. For the length (c) of segment 5, specify sameas 4c.

2. (u)se parameter 4c as a guess (you will have to clear another guess, or add a suitable
target, to keep your guess and target vectors balanced).

3. When prompted to select a special mode for segment 4, choose ‘2’ to keep the sum of
segment 2 and 4’s lengths constant.

4. Using the (s)pecial modes editing option, select parameter 5c and set its mode to
‘7’.

If 4c were an independent plot loop variable instead of a guess vector member, the
procedure above would be identical, except that item (2) would be a (p)lot selection option
instead of a (u)se dialog. The following is a list of all parameter linking modes and the
segment types for which they are available:

n Keep Length + Length in segment (n) constant: All segments with length.

0 Normal mode (no inter-related parameters): All segments

-1 Adjust porosity while y0(r0) varies (const. Area, L0): Most stacks and heat exchangers.

-2 Maintain consistent Perimeter as initial Area varies: Ducts and cones.

-3 Maintain consistent Perimeter as final Area varies: Cones.

-4 Adjust porosity as L0 varies (const. Area, y0): STKSLab.
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-5 Maintain consistent surface area as volume varies: COMPLiance.

-6 Maintain constant V & valid perim., area as length varies: STKDUct

-7 Vary imaginary part to preserve magnitude (where possible): IMPED, BRANCh, TBRANch,
and HBRANch.

-8 Vary imaginary part to preserve phase angle: same as -7.

-9 Maintain consistent Perimeters in cones as both initial and final Areas vary.

Special modes can be tracked by status fields in the center of the .out file, between
the input and output colums. The master parameter–the one through which the mode is
controlled–has the form S: n, where n is the mode number. A slave parameter, one which
can not be modified independently when it is controlled by a special mode, has a status
indicator of the form Fnc(nnp), where nnp is the parameter address (e.g. 2a).

G. Thermophysical Properties

The (t)hermophysical menu selection (see Chapter VI for further details) allows the user
to have keyboard access to the library of fluid and solid properties for a given state (which
defaults to the current temperature, pressure, acoustic frequency, and fluid or solid). This
feature has proven so convenient that we often startDeltaE simply to look up the transport
properties of gases. (For this purpose, it is often useful to have a dummy file present (e.g.,
nil.in) that contains only a TITLE line. If you respond to the input file prompt with this
filename, DeltaE will quickly go to the menu line and allow you to access the options.)

A companion to the (t)hermophysicalmenu selection is THERMophysical segment type,
which takes no input parameters except for the fluid and solid type (again, see Chapter VI
for a summary). This segment can be inserted anywhere in a model where the user wants to
know the fluid and solid properties at the local temperature and pressure, whatever they may
be at the time. Both the .out and .dat files contain outputs for these properties where the
segment is inserted. By using the plotting loops, tables of properties can be generated over
ranges of temperature, pressure, or frequency by varying these values in a BEGIN segment,
ending the model with a THERMophysical segment, and plotting as many of the outputs as
are required.

H. State Variable Plots

State variable plots allow you to view the distribution of temperature, pressure, volume flow
rate, and enthalpy along the entire length of a model. The format is somewhat similar to
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that of the *.dat file, but with more detail. Selecting (G)enerate state variable plot
from the (E)xtras submenu will cause a *.spl file to be written. The output below was
generated from the 5inch.in example file (Sec. III.B) before guess and targets were added,
and before iterations were performed:

->5INCH.spl
!Created@15:32:59 8-Jan-98 with DeltaE Vers. 4.0b5 for the IBM/PC-Compatible
-= Five-Inch Thermoacoustic Engine =-
Seg# x(m) GasA(m^2) T(K) Re[p](Pa) Im[p](Pa) Re[U] Im[U](m^3/s) Hdot(W)
1 0.000 0.012920 500.0 80000.0 0.0 0.00000 0.00000 0.00
1 0.000 0.012920 500.0 80000.0 0.0 -0.00003 0.00000 -1.20
2 0.000 0.012920 500.0 80000.0 0.0 -0.00003 0.00000 -1.20
2 0.056 0.012920 500.0 79992.8 0.1 -0.00006 -0.00790 -1.20
2 0.112 0.012920 500.0 79935.6 0.6 -0.00011 -0.02371 -1.20
2 0.167 0.012920 500.0 79821.2 1.6 -0.00016 -0.03949 -1.20
2 0.223 0.012920 500.0 79649.7 3.0 -0.00021 -0.05525 -1.20
2 0.279 0.012920 500.0 79421.3 4.7 -0.00026 -0.07096 -1.20
2 0.279 0.012920 500.0 79285.7 5.8 -0.00029 -0.07880 -11.65
3 0.279 0.005078 500.0 79285.7 5.8 -0.00029 -0.07880 -11.65
3 0.339 0.005078 500.0 78318.3 403.1 -0.00184 -0.08697 2198.55
4 0.339 0.010465 500.0 78318.3 403.1 -0.00184 -0.08697 2198.55
4 0.395 0.010465 428.8 77731.9 847.5 0.00166 -0.09752 2198.55
4 0.451 0.010465 375.9 76966.1 1289.3 0.00455 -0.10886 2198.55
4 0.506 0.010465 334.5 76002.7 1733.3 0.00703 -0.12056 2198.55
4 0.562 0.010465 300.9 74823.1 2182.0 0.00920 -0.13235 2198.55
4 0.618 0.010465 272.8 73408.4 2636.2 0.01117 -0.14404 2198.55
4 0.618 0.010465 272.8 73408.4 2636.2 0.01117 -0.14404 2198.55
5 0.618 0.006158 272.8 73408.4 2636.2 0.01117 -0.14404 2198.55
5 0.669 0.006158 272.8 71194.2 2996.0 0.01046 -0.15121 145.66
6 0.669 0.012670 272.8 71194.2 2996.0 0.01046 -0.15121 145.66
6 1.400 0.012670 272.8 62578.7 2479.1 0.01377 -0.23637 145.66
6 2.130 0.012670 272.8 35545.6 1109.2 0.01814 -0.36310 145.66
6 2.861 0.012670 272.8 688.1 -470.6 0.01887 -0.40990 145.66
6 3.592 0.012670 272.8 -34320.3 -1946.2 0.01584 -0.36645 145.66
6 4.323 0.012670 272.8 -61772.8 -3026.4 0.00967 -0.24234 145.66
6 4.323 0.012670 272.8 -70671.8 -3347.8 0.00578 -0.15802 60.13
7 4.323 0.012670 272.8 -70671.8 -3347.8 0.00578 -0.15802 60.13
7 4.323 0.012670 272.8 -70671.8 -3347.8 0.00580 -0.15802 59.58

The following features of state variable plots are noted:

• When generating a state variable plot, DeltaE does not iterate; it simply takes one
pass through the model using the current guess variable values.

• During the pass, DeltaE prints Nint/2 + 1 (Nint is the number of Runge-Kutta
steps–see Sec. J for details) lines of data for each segment that it knows how to
integrate (stacks, ducts, and cones).

• Two lines are printed for elements which do direct calculations (heat exchangers, end-
caps, etc.): one before, and one after the segment is computed.

• Segments that do not have any physical effect, such as math segments, BEGIN, and’END
segments, generate no output in the plot.

• The third column, GasA, is the current cross-sectional area times the porosity of the
segment.
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Figure V.3: Geometry of Hofler refrigerator example.

• Acoustic power is not an output, but, in a spreadsheet, it can be derived from the
plotted variables using Ė = <[p1Ũ1]/2

• When a model contains a branch segment, a blank line will be left before and after the
branch in the output. Also, the x distance counter begins at zero again in the branch.

I. Geometry

When sizes are changing dynamically, it is often desirable to know something about the
physical size and layout of a device under design, no matter how abstract the available
information may be. DeltaE has an option to write a ‘geometry’ file for this purpose.
Selecting it causes a *.geo file to be written that contains x, y pairs suitable for plotting
with your favorite graphics software. When this file is given to graphing software, the
resulting plot is representative of a half cross-section of a cylindrical device similar to the
model. The figure below is an annotated plot made from the geometry file for our final
example of the Hofler refrigerator.

We have labeled all of the segments, except for the ducts, with their numbers and types.
DeltaE generates little ‘tick’ marks to identify the breaks between segments. The lines down
to zero on either end are generated by the VSPEAker and HARDEnd segments, respectively.
The height at most points is proportional to the square root of the area. The COMPLiance is
the exception; it looks nothing like Hofler’s sphere. It is a symbolic cylinder that has length
equal to radius (sort of–factors of π are ignored) proportional to the specified volume.
(Some models, such as those with active branches, are not supported properly by geometry
files yet.)
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J. Tuning and Debugging

The (T)olerances/debugging menu selection gives the user access to a number of internal
parameters that control the quantity of output and diagnostic information generated and
the way that the solver approaches the iterations it will perform. An explanation of these
parameters is given below:

Nprint If Nprint ≤ 0, the .dat file will contain only the final converged iteration of
the model. Otherwise, DeltaE saves every Nprintth intermediate iteration. If
Nprint ≥ 0, intermediate steps in every stack integration are included in the data
file. For Nprint > 0, every segment is displayed to the screen (equivalent to typing
the .out file). This can be useful in finding model errors that cause DeltaE to crash
before the first converged data point is ever stored. If Nprint < 0, a concise iter-
ation summary line is printed every -Nprint+1 intermediate iterations. By setting
Nprint to a larger negative integer, time-consuming screen output can be reduced,
which will make calculations run several times faster on machines with good floating
point performance. The summary line contains only the iteration number and the
root-mean-square sum of the errors (targets − results), and the line will overstrike
itself. If Nprint = 0, the iteration count and the complete guess and (target−result)
vectors are displayed on sequential lines. Default: −1.

PlotDat This variable controls output generated during plots, where multiple solutions are
processed sequentially. If PlotDat ≥ 0, all error messages that occur when DeltaE
has doubts about the convergence of a datapoint are announced (on a MacIntosh, ‘OK’
must be clicked in the alert box before calculations will continue. For other values of
PlotDat, DeltaE will continue silently, but will still write the messages to the .dat
file and mark the lines in the .plt file with a ‘∗.’ If PlotDat ≥ 1, all converged
endpoints are written to the .dat file (it can become quite large!). For PlotDat = 0,
only the most recent is kept. Default: 0.

tolerance Recommended range: 10−9—10−2. This value governs the point at whichDeltaE
considers its iterations finished. The default value is close to the limit that can be
reached using single-precision arithmetic (all DeltaE calculations are double preci-
sion). This value does not relate directly to errors between any particular result and
its target value; it concerns changes in the norm of the error vector. Default: 10−5.

Runge-Kutta steps This is an even integer that determines the number of integration steps
used to span each stack-type segment, turbulent duct, or cone. It does not affect other
segment types. It also determines the resolution with which state variable plots (the
(G)enerate option described in the preceding section) are printed: Nint/2 lines per
segment. Larger values will cause a slower, more accurate computation. Small values
will increase speed at the price of integration accuracy, but may cause convergence
problems if the specified tolerance is too small. Output from every other step can be
enabled with the Nprint parameter. Default: 10.
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Normalization mode In a numerical problem where all of the input variables in the guess
vector and all of the output variables used in the target vector are of wildly different
magnitudes, a difficulty arises in choosing how much to change each variable and how
much to weigh the errors between the target and the result values. Particularly, this
affects HARD- and SOFTEnd segments. A 0.01 K error in a heat exchanger temperature
is fairly benign to us, but in the complex end impedance, an error of 0.01 could leave us
with hundreds of watts of power flow where there must be zero. In the standard mode
(1), DeltaE uses the solver’s internal method to normalize the solution vector, which
usually does a reasonable job. For pathological cases, DeltaE has a special mode
(2) that tries to normalize all input variables and output variable differences to unity.
This can present its own problems, however, since we do not know how to normalize
zero input variables (phases are a special case, automatically normalized by 360◦). In
normalizing outputs, problems can occur if the model is very far from being converged,
giving large initial error values; if it is very close to being converged, the errors could
be near zero, presenting the other problem. Use mode 1 whenever possible, and mode
2 when you must. It may sometimes help to specify a zero input (target or guess)
variable as some tolerably small nonzero number when using this mode. Default: 1.

Step bound factor recommended range: 0.01—100. This value regulates the size of initial
excursions DeltaE makes from initial guesses to find the directions in which it must
iterate. Some difficult cases can benefit by reducing this value. Default: 100.

FCNerr There is a limit to the accuracy with which a computer can calculate the ‘function’
that represents one complete pass through a model. The assumed value of this error
affects the increments between iterations that the solver will choose; if the increments
are too small, the effect on the result will be unpredictable. Larger values of FCNerr
can speed iterations, with a less accurate endpoint. Too small a value can cause the
solver to lose its way completely. This quantity is system-dependent, and it may
be necessary to increase it slightly for very complex models. Recommended range:
> 5× 10−15. Default: 10−10.

Minimum Temperature There is a temperature floor, 10 K by default, to prevent DeltaE ’s
solver from exploring unphysical temperatures such as negative temperatures. Brave
users with special needs at lower temperatures (and generally with their own, external
thermophysical properties files!) can set this floor to a lower value. (Some of DeltaE’s
internal fluids use a higher temperature floor. He-Ar mix, for example, does not
calculate properties below 70 K, in order to prevent unreasonable values from being
generated).

Display exergy The last two columns in .dat files are normally enthalpy and work flux.
Beginning with version 5.0, DeltaE will optionally append a column Xdot to keep
track of the exergy flux. When this mode is set, an environment temperature is also
requested to which the exergy change is referenced. Also in this mode, a line stating
the change in exergy flux at each segment is added. The latter is particularly useful
for tracking effects such as acoustic dissipation in the INSULATE mode, where energy
does not leave the system except through segments such as heat exchangers.
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Plot field delimiter Normally, DeltaE generates plots and state variable plot files with
the numbers in fixed width columns. Some spreadsheets and plotting packages do not
process these files as well as they do delimited text. If plot_f_sep is set to 1, a comma
will be placed between columns in each of these plot types.

J.1. Initialization files.

If any of the above parameters are modified from their default values, you will generally
want to keep the new values for every new run on the current model, and reuse them every
time you execute the program. Therefore, whenever the (T)olerances/debugging option
is used to change the default settings, all of the tunable parameters are written to a special
file when the model is saved. This file has the same base filename as the model, with the
extension ini. Whenever a new model is loaded, DeltaE checks for a .ini file in the same
directory with a matching base filename and loads these settings if it is found. This file
is written in NAMELIST format which makes it easy to examine and modify using any text
editor.

Frequently, a collection of similar models will reside in a single subdirectory, and these
files will share identical custom settings. For these situations, any .ini file can be copied
(or renamed) to default.ini and DeltaE will use the settings within it for any model
run from the same directory. If a model has its own individual .ini, its settings will take
precedence.
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VI. Reference

A. General

DeltaE solves the one-dimensional wave equation, with temperature evolution, in the usual
low-amplitude, “acoustic” approximation.

In each pass, DeltaE integrates from BEGINning to HARDEnd or SOFTEnd, with respect
to 5 real variables: real Tm(x), complex p1(x), and complex U1(x). It uses the differential
(or simpler) equations appropriate for each segment, with the evolution of these variables in
each segment controlled by local parameters, such as geometry and energy flow, and global
parameters, such as frequency and mean pressure. Continuity of Tm, p1, and U1 are used at
the junctions between segments.

In general, a single pass of DeltaE’s integration does not result in desired values of all
variables. A shooting method is used to adjust chosen initial variables, called “guesses,” in
order to hit desired results, called “targets.” Initial guesses are provided by the user, or
(more commonly) by a previous run of DeltaE.

The table below serves as a guide to choice of guess and target variables.

DeltaE has two modes for handling total energy flow Ḣ2 in segments other than stacks
and heat exchangers, i.e., in ducts, cones, compliances, impedances, and the like. Segments
INSULate and CONDUct control this mode in subsequent segments; conduction mode is the
default if neither INSULate nor CONDUct is present. In insulated mode, Ḣout = Ḣin in ducts,
cones, etc. In conduction mode, Ḣout = Ėout in these segments, independent of the value
of Ḣin. Use insulated mode when you want to place ducts, compliances, or impedances be-
tween stacks and heat exchangers, and when you want to model insulated acoustic networks
attached to thermoacoustic devices. Use conduction mode when you don’t care about Ḣ.
(The mode also has an effect on the calculation of Q̇ in HX, TX, etc. when they appear after
a stack; see HX subsection below for details.)
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Table VI.1: Choosing guesses and targets.

Variables we think of Variables we think of
as fixed as results

Inputs for each pass of
DeltaE. Includes T-begin,
p-begin, U-begin, p-mean,
freq, all dimensions, ’ducer
coefficients, volts @VDUCEr,
heat at most HX,
gas concentration.

simply fixed in input file guess

Results from each pass of
DeltaE. Includes all T , p,
U except in BEGIN; heat @
HXLASt in CONDUCT mode;
current in VDUCErs;
combinations of above such
as RPNTArg or z at ends.

target simply results in .out
and .dat files

B. Segments

All of DeltaE’s segment types are listed by functional grouping in this section. An alpha-
betical listing and cross-reference is presented at the end of the section.

B.1. Ducts, cones

Segment types: DUCT, ISODUct, INSDUct, CONE, ISOCOne, INSCOne

Sample input-file segments:

DUCT comments typed here are retained in output
3.14e-4 m2 area
0.0628 m perim
0.1 m length
helium gas
copper solid

ISOCONE this one is square
1.0 m2 Initial Area
4.0 m In Perim
2.0 m Length
0.25 m2 Final area
2.0 m Final perim
air gas
ideal solid
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Use:

Use for ducts and cones of any cross-sectional shape (e.g., square, circular) by giving suitable
area and perimeter. DUCT and CONE are preferred. The INS and ISO varieties are leftovers
from earlier versions of DeltaE, before segments INSULATE and CONDUCT were created to
control thermal contact at the side walls. Mean temperature is independent of x.

Computation algorithm:

Tm is not affected by ducts.

In laminar ducts of length L, p1 and U1 are calculated by

pout = pin cos kL− iωρm
(1− fν)kA

Uin sin kL,

Uout = Uin cos kL− i(1− fν)kA

ωρm
pin sin kL, (VI.1)

with complex wavevector k given by

k =
ω

a

s
1 + (γ − 1)fκ/(1 + �s)

1− fν
. (VI.2)

In cones, p1 and U1 evolve according to

dp1
dx

= − iωρm
(1− fν)A

U1,

dU1
dx

= − iAω

ρma
2

·
1 +

γ − 1
1 + �s

fκ

¸
p1, (VI.3)

which are equivalent to the lossy Webster horn equation·
1 +

γ − 1
1 + �s

fκ

¸
p1 +

a2

ω2
1

A

d

dx

·
(1− fν)A

dp1
dx

¸
= 0. (VI.4)

The perimeter varies linearly from its initial value to its final value; area varies quadratically.
Hence, circular cones have circular cross-sections everywhere, with diameter varying linearly
with axial position.
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In very narrow ducts and cones, for R/δ < 25, fκ and fν are calculated using complex
Bessel functions

fκ =
2J1[(i− 1)r0/δκ]

(i− 1)(r0/δκ)J0[(i− 1)r0/δκ] , fν =
2J1[(i− 1)r0/δν]

(i− 1)(r0/δν)J0[(i− 1)r0/δν] . (VI.5)

Where R/δ > 30, the boundary-layer approximation is used:

fκ = (1− i)Πδκ/2A, fν = (1− i)Πδν/2A. (VI.6)

For intermediate values, linear interpolation is used to make a smooth match between the two
regimes. While the narrow duct solution assumes a circular cross-section, the shape of the
duct is irrelevant in the boundary-layer approximation. A square duct with dimensions much
larger than the penetration depth can be modeled simply by choosing perimeter = 4

√
area,

for example.

In all cases, boundary-layer approximation is used for the effect of the solid:

�s =

µ
Kρmcp
Ksρscs

¶1/2
. (VI.7)

The exiting total energy flow Ḣout is computed as Ḣout = Ėout for DUCT and CONE in
conduction mode, and for ISODuct and ISOCone in either mode. This essentially assumes
that the duct wall is thermally anchored, so heat generated by acoustic power dissipation is
carried away externally. Thermoacoustic heat transport along the perimeter, which in fact
contributes a small difference between Ḣ and Ė in ducts, is neglected.

The exiting total energy flow Ḣout is computed as Ḣout = Ḣin for DUCT and CONE in
insulated mode, and for INSDuct and INSCone in either mode. This essentially assumes
that the side walls are thermally insulated, so that the heat generated by acoustic power
dissipation is deposited in an adjacent heat exchanger. If several INSDUcts and/or INSCOnes
are strung together, the power dissipated in all of them should show up in the nearest heat
exchanger.

(See also STKDUct, which allows a temperature gradient along a duct. It is described
under Stacks below.)

Turbulence extensions:

DeltaE’s turbulence algorithm assumes that turbulent oscillatory flow is described by the
Moody friction factor at each instant of time during the oscillatory flow. [See any engineering
fluid mechanics textbook to review the Moody friction factor as a function of Reynolds
number and relative roughness of the pipe wall.] This assumption must be excellent in the
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low frequency limit, in which R/δν −→ 0. This limit is approached in many inertances for
pulse tube refrigerators. We do not know how good the assumption is for large R/δν, which
is of interest in the resonators of standing-wave thermoacoustic systems. For experimental
validation of the assumption for intermediate R/δν , see Ref. [18].

DeltaE’s turbulence algorithm can be enabled in DUCTs, CONEs, ISODUCTs, INSDUCTs,
ISOCONEs, and INSCONEs. Tm is unchanged, and p1 and U1 are numerically integrated ac-
cording to Eqs. VI.3 above, with fν and fκ modified as described below to account for the
turbulence. To enable the turbulence algorithm, include (or (m)odify, from within the
program) parameter d in the ’DUCT segment in the input/output file (use parameter f for
’CONEs). Parameter d is the relative roughness ε, whose definition can be found in fluid-
mechanics textbooks: roughness height divided by pipe diameter. A typical value might be
10−3. Setting this parameter equal to minus one makes that line of the input/output file
disappear, returning the ’CONE calculation to laminar.

A sample of a modified duct segment, with turbulence enabled, is given below.

!--------------------------------- 6 ---------------------------------
ISODUCT Cold Duct
4.0000E-03 a Area m^2 S:-2 1.1129E+05 A |p| Pa
0.2220 b Perim m Fnc( 2a) -176.6 B Ph(p) deg
3.650 c Length m 2.7085E-05 C |U| m^3/s
1.0000E-04 d Srough -176.7 D Ph(U) deg

1.507 E Hdot W
helium Gas type 1.507 F Edot W

The portion of the .dat file corresponding to the above duct segment is as follows:

!------------------------------------ 6 ------------------------------------
ISODUCT Cold Duct
Re=0.29E+06, r/dn= 210.7, m= 1.1574, m-prime=0.9987 at start;
Re=0.39E+06, r/dn= 210.7, m= 1.4568, m-prime=0.9970 peak @x= 1.2775
End of this segment is laminar.
Heat extracted: 137. Watts
306.6 -111099. -6592.1 -0.00003 0.00000 1.51 1.51

There are three new lines in the listing. The parameters given in the first two lines are
Reynolds number (based on diameter), the ratio of radius to viscous penetration depth δν ,
the dissipation multiplier m, the inertial multiplier m0 (see below), and the location along
the duct. The third line says that velocities return to a laminar regime before the end of the
duct. If the peak Reynolds number occurs at either end of the duct, or if the entire duct is
laminar, the middle line detailing the peak location will be omitted.

The volume flow rate and hence Reynolds number NR vary sinusoidally in time; hence,
the instantaneous Moody friction factor fM has a complicated time dependence. We simplify
this time dependence by essentially using a Taylor-series expansion around the peak Reynolds
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number:

fM(t) ' fM +
dfM
dNR

NR

|U1|
¡
Re
£
U1e

iωt
¤− |U1|¢ , (VI.8)

where fM and the derivative on the right-hand side are evaluated at the peak Reynolds
number. It is then straightforward to integrate the instantaneous power dissipation over a
full cycle, obtaining for the time-averaged power dissipation per unit length

dĖ

dx
=

ρ |U1|3
3π3R5

·
fM − (1− 9π/32)NR

dfM
dNR

¸
, (VI.9)

where the quantities in the square bracket are evaluated at the peak Reynolds number.

When this is compared to the equivalent result for laminar flow

dĖ

dx
=

ρ |U1|2 ω
2πR2

Re

·
i

1− fν

¸
, (VI.10)

it is apparent that turbulence multiplies the dissipation by a factor m given by the ratio of
the two expressions above:

m =
δ2νNR

6πR2
[fM − (1− 9π/32)NR dfM/dNR]

Re [i/ (1− fν)]
. (VI.11)

DeltaE evaluates fM and dfM/dNR as a function of Reynolds number and ε using the
iterative expression

1√
fM

= 1.74− 2 log10
µ
2ε+

18.7

NR

√
fM

¶
, (VI.12)

which is a remarkably good approximation to the Moody friction factor [R. M. Olson, Es-
sentials of Engineering Fluid Mechanics]. To account for turbulence, DeltaE increases the
resistive component of the pressure gradient, and hence the viscous power dissipation, by
m. It decreases the inertial pressure gradient by

m0 =
µ
1− δν/R

1− δν/mR

¶2
(VI.13)

to correct approximately for the steeper velocity gradient at the wall, which increases the
effective area open to gas contributing to inertial effects. It also multiplies the thermal
penetration depth bym, in an attempt to account very approximately for changes in thermal
relaxation losses due to increased heat transfer. Both m and m0 are displayed in the *.dat
file.

At low enough velocities, m −→ 1 and DeltaE reverts to a laminar calculation. The
m = 1 boundary between laminar and turbulent zones in DeltaE occurs roughly at

NR ' 2000 for R/δν < 2, (VI.14)
NR

R/δν
' 1000 for R/δν > 2. (VI.15)
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DeltaE versions prior to 3.3 had a simpler turbulence algorithm, which was adequate for
standing-wave resonators but not for the Reynolds numbers and R/δν ’s found in inertances
for pulse-tube refrigerators. That algorithm was enabled by setting perimeters negative
instead of positive in ’CONES. If you still have old DeltaE output files with negative perime-
ters, the current version of DeltaE should be able to read and interpret them; it will save
them in the new format.

B.2. Lumped elements: compliance, endcap, impedance

Segment types: COMPLiance, ENDCAp, IMPEDance

Sample input-file segments:

ENDCAP a surface with thermal dissipation
1.134e-3 m2 Area
SAMEAS 0 Gas
ideal solid

COMPLIANCE this one is a sphere
0.1257 m2 Area
4.19e-3 m3 Volume
0.859hexe Gas
nickel solid

IMPEDANCE just a lumped series impedance
1.0 Pa-s/m3 Re(Z)
-0.2 Pa-s/m3 Im(Z)
helium

! Blank lines at ‘‘solid’’ location are interpreted as ‘‘ideal’’ solid

Use:

An endcap is a surface area with thermal dissipation. It always absorbs acoustic power. A
compliance is exactly that: a lumped acoustic volume element with surface thermal dissipa-
tion. An impedance is a lumped series complex impedance.

Computation algorithms:

An endcap does not affect temperature or pressure amplitude; volume flow changes according
to

Uout = Uin − ωp1
ρa2

γ − 1
1 + �s

A
δκ
2
. (VI.16)
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Pressure amplitude and temperature are unchanged by a compliance; volume flow changes
according to

Uout = Uin − i
ωp1
ρa2

·
V − i

γ − 1
1 + �s

A
δκ
2

¸
. (VI.17)

In both cases,

�s =

µ
Kρmcp
Ksρscs

¶1/2
. (VI.18)

At an impedance, volume flow rate and temperature are unchanged; pressure changes
according to pout = pin − ZU1.

The exiting total energy flow Ḣout is computed as Ḣout = Ėout for conduction mode.
This essentially assumes that the component is thermally anchored, so heat generated by
acoustic power dissipation is carried away externally.

The exiting total energy flow Ḣout is computed as Ḣout = Ḣin in insulated mode. This
essentially assumes that the component is thermally insulated, so that the heat generated
by acoustic power dissipation must somehow be deposited elsewhere, either upstream or
downstream, such as in an adjacent heat exchanger (or flow out through a BEGIN or ’END
segment).

B.3. Transducers, branches

Segment types: BRANCh, OPNBRanch, PISTBranch, VDUCEr, IDUCEr, VSPEAker,
ISPEAker, VEDUCer, IEDUCer, VESPEaker, IESPEaker

Sample input-file segments:

BRANCH
1 Pa-s/m3 Re(Z)
1. Pa-s/m3 Im(Z)
0.500hear
ideal

OPNBRANCH
.05 Pa-s/m Re(Z)/k^2
.2 Pa-s/m2 Im(Z)/k
air

PISTBRAN Baffled Piston
.05 Radius m
air

VDUCER
1.000E-09 a Re(Ze) ohms
.000 b Im(Ze) ohms
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1.000E+04 c Re(T1) V-s/m^3
.000 d Im(T1) V-s/m^3

-1.000E+04 e Re(T2) Pa/A
.000 f Im(T2) Pa/A
1.000E-09 g Re(Zm) Pa-s/m^3
1.000E-09 h Im(Zm) Pa-s/m^3
10.0 i AplVol V

SAMEAS 0 Gas type
ideal Solid type

VEDUCER Enclosed driver
1.000E-09 a Re(Ze) ohms
.000 b Im(Ze) ohms
1.000E+04 c Re(T1) V-s/m^3
.000 d Im(T1) V-s/m^3

-1.000E+04 e Re(T2) Pa/A
.000 f Im(T2) Pa/A
1.000E-09 g Re(Zm) Pa-s/m^3
1.000E-09 h Im(Zm) Pa-s/m^3
10.0 i Vin V
45.0 j Ph(Vin) deg

SAMEAS 0 Gas type
ideal Solid type

IDUCEr or IEDUCer: same as VDUCEr or VEDUCer, except that current appears in line i (and
phase of it on line j for enclosed units) instead of voltage.

VSPEAKER
6.000E-04 a Area m^2
6.00 b R ohms
.000 c L H
8.00 d B x L T-m
5.000E-03 e M kg
.000 f K N/m
.000 g Rm N-s/m
-22.5 h AplVol V

SAMEAS 0 Gas type
ideal Solid type

VESPEAKER
6.000E-04 a Area m^2
6.00 b R ohms
.000 c L H
8.00 d B x L T-m
5.000E-03 e M kg
.000 f K N/m
.000 g Rm N-s/m
62.0 h Vin V
-37.2 i Ph(Vin) deg
SAMEAS 0 Gas type
ideal Solid type

ISPEAker or IESPEaker: same as VSPEAker or VESPEaker, except that current appears in
line h (and phase of it on line i for enclosed units) instead of voltage.
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Figure VI.1: BRANCH (left) and branched ’DUCER or ’SPEAKER (right).

Figure VI.2: Enclosed ’EDUCer or ’ESPEaker.

Use:

BRANCh, OPNBRanch, and PISTBranch are side branches with fixed impedances. With BRANCh,
the user specifies the real and imaginary parts of the impedance, assumed independent of
frequency. OPNBRanch and PISTBranch incorporate the frequency dependence of radiation
impedance. Thus radiation impedance at the end of an open tube radiating to 4π solid
angle can be modeled as an OPNBRanch followed immediately by a HARDEnd. PISTBran
approximates the radiation impedance of a baffled piston of the given radius in radiating
into the specified fluid.

The ’DUCErs and ’SPEAkers are electroacoustic transducers. ’DUCErs have frequency-
independent parameters; ’SPEAkers let the user specify mass, spring constant, force con-
stant, resistance, and inductance, so that frequency-dependent (even resonant) transducers
can be modeled. With IDUCEr and ISPEAker, the user specifies the (real) current, and each
pass of DeltaE calculates the (complex) voltage; with VDUCEr and VSPEAker, the user spec-
ifies voltage, and DeltaE computes current. IDUCEr and ISPEAker cannot be used with
zero mechanical impedance because this would lead to a division of zero by zero (see below).
Hence, use VDUCEr or VSPEAker for resonant or massless-and-springless transducers.

’SPEAker-type segments incorporate dissipation losses over their area as if they included
an ENDCAp, but ’DUCEr-type segments, which have no area parameter, do not. Enclosed
’ESPEaker-type segments include dissipation losses for both sides of the driver.

Branched transducer elements, which require only magnitude of voltage or current ap-
plied as an input, effectively anchor the phase to zero for that parameter. The phase of
pressure and/or velocity, as given in the BEGIN statement, must usually be allowed to vary
(i.e. guessed) in accordance with this reference. This effectively limits a model to only one
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V or ISPEAker (or ’DUCEr), unless they are wired exactly in phase (or 180◦ out). Enclosed
transducers, however, have a phase input which allows them to be used in oddly phased
pairs, or where the phase reference is determined by a BEGIN statement, for example.

Computation algorithms:

None of these segments affects Tm.

A branch is a side branch with complex impedance Z. Pressure is unchanged, but volume
flow rate changes according to Uout = Uin − p1/Z. For an open branch, the numbers in the
input file are multiplied by (ω/a)2 and ω/a respectively to obtain the impedance. For a
baffled piston of radius r where the wavenumber is k = ω/a locally, the PISTBran radiation
impedance is given by

Zrad =
ρa

A

(1− 2J1(2kr)
2kr

+ i


µ
4/π
2kr
+

√
8/π sin(2kr−3π/4)

(2kr)3/2

¶
If 2kr > 2.68,

(4/π)2kr
3

³
1− (2kr)2

15

´
otherwise.

 (VI.19)

Output Edot_B gives the acoustic power flowing into the BRANCH.

A branched transducer IDUCEr, VDUCEr, ISPEAKer, VSPEAKer is an object attached
as shown in the figure like a branch impedance, but obeying the complex equations V1 =
ZeI1 + τUx , p1 = τ 0I1 + ZmUx. Pressure is unchanged, but volume flow rate changes
according to Uout = Uin − Ux. The volume flow rate of the transducer, Ux, is displayed in
the output column.

There are three cases of interest for a branched transducer:

1. If an electrical load impedance Zext is hung on the transducer, it should be covered
using a BRANCH segment, with Zbranch = p1/U1 = Zm − ττ 0/(Ze + Zext) .

2. If current I1 is given (here, we take its phase to be real), then Ux = (p1 − τ 0I1)/Zm

and V1 = ZeI1 + τUx .

3. If voltage V1 is given (and we take its phase to be real), then I1 = (ZmV1−τp1)/(ZeZm−
ττ 0) and Ux = (V1 − ZeI1)/τ .

An enclosed transducer IEDUCer, VEDUCer, IESPEAker, VESPEAker is an object attached
in series with other segments, as shown in Fig. VI.2. Volume flow rate is nearly unchanged
(except for surface thermal losses–see below), but pressure is changed by the force exerted
by the transducer, obeying the complex equations V1 = ZeI1−τU1 , pout−pin = τ 0I1−ZmU1.

There are three cases of interest for an enclosed (series) transducer:
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1. If an electrical load impedance Zext is hung on the transducer, it should be covered
using an IMPEDANCE segment, with Zimp = Zm − ττ 0/(Ze + Zext) .

2. If current I1 is given, then pout = pin + τ 0I1 − ZmU1 and V1 = ZeI1 − τU1 .

3. If voltage V1 is given, then I1 = (V1 + τU1)/Ze and pout = pin + τ 0I1 − ZmU1 .

In the case of speakers, Ze = R+ jωL ; τ = −τ 0 = Bl/A ; Zm = Rm/A
2+ j(ωm− k/ω)/A2.

Thermal surface losses are computed for area A using the same formula as for an ENDCAp.
Branch speakers are assumed to have area A exposed to the oscillating pressure. Enclosed
speakers have area A exposed to pin and area A exposed to pout, because typically both sides
of the speaker experience oscillatory pressure. As described above for ENDCAps, thermal
surface losses manifest themselves as a small change in volume flow rate.

The Px outputs in the enclosed segments give the complex pressure difference across the
transducer.

Note that IDUCEr and ISPEAker will crash if Zm is zero, so it is best to use VDUCEr or
VSPEAker for mechanically ideal or resonant transducers.

B.4. Heat exchangers

Segment types: HX, TX, SX, PX; HXFRSt, HXMIDl, HXLASt; TXFRSt, TXMIDl, TXLASt;
SXFRSt, SXMIDl, SXLASt, PXFRSt, PXMIDl, PXLASt

Sample input-file segments:

HX parallel-plate heat exchanger
sameas 1 Area
0.600 GasA/A
6.35e-3 m Length
1.9e-4 m y0 = half of plate spacing
-20.0 W HeatIn
300. K Est-T
sameas 0 Gas
copper solid

TXFRST tube-in-shell heat exchanger
0.2 a Area m^2
.188 b GasA/A
.400 c Length m
6.350E-03 d radius m (radius of each tube)
1.818E+05 e HeatIn W
1.000E+03 f Est-T K

sameas 0 Gas type
nickel Solid type
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SX Hot heat exchanger
1.029E-03 a Area m^2 total cross sectional area
0.690 b VolPor volumetric porosity
2.000E-02 c Length m
6.450E-05 d r_H m hydraulic radius
-284. e HeatIn W
300. f Est-T K (t)

helium Gas type
copper Solid type

PX
1.0E-4 a Area m^2 total cross-sectional area
0.70 b VolPor volumetric porosity
0.04 c Length m
4.000E-05 d r_H m hydraulic radius = gas volume / gas-solid contact area
900. e HeatIn W
0.07 f f_con
0.22 g f_exp
0.035 h h_con
0.22 i h_exp
300.0 j Est-T K

helium Gas type
copper Solid type

*XMIDl and *XLASt use same format.

Use:

Heat exchangers are used to inject or remove heat. They necessarily have surface area,
so they experience both viscous and thermal dissipation of acoustic power. In HX...s the
thermoacoustic working fluid is between parallel plates; in TX...s it is inside cylindrical
tubes; and in SX...s the geometry is randomly-stacked screens. The PX.... segments allow
the user to control heat-exchanger parameters for which friction factor and heat transfer
coefficient are power laws in Reynold’s number. The derivation assumes fairly good thermal
contact between fluid and solid.

HX, TX, SX, and PX are preferred. The ...FRST, ...MIDL, and LAST varieties are leftovers
from earlier versions of DeltaE, when DeltaE was unable to ascertain the environment of
the heat exchanger.

Heat exchangers have a temperature difference between metal temperature and fluid
mean temperature that is proportional to the heat flow. The proportionality constant is not
well verified experimentally; we believe it to within a factor of 2.

SX...s are valid only for hydraulic radius smaller than thermal and viscous penetration
depths. There is no warning if this bound is exceeded.
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Computation algorithms:

None of these segments affects temperature; i.e., Tm, the mean gas temperature, is un-
changed. However, these segments estimate the temperature difference between the gas and
the adjacent metal.

In HX... and TX... heat exchangers, pout and Uout are calculated using

pout = pin cos kL− iωρm
(1− fν)kAfluid

Uin sin kL,

Uout = Uin cos kL− i(1− fν)kAfluid
ωρm

pin sin kL, (VI.20)

with complex wavevector k, given by

k =
ω

a

s
1 + (γ − 1)fκ/(1 + �s)

1− fν
. (VI.21)

HX...s use parallel plate geometry in computing fκ, fν , and �s:

fκ =
tanh[(1 + i)y0/δκ]

(1 + i)y0/δκ
, fν =

tanh[(1 + i)y0/δν]

(1 + i)y0/δν
,

�s =

µ
Kρmcp
Ksρscs

¶1/2
tanh[(1 + i)y0/δκ]

tanh[(1 + i)c/δs]
. (VI.22)

Similarly, TX...s use cylindrical geometry in computing fκ, fν, and �s: For R/δ < 25, fκ
and fν are calculated using complex Bessel functions

fκ =
2J1[(i− 1)r0/δκ]

(i− 1)(r0/δκ)J0[(i− 1)r0/δκ] , fν =
2J1[(i− 1)r0/δκ]

(i− 1)(r0/δκ)J0[(i− 1)r0/δκ] . (VI.23)

Where R/δ > 30, the boundary-layer approximation is used:

fκ = (1− i)Πδκ/2A, fν = (1− i)Πδν/2A. (VI.24)

For intermediate values, linear interpolation is used to make a smooth match between the
two regimes. In both cases, �s is calculated using

�s =

µ
Kρmcp
Ksρscs

¶1/2
fκ(1 + i)r0/2δκ
tanh[(1 + i)c/δs]

. (VI.25)

In TX..., the radius is that of one circular pore, so that for a heat exchanger comprised
of N circular pores, the total cross-sectional area available to the working fluid is Nπr20 =
(Area)(GasA/A).

In SX...,

dp1
dx

= −iωρm
·
1 +

(1− φ)2

2(2φ− 1)
¸
hu1i− µ

r2h

µ
c1(φ)

8
+

c2(φ)R1
3π

¶
hu1i , (VI.26)
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d hu1i
dx

= − iωγ

ρma
2
p1 +

iωTmβ
2

ρmcp

�s + (gc + e2iθpgv)�h
1 + �s + (gc + e2iθT gv)�h

p1, (VI.27)

using

c1(φ) = 1268− 3545φ+ 2544φ2, c2(φ) = −2.82 + 10.7φ− 8.6φ2, (VI.28)

b(φ) = 3.81− 11.29φ+ 9.47φ2, (VI.29)

R1 = 4 |hu1i| rhρm/µ, (VI.30)

�s = φρmcp/(1− φ)ρscs, �h = 8ir
2
h/b(φ)σ

1/3δ2κ, (VI.31)

δ2κ = 2K/ωρmcp, (VI.32)

θp = phase(hu1i)− phase (p1) , θT = phase(hu1i)− phase
³
hT iu,1

´
, (VI.33)

gc =
2

π

Z π/2

0

dz

1 +R
3/5
1 cos3/5(z)

, gv = −2
π

Z π/2

0

cos(2z) dz

1 +R
3/5
1 cos3/5(z)

. (VI.34)

Here, the spatial average oscillatory velocity hu1i = hU1i /φA, where φ is volumetric porosity
and A is regenerator cross sectional area. These expressions were derived with the assump-
tion that the thermal and viscous penetration depths are much larger than rh.

The PX... segments can be used when friction factor and heat-transfer coefficient are
power laws in Reynolds number. The derivation assumes fairly good thermal contact between
fluid and solid. Area A is the total cross sectional area of the heat exchanger, VolPor φ is
its volumetric porosity, and L is its length, so that AφL is the total volume of gas in the
heat exchanger. The value r_H = rh is the hydraulic radius, defined as the ratio of total
gas volume to gas—solid contact area. The steady-state friction factor and heat-transfer
coefficients must be known by the user in power-law forms:

f = fcon (R)
−fexp ,

St Pr2/3 = hcon (R)
−hexp ,

where Reynolds number R is defined in the usual way as

R =
4Urhρm
φAµ

=
4 hui rhρm

µ
.

Note: this is Fanning friction factor, the friction factor used by Kays and London, so that
instantaneously

dp

dx
=

f

rh

1

2
ρ hui2 = µ

8r2h
f R hui . (VI.35)

The pressure drop is computed using

dp1
dx

= −iωρm hu1i− If
µm
8r2h

fcon |R1|1−fexp hu1i
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where

If =
2

π

Z π

0

sin3−fexp ωt d(ωt).

Thermal-relaxation effects due to oscillating compressibility are computed using the same
equations for d hu1i /dx as for screen heat exchangers but with

gc = |R1|hexp−1 2
π

Z π/2

0

coshexp−1 ωt d(ωt),

gv = − |R1|hexp−1 2
π

Z π/2

0

cos 2ωt coshexp−1 ωt d(ωt),

b(φ) = hcon.

The metal temperature is computed relative to the fluid mean temperature using

∆T = Ih
Q̇

K hcon |R1|1−hexp
r2h

φAxeff
, (VI.36)

where xeff = min{2 |hu1i| /ω, L} , R1 is the Reynolds number amplitude (based on the
amplitude of the velocity), and

Ih =
4

π

Z π/2

0

coshexp+1 ωt d(ωt) =
hexp

hexp + 1

4

π

Z π/2

0

coshexp−1 ωt d(ωt). (VI.37)

(The second form of Ih, obtained from the first via integration by parts, expresses Ih in
terms of gc above.) To maintain DeltaE ’s high speed, the trigonometric integrals are not
evaluated by DeltaE; we use simple functional fits to these integrals in DeltaE.

In HX...s and TX...s, metal temperature is computed relative to fluid mean temperature
using

∆T =
Q̇

K

yeff
Πxeff

(VI.38)

where

xeff = min{peak-to-peak displacement amplitude, HX length}
yeff = min{δκ, rh},

with hydraulic radius rh equal to y0 for HX...s and equal to half the circular pore radius for
TX...s. This expression may be quite inaccurate, but we believe it is better than nothing.
A little experimental evidence for it is presented in J. Acoust. Soc. Am. 92, 1151 (1992).
This expression and the duct turbulence algorithm are the only computations in DeltaE
that are not correct in the acoustic approximation. If you dislike it, use the gas temperatures
(available as outputs in the stack segment) instead of the metal temperatures for plotting
or targeting (using math segments).
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In SX...s, the metal temperature is computed relative to fluid mean temperature using

∆T =
Q̇

K

r2h(gc − gv)

b(φ)φAxeff
(VI.39)

where again xeff = min{peak-to-peak displacement amplitude, HX length}.

In PX...s, the metal temperature is computed relative to the fluid mean temperature
using

∆T = Ih
Q̇

K hconR
1−hexp
1

r2h
φAxeff

, (VI.40)

where xeff = min{2 |hu1i| /ω, L} , R1 is the Reynolds number based on the amplitude of the
velocity, and

Ih =
4

π

Z π/2

0

coshexp+1 ωt d(ωt). (VI.41)

Positive heat Q̇ (parameter “e”) flows into the apparatus. There are two kinds of Ḣ
calculations in heat exchangers. For almost all cases, the heat flow Q̇ is an input for each
pass of DeltaE. However, for ’..LASt, and for exchangers located downstream of stacks in
conduction mode, the heat is calculated as a result, usually assuming that Ḣ2 = Ė2 in the
subsequent segment but assuming Ḣ2 = 0 if the subsequent segment is an INS.... (If this
seems confusing, you will appreciate why DeltaE is evolving away from the use of INS...,
...FRST, ...MIDL, and ...LAST segments.

Most cases: Ḣout = Ḣin + Q̇.

’LASt: Q̇ = Ḣout−Ḣin. Ḣout = [0 if next segment is INSDUct or INSCOne; Ėout otherwise].

B.5. Stacks

Segment types: STKSLab, STKREct, STKCIrc, STKDUct, STKCOne, STKPIns,
STKSCreen, STKPOwerlaw

Sample input-file segments:

STKSLAB parallel-plate stack
SAMEAS 1 Area
0.724 GasA/A
7.85e-2 m Length
1.8e-4 m y0 (half the plate spacing)
4.0e-5 m Lplate (half the plate thickness)
SAMEAS 0 Gas
kapton Solid
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STKRECT rectangular-pore stack
SAMEAS 1 Area
0.694 GasA/A
7.85e-2 m Length
2.0e-4 m a (half of pore width)
4.0e-5 m Lplate (half the plate thickness)
4.0e-4 m b (pore area is 2a times 2b)
SAMEAS 0 Gas
stainless Solid

STKCIRC approximates hexagonal honeycomb stack
SAMEAS 1 (m^2) total area
0.81 gas area/total area
0.279 (m) length
0.50e-3 (m) radius of circular pore
0.05e-3 (m) L:half of sht thcknss
helium gas type
stainless stack material

STKDUCT boundary-layer approx
0.01 m2 area of gas
0.4 m perimeter (this duct is square)
1. m length
0.001 m2 wall material’s cross-sectional area
helium
stainless

STKCONE boundary-layer w/ taper
0.01 m2 area of gas
0.35 m perimeter
1. m length
sameas 8a
sameas 8b
0.001 fwall
helium
stainless

STKPINS Muller/Keolian pinstack invention
sameas 2a a area m^2
3.2e-4 b 2y0 m 2y0 = nearest-neighbor center-to-center distance
! in the hexagonal lattice
0.1 c Length m
4.e-5 d R pin m pin radius
helium
stainless

STKSCreen a screen regenerator
sameas 1a a Area m^2 cross section of regenerator

.673 b VolPor volumetric porosity
5.500E-02 c Length m
1.830E-05 d r_H m hydraulic radius
.300 e KsFrac fudge factor F for solid conduction

sameas 0 Gas type
stainless Solid type

STKPOwerlaw an etched foil regenerator
sameas 1a a Area m^2 cross section of regenerator

.700 b VolPor volumetric porosity
0.04 c Length m
40.e-6 d r_H m hydraulic radius
.300 e KsFrac fudge factor for solid conduction
36. f f_con
1.0 g f_exp

104



24. h h_con
0.8 i h_exp

sameas 0 Gas type
stainless Solid type

Use:

Use STK* segments for segments having dTm/dx 6= 0: the stacks of standing-wave thermo-
acoustic engines and refrigerators, the regenerators of Stirling engines and refrigerators, and
the pulse tubes and thermal-buffer tubes of orifice pulse-tube refrigerators, thermoacoustic-
Stirling hybrids, etc..

Use STKSLab for parallel-plate or jellyroll stacks (or regenerators). Use STKREct for
square or rectangular pores whose aspect ratio is not large (see Ref. [19].). Use STKCIrc for
circular or hexagonal pores. Use STKPIn for stacks comprised of pin arrays (see Ref. [20]). If
pore size or plate separation is much greater than thermal and viscous penetration depths,
use STKDUct or STKCOne. Use STKSCreen for stacked-screen regenerator (see Ref. [10]). Use
STKPOwerlaw for etched-foil regenerators, or any other regenerator for which friction factor
and heat-transfer coefficients follow power laws in Reynolds number.

In a STKCOne, the variable fwall (parameter ‘f’) determines the wall thickness. If fwall<
1, the wall thickness is constant, but if fwall> 1, the wall thickness is proportional to the
local cone radius (so that the wall stress can be constant–the minimum-weight, minimum-
thermal-conductivity design). Specifically,

For fwall< 1, wall thickness =fwall× initial perimeter

For fwall> 1, wall thickness = local perimeter/fwall, so
local wall cross-sectional area = (local perimeter)2/fwall.

Computation algorithm:

Except in STKSCreen and STKPOwerlaw, pressure propagates according to Rott’s wave equa-
tion, written in the form

dp1
dx

= − iωρm
(1− fν)Afluid

U1,

dU1
dx

= −iωAfluid
ρma

2

µ
1 +

(γ − 1)fκ
1 + �s

¶
p1 +

β(fκ − fν)

(1− fν)(1− σ)(1 + �s)

dTm
dx

U1, (VI.42)

105



subject to the condition that energy flow Ḣ2 is independent of x, which imposes the following
condition on Tm(x):

dTm
dx

=
Ḣ2 − 1

2
<
h
p1Ũ1

³
1− Tmβ(fκ−f̃ν)

(1+�s)(1+σ)(1−f̃ν)

´i
ρmcp|U1|2

2ωAfluid(1−σ)|1−fν |2=
h
f̃ν +

(fκ−f̃ν)(1+�sfν/fκ)
(1+�s)(1+σ)

i
−AfluidK −AsolidKsolid

. (VI.43)

For STKSLab,

fκ =
tanh[(1 + i)y0/δκ]

(1 + i)y0/δκ
, fν =

tanh[(1 + i)y0/δν]

(1 + i)y0/δν
,

�s =

µ
Kρmcp
Ksρscs

¶1/2
tanh[(1 + i)y0/δκ]

tanh[(1 + i)c/δs]
. (VI.44)

For STKREct,

fκ = 1− 64
π4

X
m,n
odd

1

m2n2Ymn(δκ)
, fν = 1− 64

π4

X
m,n
odd

1

m2n2Ymn(δν)
,

�s =

µ
Kρmcp
Ksρscs

¶1/2
fκ(1 + i)ab/δκ(a+ b)

tanh[(1 + i)c/δs]
,

where Ymn(δ) = 1− i
π2δ2

8a2b2
(b2m2 + a2n2) (VI.45)

For STKCIrc,

fκ =
2J1[(i− 1)r0/δκ]

(i− 1)(r0/δκ)J0[(i− 1)r0/δκ] , fν =
2J1[(i− 1)r0/δκ]

(i− 1)(r0/δκ)J0[(i− 1)r0/δκ] ,

�s =

µ
Kρmcp
Ksρscs

¶1/2
fκ(1 + i)r0/2δκ
tanh[(1 + i)c/δs]

. (VI.46)

For STKDUct or STKCOne,

fκ = (1− i)Πδκ/2A, fν = (1− i)Πδν/2A,

�s =

µ
Kρmcp
Ksρscs

¶1/2
1

tanh[(1 + i)c/δs]
, where c =

wall x-sect area
perimeter

, (VI.47)

so long as 2A/Πδν > 30. Otherwise, for 2A/Πδν < 25, the functions are the same as for
STKCIrc. In between, a linear combination is used.

For STKPIns,

fν = − δν
(i− 1)

2ri
r2o − r2i

Y1[(i− 1)ro/δν ]J1[(i− 1)ri/δν]− J1[(i− 1)ro/δν ]Y1[(i− 1)ri/δν]
Y1[(i− 1)ro/δν ]J0[(i− 1)ri/δν]− J1[(i− 1)ro/δν ]Y0[(i− 1)ri/δν] ,

fκ = − δκ
(i− 1)

2ri
r2o − r2i

Y1[(i− 1)ro/δκ]J1[(i− 1)ri/δκ]− J1[(i− 1)ro/δκ]Y1[(i− 1)ri/δκ]
Y1[(i− 1)ro/δκ]J0[(i− 1)ri/δκ]− J1[(i− 1)ro/δκ]Y0[(i− 1)ri/δκ] ,

and

�s =

µ
Kρmcp
Ksρscs

¶1/2 J0(p−iω/κsri)
J1(
p−iω/κsri)fκp−iω/κr

2
o − r2i
2ri

. (VI.48)
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In STKSLabs, STKRECts, STKCIrcs, and STKPIns, the “Area” (the first line of the input
file) is the total cross sectional area of the stack assembly, including both fluid cross section
and solid cross section. In STKSLabs, STKRECts, and STKCIrcs, Afluid = (Area) × (GasA/A)
and Asolid = (Area)×(1−GasA/A). Plate half thickness (the 4th line of the input file) is used
only for computing �s, not for computing heat conduction along x or what fraction of the
Area is available to the fluid. This allows separate accounting for area blocked by “ideal”
fins and by support struts or other structure. In most cases, �s is near 0, so plate thickness
need not be specified with much accuracy; GasA/A is far more important. Because of the
need to compute specialized functions, STKCIrcs compute more slowly than STKSLabs or
STKDUcts; STKPIns are slower still, and STKREcts are very slow, especially for large aspect
ratios. Hence, in the latter case, we recommend that STKSLabs be used until initial guesses
and geometry are very close to finalized.

In stacked screen regenerators, pressure, volume flow rate, mean temperature evolve
according to

dp1
dx

= −iωρm
·
1 +

(1− φ)2

2(2φ− 1)
¸
hu1i− µ

r2h

µ
c1(φ)

8
+

c2(φ)R1
3π

¶
hu1i , (VI.49)

d hu1i
dx

= − iωγ

ρma
2
p1 + β

dTm
dx

hu1i+

iωβ

·
Tmβ

ρmcp

�s + (gc + e2iθpgv)�h
1 + �s + (gc + e2iθT gv)�h

p1 − 1

iω

dTm
dx

�s + (gc − gv)�h
1 + �s + (gc + e2iθT gv)�h

hu1i
¸
,

(VI.50)

dTm
dx

=

½
<
·µ

Tmβ
�s + �h(gc + e2iθpgv)

1 + �s + �h(gc + e2iθT gv)
+ 1− Tmβ

¶
p1ghu1i¸− 2H2

φA

¾
/

½
ρmcp
ω
=
·

�s + �h(gc − gv)

1 + �s + �h(gc + e2iθT gv)

¸
hu1ighu1i+ 2Keff

1− φ

φ

¾
, (VI.51)

using

c1(φ) = 1268− 3545φ+ 2544φ2, c2(φ) = −2.82 + 10.7φ− 8.6φ2, (VI.52)

b(φ) = 3.81− 11.29φ+ 9.47φ2, (VI.53)

R1 = 4 |hu1i| rhρm/µ, (VI.54)

�s = φρmcp/(1− φ)ρscs, �h = 8ir
2
h/b(φ)σ

1/3δ2κ, (VI.55)

δ2κ = 2K/ωρmcp, (VI.56)

θp = phase(hu1i)− phase (p1) , θT = phase(hu1i)− phase
³
hT iu,1

´
, (VI.57)

gc =
2

π

Z π/2

0

dz

1 +R
3/5
1 cos3/5(z)

, gv = −2
π

Z π/2

0

cos(2z) dz

1 +R
3/5
1 cos3/5(z)

. (VI.58)
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These expressions were derived with the assumption that viscous and thermal penetra-
tion depths are much larger than rh. Here, the spatial average oscillatory velocity hu1i =
hU1i /φA, where φ is volumetric porosity and A is regenerator cross sectional area; and
Keff = FKs where F is a factor to reduce thermal conduction along x due to the poor
thermal contact between adjacent screen layers (Radebaugh [12] recommends F ≈ 0.1). F
can also be used to account for conduction in the case surrounding the regenerator.

STKPOwerlaw segments are calculated in the same manner as STKSCRN’s, with a few
exceptions. The friction factor and heat transfer coefficients are given by

f = fconR
−fexp ,

St Pr2/3 = hconR
−hexp ,

where Reynolds number R is defined in the usual way as

R =
4Urhρ

φAµ
.

[Note: this is Fanning friction factor, the friction factor used by Kays and London, so that
instantaneously dp/dx = (f/rh) 12ρu

2.] The pressure equation is replaced by

dp1
dx

= −iωρm
·
1 +

(1− φ)2

2(2φ− 1)
¸
hu1i− If

µ

8r2h
fconR

1−fexp
1 hu1i (VI.59)

where

If =
2

π

Z π

0

sin3−fexp(z)dz (VI.60)

In the volume flow rate and mean temperature equations, these parameters are redefined for
the power law stack:

gc = R
hexp−1
1

2

π

Z π/2

0

coshexp−1(z)dz (VI.61)

gv = −Rhexp−1
1

2

π

Z π/2

0

cos 2z coshexp−1(z)dz (VI.62)

b(φ) = hcon. (VI.63)

Values of φ, rh, F = Keff/Ks, fcon, fexp, hcon, and hextp for particular etched foil regenera-
tors can be obtained from Ran Yaron.

In both STKSCreen and STKPOwerlaw segments, the trigonometric integrals are not evalu-
ated byDeltaE; these integrals were performed once, off-line. We now use simple functional
fits during computation of either segment type.
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Computation with mean-flow enabled:

To enable mean-flow capability, put segment MEANFLOW in position 1, immediately following
the BEGIN segment (see Section VI B.6 for details). Its presence establishes a constant
mean mass flux through the subsequent segments, and modifies the behavior of STKSLAB’s,
STKCIRC’s, STKRECT’s, STKSCREEN’s, and STKPOWRLAW’s appropriately. (It does not yet have
any effect in other segments, so for example don’t use a TBRANCH expecting to be able to
split up the mean flow.) See Refs. [21, 22]. In the affected segments,

• Mean volume flow rate Um can vary with x, due to x dependence of Tm,

• The dependence of Tm on x is changed by the nonzero Um.

The display of information is slightly changed. As always, Hdot is the “acoustic”-plus-
longitudinal-conduction part of the total energy flux–not including the new mean-flow part
of the total energy flux, Ḣm = ρmwmUm, where wm is the enthalpy per unit mass. The .out
file shows Um and Ḣm at the end of each of the segments affected by meanflow.

The change in mean velocity is computed using

dUm

dx
= Umβ

dTm
dx

,

which comes from
dUm

dx
= −Um

ρm

dρm
dx

.

The temperature gradient in stacks is computed using constancy of total energy flux
Ḣtot = Ḣ+ Ḣm, where Ḣ is the old, original “acoustic”-plus-longitudinal-conduction energy
flux and Ḣm is the mean-flow contribution. In other words, we solve this equation for
dTm/dx :

Ḣtot =
1

2
<
"
p1fU1Ã1− Tmβ(fκ − efν)

(1 + �s)(1 + σ)(1− efν)
!#

+
ρmcp

2Afluidω(1− σ) |1− fν |2
dTm
dx

U1fU1=" efν + (fκ − efν)(1 + �sfν/fκ)

(1 + �s)(1 + σ)

#
−(AfluidK +AsolidKs)

dTm
dx

+ ρmwmUm

and use Ḣtot=constant to integrate our way through a stack. The only new thing in this
equation is the final term, ρmwmUm. As usual, the value of Ḣtot is determined by conditions
in segments other than the stack, such as the value of Um and the heat flows in adjacent
heat exchangers.
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B.6. Begin, ends, mean-flow mode, insulate/conduct mode

Segment types: TITLE, BEGIN, INSULate, CONDUct, HARDEnd, SOFTEnd, MEANFLOW

Sample input-file segments:

TITLE comments here are reproduced in .DAT and .OUT

BEGIN
1.0e6 Pa Mean P
500. Hz Freq.
300. K T-beg
3.0e4 Pa |p|@0
0.0 deg Ph(p)0
5.0e-4 m3/s |V|@0
0.000 deg Ph(V)0
0.00 W Hdot
helium Gas type

INSULATE

CONDUCT

MEANFLOW
1.E-04 U_m m^3/s
sameas 0 Gas type

HARDEND
0.000 R(1/z)
0.000 I(1/z)
SAMEAS 0 Gas type

SOFTEND
0. Re(z)
0. Im(z)
water

Use:

The initial segments of all input files must be TITLE and BEGIN. TITLE is just used to give
a comment field that gets reproduced in all subsequent files, so put a descriptive name in
its comment field. BEGIN is counted as the zeroth segment of the file. It is used to initialize
variables that are shared by subsequent segments (i.e., frequency, mean pressure, and Ḣ),
and the five variables required by each pass of DeltaE to get started (i.e., real and imaginary
parts of pressure amplitude and volume flow rate, and mean temperature).

Gas type isn’t really used here, but you have to give one anyway.

Parameter “h” in BEGIN is the initial value of Ḣ. When it is set equal to Ė (enter “Edot”
when (m)odifying parameter 0h), it disappears from the display, for backward compatibility
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with older versions of DeltaE.

BEGIN segments can be used anywhere in a DeltaE file, in order to set any or all of
its parameters to new values. This can be useful for packing two or more related DeltaE
models into a single file.

INSULATE causes Ḣ calculations in subsequent segments to be done in insulated mode;
CONDUCT causes Ḣ calculations in subsequent segments to be done in conduction mode.
Insulated mode basically enforces conservation of energy, so that the heat cannot leak out
of the system via the side walls of ducts, impedances, etc.; such heat must find its way to a
nearby heat exchanger.

The insulated/conduction mode does not affect stacks or most heat exchangers. Conduc-
tion mode is the default, and is the only mode that existed in DeltaE prior to version 5.
We hope that DeltaE will evolve more and more toward an exclusively insulated mode as
the years pass. Toward that end, segments such as TBRANCH and UNION also conserve energy
when insulated mode is in effect.

MEANFlow, when used, should always be in segment 1, immediately following the BEGIN
statement. Its presence establishes a constant mean mass flux through the subsequent seg-
ments, and modifies the behavior of mean-flow savvy segments (currently, these are: HXFRST,
HXMIDL, HXLAST, STKSLAB, STKRECT, and STKCIRC). This feature is still very experimental;
its effects on stack computation algorithms are described in the previous subsection.

Often, the final segment (except math segments) will be either HARDEnd or SOFTEnd.
These contain two or three default targets. Use HARDEnd if you want the complex volume
flow rate at the end of the apparatus to be zero. This is the usual case in a closed system.
Use SOFTEnd if you want complex pressure amplitude at the end to be zero. We find this
useful for symmetrical systems, where SOFTEnd indicates that the rest of the apparatus is a
mirror image of what is in the input file, and forces a complex pressure node. In both ’ENDs,
the complex impedances are made dimensionless according to z = Ap1/ρaU1, where A is the
area of the last segment with an area, and ρ and a are evaluated at the local temperature.

Disable these as targets if you want DeltaE to ignore the impedance. This approach is
useful in early stages of debugging a new model that doesn’t readily converge–it may let you
see what’s out of whack. Set these targets nonzero to model a nonzero end impedance–or
use BRANCh or OPNBRanch.

The third default target in the ...END segments, Ḣ, appears only in insulated mode.
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Computation algorithm:

BEGIN sets values of Tm, p1, U1, and Ḣ. INSULate and CONDUct sets and clears (respectively)
a bit that controls computations in most subsequent segments. MEANFlow sets the value of
Um. The ’ENDS leave all these variables unchanged.

B.7. Math segments

Segment types: RPNTArget, VOLMTarget, FREETarget, DIFFTarget, PRODTarget,
QUOTArget, EFFRTarget, COPRTarget, CONSTants.

Sample input-file segments:

RPNTARGET magU1 over omega A
0.01 desired gas displacement amplitude after segment five
5C 2 PI * / 0b / 5a /

VOLMTARGET
0.50 a targeted volume (cubic meters)
1A b BegAddr
10A c EndAddr

FREETARGET
500. Watts of power targeted at driver
3G Address of computed power at driver

DIFFTARGET
0.00 a targeted difference
1B b D1Addr
1L c D2Addr

PRODTARGET similar to DIFFTarget.
0.00 a targeted product
1B b M1Addr
1L c M2Addr

QUOTARGET
1.0 desired quotient
1A numerator address
6A denominator address

EFFRTARGET
0.2 desired 2nd law efficiency
7F work (numerator address)
4G heat (denominator address)
4H T hot address
6H T cold address

COPRTARGET
0.2 desired 2nd law efficiency
7G heat (numerator address)
2F work (denominator address)
6H T hot address
4G T cold address
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CONST test of CONST
1.00 a So 2.250E+03 A So*PLo
2.00 b Si 0.000 B Si*PLi
3.00 c C_1 3.00 C C_1
4.00 d C_2 4.00 D C_2
5.00 e C_3 5.00 E C_3
6.00 f C_4 6.00 F C_4
7.00 g C_5 7.00 G C_5
8.00 h C_6 8.00 H C_6
9.00 i C_7 9.00 I C_7
10.0 j C_8 10.0 J C_8
11.0 k C_9 11.0 K C_9
12.0 l C_10 12.0 L C_10
helium Gas type
ideal Solid type

Use:

Use this class of segments to create targets other thanDeltaE default targets (which include
only end impedances and heat exchanger heats and temperatures). You may also use them
for simple arithmetic operations.

The introduction of RPNTARGet with version 3.9 makes the other math segments obsolete
(with the possible exception of VOLMTARget).

Computation algorithms:

RPNTArget: Result is computed by interpreting the instruction line (line “b”) in Reverse
Polish Notation. Items in the instruction line must be separated by blanks. All
commands (except Bessel functions) can be either upper or lower case (but not a
mixture of the two). The command line in a single RPNTArget must not be longer than
80 characters. (Note that DeltaE rewrites the string so that each segment number
occupies 2 characters regardless of its value. The practical typed length is therefore
a little bit shorter.) As with RPN calculators, when operators do not consume all
numbers on the ‘stack’, more than one output is generated, a feature that can be
exploited to reference multiple results. The stack grows downward, from A—J. Valid
operators and inputs are summarized in Tables VI.1, VI.2, and VI.3.

VOLMTarget: result = sum of the volumes in all duct, cone, stack, compliance, and heat
exchanger segments beginning with BegAddr and ending with EndAddr (parameter
letters are inconsequential). Porosity is not used in calculating this volume–that is,
porosity is always effectively 100%. This segment is intended to give an indication of
the overall size of a design for doing tradeoff analysis.

FREETarget: This simplest math segment performs no computation. It simply has two
input parameters: the target value, and an output address to which the solver can
compare the target value.
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DIFFTarget: result = [D1Addr] − [D2Addr], where [] signifies value calculated at this
address.

PRODTarget: result = [M1Addr] × [M2Addr].
QUOTArget: result = [NumAdr] / [DenAdr].

EFFRTarget: result =
W

Qh

Th
Th − Tc

COPRTarget: result =
Qc

W

Th − Tc
Tc
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Table VI.2: List of RPNTArget constants

Item Description comment or examples
Numeric
<Output> (Seg. # and cap letter) 5D
<Input> (Seg. # and l.c. letter) 5c

<Constant> real or complex 8.314; 6.02e23; (-0.01, 1.03)
pi 3.14159265
i

√−1 complex
Thermophysical (position dependent):
gamma γ; cp/cv
a a; local sound speed m/s
rho ρm kg/m3

cp cp; heat capacity J/kg/K
k0 K0; conductivity W/m/K
mu µ; viscosity kg/s/m
beta β; expansion coefficent 1/K
dk δκ; thermal penetration m
dn δν; viscous penetration m
rhos ρs; solid density kg/m3

cs cs; solid heat capacity J/kg/K
ks Ks; solid conductivity W/m/K

State Variables (position dependent):
tm Tm; mean temperature K
w ω; circular frequency rad/s
f f ; frequency Hz
pm pm; mean pressure Pa
n1 gas fraction; binary mix molar frac. of light gas
p1 p1; oscillatory pressure Pa; complex
U1 U1; oscil. volume flow rate m3/s; complex

Error Codes
==== ERROR CODE illegal number place holder
@@Z ERROR CODE illegal addr. place holder
NoOp ERROR CODE illegal op. place holder
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Table VI.3: List of RPNTArget operators

Item Description example or comment
+ x = y + x
- x = y − x
* x = y ∗ x
/ x = y/x
^ x = yx

sqrt x =
√
x

sqrd x = x ∗ x
~ x = −x change sign
abs x = |x| absolute value
inv x = 1/x
real x =real(x)
imag x =imag(x)
mag x = |x| magnitude of complex x
conj x =conj(x) complex conjugate of x
arg phase of complex x (degrees)
argr phase of complex x (radians)

Stack manipulation:
# y = x, x = x (lifts higher outputs also)
lstx y = x, x =previous x Lifts the stack and recalls value

from before last math operation
a<>b x = y; y = x
sto S = x Store in register “S”
rcl x = S Recall from register “S”
‘x’ refers to parameter ‘A’, the base of the stack.
‘y’ refers to next parameter in the stack (‘B’).
All functions may be UPPER or lower case, but not MiXeD

116



Table VI.4: List of RPNTArget functions

Item Description example or comment
conj x = x̃ conjugate

sin; asin x = sin(x);x = sin−1(x) these trig functions in degrees
cos; acos x = cos(x);x = cos−1(x) and require real arguments
tan; atan x = tan(x);x = tan−1(x)
atan2 x = tan−1(x/y) 2 argument, 4 quadrant arctan
sinr x = sin(x) these trig functions in radians
asinr x = sin−1(x) real argument only
cosr x = cos(x)
acosr x = cos−1(x) real argument only
tanr x = tan(x)
atanr x = tan−1(x) real argument only
atan2r x = tan−1(x/y) 2 argument, 4 quadrant arctan
sinh x = sinh(x)
cosh x = cosh(x)
tanh x = tanh(x)

J0∗ x = J0(x) Bessel function of zero order
J1∗ x = J1(x) Bessel function of first order
Y0∗ x = Y0(x) Neumann function of zero order
Y1∗ x = Y1(x) Neumann function of first order
log x = loge(x) natural log
exp x = ex

log10 x = log10(x) real argument only
tenx x = 10x

min; max x = min(x, y);x = max(x, y) real argument only
All functions accept and return complex arguments unless otherwise noted
∗Bessel functions are recognized as UPPER CASE only.
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B.8. Joining condition

Segment types: JOIN

Sample input-file segments

!--------------------------------- 8 ---------------------------------
SXFRST p.t. hot h.x.
1.1675E-04 a Area m^2 1.3507E+05 A |p| Pa

0.6470 b VolPor -17.664 B Ph(p) deg
3.0000E-03 c Length m 2.9183E-04 C |U| m^3/s
1.2000E-05 d r_H m 138.51 D Ph(U) deg

2.8164 e HeatIn W G -13.711 E Hdot W
300.00 f Est-T K (t) -18.030 F Edot W

sameas 0 Gas type 2.8164 G Heat W
copper Solid type 300.00 H MetalT K
!--------------------------------- 9 ---------------------------------
JOIN first join example

1.3507E+05 A |p| Pa
-17.664 B Ph(p) deg
2.9863E-04 C |U| m^3/s
138.51 D Ph(U) deg
-13.711 E Hdot W
-18.450 F Edot W
300.00 G T-beg K
324.67 H T-end K

!--------------------------------- 10 ---------------------------------
STKDUCT the pulse tube
1.1675E-04 a Area m^2 S=-2 1.3511E+05 A |p| Pa
3.8307E-02 b Perim m Fnc(10a) -17.530 B Ph(p) deg
7.0000E-02 c Length m 2.7164E-04 C |U| m^3/s
5.8678E-05 d WallA m^2 166.83 D Ph(U) deg

-13.711 E Hdot W
-18.298 F Edot W
324.67 G T-beg K

sameas 0 Gas type 57.932 H T-end K
stainless Solid type 0.1518 I StkEdt W
!--------------------------------- 11 ---------------------------------
RPNTARGET ratio of cold end displacement to p.t. length

0.1000 a Target (t) 9.2000E-02 A RPNval
10C 2 / PI / 0b / 10a / 10c /
!--------------------------------- 12 ---------------------------------
JOIN second example; note that RPNTARgs can go between

1.3511E+05 A |p| Pa
-17.530 B Ph(p) deg
2.7854E-04 C |U| m^3/s
166.83 D Ph(U) deg
-13.711 E Hdot W
-18.763 F Edot W
57.932 G T-beg K
89.997 H T-end K

!--------------------------------- 13 ---------------------------------
RPNTARGET ratio of warm end displacement to p.t. length

6.0000 a Target (t) 9.8838E-02 A RPNval
8C 2 / PI / 0b / 10a / 10c /

!--------------------------------- 14 ---------------------------------
SXMIDL cold heat exchanger adj rh
1.1675E-04 a Area m^2 1.5473E+05 A |p| Pa

0.6470 b VolPor -16.785 B Ph(p) deg
5.7150E-03 c Length m 2.7985E-04 C |U| m^3/s
1.2000E-05 d r_H m 169.37 D Ph(U) deg

7.1278 e HeatIn W G -6.5828 E Hdot W
90.000 f Est-T K =14H? -21.525 F Edot W
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helium Gas type 7.1278 G Heat W
copper Solid type 90.000 H MetalT K

Use and Computation algorithm:

The JOIN segment accounts for small discontinuities in thermoacoustic variables at the
interface between a heat exchanger or other isothermal segment and an unmixed, stratified
adiabatic segment such as a pulse tube. The discontinuity in mean temperatures is first
order in the acoustic amplitude, the discontinuity in volume flow rate is second order, and
there is no discontinuity in pressure. References: Storch, Radebaugh, and Zimmerman
NIST Technical Note 1343 for δTm, Smith and Romm 27th IECEC 5.529 for δU1, Swift
“Thermoacoustics: A unifying perspective for some engines and refrigerators” and references
therein for both δTm and δU1.

The discontinuity in temperature is:

Tout − Tin =

µ
Tmβ

ρmcp
|p1| sin θ − |U1|

ωAfluid

dTm
dx

¶
F, (VI.64)

where θ is the angle by which p1 leads U1 and the factor F is given by

F =
Agask dTm/dx

Ḣ − Ė
. (VI.65)

The factor F is a crude attempt to account for the two-dimensional nature of the JOIN
problem within DeltaE’s inherently 1-dimensional character. The derivation of the T
discontinuity joining condition in the references cited above neglects the thermal conductivity
of the wall of the tube and the boundary-layer shuttle entropy flux. If these are zero, then
F = 1 and Eq. (VI.64) represents the joining condition derived in the references cited above.
At the other extreme, if the solid wall of the duct or the boundary layer is effectively a
thermal short circuit compared to bulk gas conductivity, then F = 0 and no temperature
discontinuity appears in the JOIN segment.

The discontinuity in |U1| is

|U1|out = |U1|in −
8

3π

(γ − 1)
ρma

2
|p1| |U1| cos θ

= |U1|in −
16

3π

γ − 1
ρma

2
Ė2 (VI.66)

There is no discontinuity in p1, in the phase of U1, or in Ḣ2.

When it encounters a JOIN segment, DeltaE looks both upstream and downstream (ig-
noring unphysical segments such as RPNTARGETs) to figure out whether the “heat exchanger”
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is upstream and the “pulse tube” is downstream, or vice versa. Both A and dTm/dx are
obtained from the “pulse tube” or other open duct, with dTm/dx = 0 for ordinary ISO and
INS-DUCTs and CONEs, and dTm/dx nonzero for STKDUCTs or STKCONEs. If the relevant duct
is a STKDUCT or STKCONE downstream of the JOIN segment, DeltaE actually jumps ahead
momentarily to evaluate dTm/dx.

The JOIN segment seems to us to be most useful at the ends of a pulse tube, but it can
also be used in standing-wave systems between a resonator duct and a heat exchanger.

Note: The JOIN feature cannot yet be used reliably with meanflow.

B.9. Tees and unions

Segment types: TEE, TBRANch, UNION, HBRANch, HUNIOn

Sample input-file segments:

TEE branch file to load
branch.in

TBRAN the fork
4.412E+07 a Re(Zb) Pa-s/m^3 G
-3.528E+06 b Im(Zb) Pa-s/m^3 G
sameas 0 Gas type
ideal Solid type

UNION below the branch
4 segment number of SOFTEND of the TBRANCH
3.e4 |p| @ end (Pa)
0. ph(p) @end

sameas 0 Gas type
ideal Solid type

HBRAN fork with Hbran
4.412E+07 a Re(Zb) Pa-s/m^3 G
-3.528E+06 b Im(Zb) Pa-s/m^3 G
0.49 c Hbran G
sameas 0 Gas type
ideal Solid type

HUNION H matching joint 5
10 segment number of SOFTEND of the HBRANCH
4.e3 |p|End Pa =5A?
0. Ph(p)E =5B?

300. T-est K =5G?
sameas 0 Gas type
ideal Solid type
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Use:

Use TBRANch for branched systems too complicated for BRANCh or OPNBRanch.

In insulated mode, TBRANCH acts like HBRANCH and UNION acts like HUNION.

When it encounters a TBRANch or HBRANch, DeltaE treats subsequent segments as the
sequential members of a branch until it reaches a HARD- or SOFTEnd; then it “returns to
the trunk,” treating the rest of the segments as trunk members. If the system is multiply
connected, a UNION or HUNION segment in the trunk tells DeltaE where to connect the
branch’s SOFTEnd back to the trunk.

If UNION is used, the branch’s SOFTEnd impedance targets should not be used; instead,
enable the UNION’s targets to ensure that (complex!) p1 is equal at the SOFTEnd of the
branch and at the UNION in the trunk. The guessed branch impedance determines how the
(complex) volume flow rate splits up at the TBRANch or HBRANch; volume flow rates add at
the UNION or HUNION. The union targets are a special case in that their input values are
dynamically rewritten by DeltaE during iterations, depending on the most recent results
at the named SOFTEnd. The real input parameters (magnitude and phase of pressure) can
have any value initially. DeltaE will overwrite them during each pass with the current
magnitude and phase of pressure at the referenced SOFTEnd.

BRANCH and UNION are intended for duct networks, where temperature is constant and
hence p1 and U1 are the variables of interest. For more complex systems, the segments
HBRANCH and HUNION are energy-conserving versions of BRANCH and UNION. Use them if you
are branching at locations where Ḣ2 6= Ė2, such as at a branch to a second stage regenerator
within a two-stage pulse tube refrigerator. HBRANCH incorporates a potential guess Hbran,
giving the portion of the incoming energy that goes into the branch. Use Hbran as a guess
to hit a target down the branch, such as a temperature. (Note: Prior to version 5, this
parameter was the fraction of the total power going down the branch.) HUNION incorporates
an additional potential target, that the temperature in the trunk at the union be equal to
that at the associated branch end. Energy flows are added in HUNION.

When DeltaE encounters a TEE, it loads the named file into the model, and replaces
the BEGIN segment of the branch file with a TBRANch segment. It tries to guess starting
values for the complex branch impedance, and then adjusts the addresses in any sameas
declarations and math segments occurring in the branch (or after the branch point) by
the number of segments in the branch. Once the file has been read in, the TEE segment
disappears–the .out file and (d)isplayed segments will be the composite model. The file
may have any name (e.g. branch.in, stub.out, branch.tee), but it must be specified
with the complete suffix.

121



Computation algorithm:

These segments leave Tm and p1 unchanged.

At a TBRANch or HBRANch, Ubranch = p1/Z1 and Utrunk = Uin − Ubranch. At HBRANCH,
Hbranch = Hbran, Htrunk = Hin − Hbranch. At a UNION or HUNION, Uout = Uin + Uend. At
HUNION, Hout = Hin +Hend. The “end” location is the branch’s SOFTEnd, identified in the
first input line of the UNION or HUNION segment. The ’BRANCHs have an output Edot_T to
display the acoustic power flowing past the branch in the trunk.

B.10. Acoustical decomposition

Segment type: DECOMpose

Sample input-file segment:

DECOMp Termination
8.100E-03 a Area m^2 15.8 A |Pin| Pa

31.9 B |Pref| Pa
sameas 0 Gas type 4.11 C RflCoe W/W
ideal Solid type -77.9 D PhI-R deg

Use:

Use DECOM to decompose the acoustic field into incident and reflected pressure waves; that
is, solve for Pin, Pref , and φI − φR in the equation

p1 = Pine
i(−kx+φI) + Prefe

i(kx+φR), (VI.67)

where Pin, Pref , and k are considered real for this segment.

Computation algorithm:

Since the segments surrounding the DECOM segment are generally lossy inDeltaE, its results
are strictly valid only at that point. The magnitudes are calculated from

Pin =
|p1+U1ρa/A|

2
(VI.68)

Pref =
|p1−U1ρa/A|

2
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and the phase difference is given by

phase
µ
p1 + U1ρa/A

p1 − U1ρa/A

¶
(VI.69)

The sound power reflection coefficient, (Pref/Pin)2, is also found and given as output C.

B.11. Thermophysical properties dump

Segment type: THERMOphys

Sample input-file segment:

THERMO
sameas 0

Use:

Use THERMO to provide a record of thermophysical properties and penetration depths at a
given location in the apparatus. With plotting features, can be used to generate a table of
thermophysical properties.

B.12. External file and program interfaces

Segment types: BLKDAta, SYSEXec

Sample input-file segments:

BLKDATA datafile

SYSEXEC myprog.exe < sysin.dat > sysout.dat
sameas 0b
sameas 2A
sameas 2C
sameas 10c
sameas 11F
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
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Neither BLKDAta or SYSEXec use fluid or solid lines.

Use:

BLKDAta is a specialized segment designed for users who have a quantity of tabular data
that they want DeltaE to follow. The data may represent experimental results, the results
from other computational methods, or simply an irregular parameter space to be explored
that is not well served by the simple plot loop facility (e.g. logarithmic or irregular step
size, or parametric plotting). The data file is text format, delimited with spaces or tabs,
and it may contain up to 14 columns and any number of rows, all with the same number
of entries. The first one or two rows can optionally contain descriptive strings that are read
into the parameters’ description and unit fields, respectively. At present, only one BLKDATA
segment per model is allowed. The number of inputs displayed in the .out file is equal to
the number of columns in the associated data file.

The data file is assumed to have the suffix .blk and its root name is supplied in the
title position of the segment. When the file is opened, the number of rows and columns are
counted, and initial column titles are read in, if present. The number of input and output
parameters for the segment is set to the number of columns in the file. If plotting is not
enabled, only the first numeric row of the BLKDATA file is read in to fill the parameters
once.

!--------------------------------- 1 ---------------------------------
BLKDATA test
511.40 a Freq. Hz
6653.0 b |p|@0 Pa
10.000 c SkrAmp A

where the first lines of the file test.blk are as follows:

Freq. |p|@0 SkrAmp
Hz Pa A
511.4 6653. 0.03
511.0 14401. 0.07

If the file test.blk is a log of experimental data, we can ask DeltaE to to emulate
the experimental conditions by inserting appropriate sameas statements, as in the following
fragment that enforces the experimental applied speaker voltage, frequency, and pressure
amplitude:

!--------------------------------- 0 ---------------------------------

124



BEGIN the setup
7.8000E+04 a Mean P Pa
sameas 1a b Freq. Hz
300.00 c T-beg K

sameas 1b d |p|@0 Pa
0.0000 e Ph(p)0 deg
0.0000 f |U|@0 m^3/s
0.0000 g Ph(U)0 deg

air Gas type
ideal Solid type
!--------------------------------- 1 ---------------------------------
BLKDATA test
511.40 a Freq. Hz
6653.0 b |p|@0 Pa
3.0000E-02 c SkrAmp A

!--------------------------------- 2 ---------------------------------
ENDCAP speaker back
sameas 4a a Area m^2 100.00 A |p| Pa

0.0000 B Ph(p) deg
1.1824E-08 C |U| m^3/s
180.00 D Ph(U) deg

-5.9121E-07 E Hdot W
sameas 0 Gas type -5.9121E-07 F Edot W
ideal Solid type -5.9121E-07 G HeatIn W
!--------------------------------- 3 ---------------------------------
ISODUCT back duct
sameas 4a a Area m^2 99.377 A |p| Pa
2.0000E-02 b Perim m 5.5864E-03 B Ph(p) deg
1.2000E-02 c Length m 5.3045E-06 C |U| m^3/s

-90.330 D Ph(U) deg
-1.5415E-06 E Hdot W

air Gas type -1.5415E-06 F Edot W
ideal Solid type -9.5034E-07 G HeatIn W
!--------------------------------- 4 ---------------------------------
VESPEAKER open back speaker
1.5000E-04 a Area m^2 68.286 A |p| Hz

4.6000 b R ohms -91.445 B Ph(p) deg
5.5000E-05 c L H 5.2965E-06 C |U| m^3/s

3.3000 d B x L T-m -90.455 D Ph(U) deg
4.0000E-04 e M kg 1.8081E-04 E Hdot W
8560.0 f K N/m 1.8081E-04 F Edot W

0.8000 g Rm N-s/m 1.8597E-03 G EdotIn W P
0.1945 h |V| V 0.1945 H Volts V

243.00 i Ph(V) deg 2.2615E-02 I Amps V
32.263 J Ph(Ze) deg
121.99 K |Px| Pa

sameas 0 Gas type -145.97 L Ph(Px) deg
ideal Solid type -1.6759E-03 M HeatIn W
!--------------------------------- 5 ---------------------------------
RPNTARGET use to match speaker current output to measured
sameas 1c a = 5A? 2.2615E-02 A
4I

The above provides a means to tie the value of any DeltaE input parameter to the
tabulated data. Enforcing values that normally appear as DeltaE outputs is a little more
subtle. This requires a RPNTArget or FREETarget to be set so that the output value can be
forced to match the input value placeholder (parameter “a” in the RPNTArget). This target
must be added to the list of target vectors, and of course, an appropriate parameter must
be added to the guess vector for balance. A sameas reference links the BLKDATA parameter
(1c) into the target location of segment 5.
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When any of the input parameters within a BLKDAta segment is selected as the inde-
pendent variable of a plot loop, there is no additional dialogue to perform; each numeric
line of the block data file will be read in order. Each row of the file is read into the input
parameters of the segment, one row per data point. DeltaE will run as many solutions as
there are data points in the file.

The SYSEXec segment allows DeltaE to execute an external program that can take its
inputs from DeltaE and can in turn generate data that will be read in by DeltaE. The
first action taken by SYSEXec is to write all of its 14 input parameters to a text file called
sysin.dat in single column format. It then calls the the external program using the entire
command string specified in the title field of the segment. This program may or may not
make use of the numbers in sysin.dat. DeltaE will then read up to 14 output parameters
from the file sysout.dat, if it exists. If data needs to be read back in to DeltaE, the
program executed should generate these values in the sysin.dat file in the same ASCII,
single column format. If more than 14 values are required, more can be read in through a
BLKDAta segment.

The following is an trivial example showing how a set of integers assigned to DeltaE
input parameters can be sorted by the MS-DOS sort command. The output of the sort
command is directed into a file using the ‘>’ character.

! Sort input parameters into output parameters (DOS version)
!--------------------------------- 2 ---------------------------------
SYSEXEC sort sysin.dat > sysout.dat

3.0000 a In 1 1.0000 A Out 1
4.0000 b In 2 2.0000 B Out 2
6.0000 c In 3 2.0000 C Out 3
7.0000 d In 4 3.0000 D Out 4
2.0000 e In 5 4.0000 E Out 5
87.000 f In 6 4.0000 F Out 6
2.0000 g In 7 5.0000 G Out 7
1.0000 h In 8 6.0000 H Out 8
10.000 i In 9 7.0000 I Out 9
13.000 j In 10 9.0000 J Out 10
5.0000 k In 11 10.000 K Out 11
4.0000 l In 12 11.000 L Out 12
11.000 m In 13 13.000 M Out 13
9.0000 n In 14 87.000 N Out 14

After a (r)un, the file sysin.dat will contain the numbers on the left; the sysout.dat will
resemble the column on the right.

The number of outputs displayed in a SYSEXec display is determined by the number of
lines in the sysout.dat file.

B.13. ALPHABETICAL LISTING AND CROSS-REFERENCE

BEGIN: (VI B.6) Initializes p1, U1, and Tm at the beginning, and sets global f, pm.
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BLKDATA: (VI B.12) Allows DeltaE to sequentially read rows of a spreadsheet-like text
file, through the plotting function.

BRANCH: (VI B.3) A side-branch with frequency-independent complex impedance.

COMPLIANCE: (VI B.2) A lumped acoustic compliance (with surface losses).

CONDUCT: (VI B.6) Sets computation in subsequent segments to conduction mode.

CONE: (VI B.1) A cone with viscous and thermal dissipation.

CONSTANTS: (VI B.7) Allows constants and plot independent variables to be used in math
segments.

COPRTARGET: (VI B.7) Allows targeting of ratio of refrigerator COP to Carnot’s COP.

DECOMPOSE: (VI B.10) Decomposes wave into forward and backward traveling components.

DIFFTARGET: (VI B.7) Allows targeting of difference of two results.

DUCT: (VI B.1) A duct with viscous and thermal dissipation.

ENDCAP: (VI B.2) A surface area with |p1|2 δκ loss.
EFFRTARGET: (VI B.7) Allows targeting of ratio of engine efficiency to Carnot’s efficiency.

FREETARGET: (VI B.7) Allows use of non-default target.

HARDEND: (VI B.6) Default inverse-impedance targets, for hard model termination.

HBRANCH: (VI B.9) An energy-conserving BRANCH for multi-stage refrigerators.

HX: (VI B.4) A parallel-plate heat exchanger.

HXFRST: (VI B.4) A parallel-plate heat exchanger before a stack.

HXLAST: (VI B.4) A parallel-plate heat exchanger after a stack.

HXMIDL: (VI B.4) A parallel-plate heat exchanger between two stacks.

HUNION: (VI B.9) An energy-summing, temperature-matching UNION.

IDUCER: (VI B.3) A current-driven transducer attached as a side branch (and independent
of frequency).

IEDUCER: (VI B.3) An enclosed (i.e. series) current-driven transducer (and independent of
frequency).

IESPEAKER: (VI B.3) An enclosed (i.e. series) current-driven electrodynamic transducer.

IMPEDANCE: (VI B.2) A lumped-parameter series acoustic impedance.
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INSCONE: (VI B.1) An insulated cone, with viscous and thermal dissipation.

INSDUCT: (VI B.1) An insulated duct, with viscous and thermal dissipation.

ISOCONE: (VI B.1) An isothermal cone, with viscous and thermal dissipation.

ISODUCT: (VI B.1) An isothermal duct, with viscous and thermal dissipation.

INSULATE: (VI B.6) Sets computation in subsequent segments to insulated mode.

ISPEAKER: (VI B.3) A current-driven electrodynamic transducer, attached as a side branch.

JOIN: (VI B.8) Joining condition between isothermal and adiabatic segments.

MEANFLOW: (VI B.6) Enables nonzero mean flow superimposed on the acoustics.

OPNBRANCH: (VI B.3) A side-branch impedance with frequency dependence of 4π open ra-
diation impedance.

PISTBRANCH: (VI B.3) A side-branch impedance with frequency dependence of baffled pis-
ton.

PXFRST: (VI B.4) A power-law heat exchanger before a stack.

PXMIDL: (VI B.4) A power-law heat exchanger between two stacks.

PXLAST: (VI B.4) A power-law heat exchanger afer a stack.

PRODTARGET: (VI B.7) Allows targeting of product of two results.

PX: (VI B.4) A tubular heat exchanger.

PXFRST: (VI B.4) A tubular heat exchanger before a stack.

PXLAST: (VI B.4) A tubular heat exchanger after a stack.

PXMIDL: (VI B.4) A tubular heat exchanger between two stacks.

RPNTARGET: (VI B.7) Versatile math segment that uses a Reverse Polish Notation contain-
ing constants, addresses, and operators.

QUOTARGET: (VI B.7) Allows targeting of quotient of two results.

SOFTEND: (VI B.6) Default impedance targets, for mirror-image model termination; also
for connection of sidebranch to UNION.

STKCIRCLE: (VI B.5) Thermoacoustic stack (or regenerator) comprised of array of circular
pores.

STKCONE: (VI B.5) Thermoacoustic element comprised of a single, conical pore.

STKDUCT: (VI B.5) Thermoacoustic element comprised of a single, straight pore.
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STKPINS: (VI B.5) Thermoacoustic stack (or regenerator) comprised of array of pins.

STKPOWERLAW: (VI B.5) Regenerator with friction factor and heat transfer as power laws
in Reynolds number.

STKRECT: (VI B.5) Thermoacoustic stack (or regenerator) comprised of array of rectangu-
lar pores.

STKSCREEN: (VI B.5) Regenerator comprised of stacked screens.

STKSLAB: (VI B.5) Slab-geometry stack or regenerator, comprised of parallel plates.

SX: (VI B.4) A screen heat exchanger.

SXFRST: (VI B.4) A screen heat exchanger before a stack.

SXMIDL: (VI B.4) A screen heat exchanger after a stack.

SXMIDL: (VI B.4) A screen heat exchanger between two stacks.

SYSEXEC: (VI B.12) Outputs data to an external program, runs that program, and can
then read in data generated by that program.

TBRANCH: (VI B.9) The beginning of a side-branch series of segments.

TEE: (VI B.9) A temporary segment that inserts a complete file into the model. The file’s
BEGIN segment becomes a TBRANCH.

THERMOPHYSICAL: (VI B.11) Displays properties of gas and solid at the local temperature.

TITLE: (VI B.6) Comment field required at start of every file.

TX: (VI B.4) A tubular heat exchanger.

TXFRST: (VI B.4) A tubular heat exchanger before a stack.

TXLAST: (VI B.4) A tubular heat exchanger after a stack.

TXMIDL: (VI B.4) A tubular heat exchanger between two stacks.

UNION: (VI B.9) Matches p1 and adds U1 at union between end of side branch and trunk.

VDUCER: (VI B.3) A voltage-driven transducer attached as a side branch (and independent
of frequency).

VEDUCER: (VI B.3) An enclosed (i.e. series) voltage-driven transducer (and independent of
frequency).

VESPEAKER: (VI B.3) An enclosed (i.e. series) voltage-driven electrodynamic transducer.

VOLMTARGET: (VI B.7) Allows targeting of total volume of a series of segments.

VSPEAKER: (VI B.3) A current-driven electrodynamic transducer, attached as a side branch.
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C. Fluids

We provide an artificial temperature floor of 10 Kelvin to prevent DeltaE from trying to
use negative temperatures when it is really lost. Consequently, no temperature below 10
Kelvin can be used. In any case, most of the equations for the fluids are inaccurate when
this limit is reached. This floor can be modified within the (T)olerances/debuggingmenu.

In what follows, ta is temperature in Kelvin, t1 is temperature in Celsius.

Unless otherwise specified, properties are computed using fits to the data compiled in
Touloukian’s TPRC series.

DeltaE looks for a 10-character field to determine fluid type. Be sure to use plenty of
trailing spaces after short fluid names like “air” to get comments like “gas-type” out of the
field.

C.1. helium

Ideal gas approximation for equation of state (including sound speed and expansion coeffi-
cient) and specific heat. Transport from Touloukian:

k0=0.0025672*ta**0.716
mu=0.412e-6*ta**0.68014

C.2. #.###hear (helium-argon mixtures)

Number in the fluid name is helium fraction. Ideal gas approximation for equation of state
and specific heat. Transport from Touloukian.1

k0he=0.0025672*ta**0.716
amuhe=0.412e-6*ta**0.68014
k0ar=(1.39e-4*ta**0.852-1.5e-8*(ta-300.)*(ta-300.))*(1.+2.e-8*pm)
amuar=(1.77e-7*ta**0.852-25.e-12*(ta-300.)*(ta-300.))*(1.+2.e-8*pm)
k0=x1*k0ar+x2*k0he-(k0ar+k0he)*x1*x2**1.5
mu=x1*amuar+x2*amuhe+0.2*(amuar+amuhe)*x1*x2

1As we learn more about the importance of oscillating thermal diffusion in the thermoacoustics of gas
mixtures, we will probably have to revise DeltaE’s gas-mixture algorithms dramatically. In the meantime,
we simply use the expressions presented here.
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C.3. #.###hexe (helium-xenon mixtures)

Number in the fluid name is helium fraction. Ideal gas approximation for equation of state
and specific heat. Our fits to Touloukian’s transport data are only accurate for frxe < 0.5
or for frxe = 1.000:1

k0he=0.0025672*ta**0.716
amuhe=0.412e-6*ta**0.68014
k0xe=4.75e-5*ta**0.84*(1.+1.e-7*pm)
amuxe=0.187e-6*ta**0.85*(1.+25.e-9*pm)
frxe=1.-fhe
k0=k0he*fhe+k0xe*frxe-2.*(k0he+k0xe)*frxe*fhe*fhe
mu=amuhe*fhe+amuxe*frxe+(amuhe+amuxe)*frxe*fhe*fhe*(0.8+3.7*fhe*fhe*(0.25-f
rxe))

C.4. neon

Ideal gas approximation for equation of state and specific heat. Transport from Touloukian:

k0=0.001149*ta**0.65907
mu=0.735e-6*ta**0.66065

C.5. air

Ideal gas approximation for equation of state and specific heat. Transport from Pierce,
Acoustics:

parameter (tps=110.4,tpa=245.4,tpb=27.6,tp0=300.,tpexp=223.8306)
k0=2.624e-2*(ta/tp0)**1.5*(tp0+tpexp)/(ta+tpa*exp (-tpb/ta))
mu=1.846e-5*(ta/tp0)**1.5*(tp0+tps)/(ta+tps)

C.6. #.######w (humid air, wet air)

The number in the fluid name is the water mole fraction in a mixture of air and water. As
with other gas mixtures, the water mole fraction can be modified or used as an independent
plot variable (see “Variable gas mixtures” in Chapter V for details). Even more than with
the other gas mixtures, we worry that future improvements to understanding of oscillating
thermal diffusion will bring dramatic change to this part of DeltaE. Nevertheless, for the
present:

In DeltaE, we think of humid and wet air as a sort of single fluid, having two or three
interpenetrating components: dry air, water vapor, and sometimes liquid water.
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The molar volume v and molar enthalpy h are DeltaE’s primary dependent variables,
as functions of three independent variables: mean pressure pm, mean temperature Tm, and
mole fraction of water xwat. To determine whether a given mixture is wet or merely humid,
DeltaE compares xwat with psat/pm, where psat(Tm) is the saturated vapor pressure at
temperature Tm.

DeltaE treats humid air like the other supported gas mixtures, using the ideal-gas
equation of state for v and a slightly nonlinear temperature dependence for h (due to the T
dependence of cp for water vapor in the ASHRAE tables). Also in accordance with ASHRAE
recommendations, we set µ and K equal to their dry-air values.

In wet air, in accordance with Bob Hiller’s measurements (“Condensation in a steady-flow
thermoacoustic refrigerator,” J. Acoust. Soc. Am. 108, 1521—1527 (2000)), the oscillating
thermodynamics is that of humid air at saturation, while the meanflow thermodynamics
includes the enthalpy of the liquid when segment MEANFLOW is enabled. In other words,
if there is no mean flow, the calculation proceeds exactly as for an ideal-gas mixture and
ignores the condensate, but if mean flow is nonzero DeltaE performs stack integrations
with ideal-gas-mixture properties in the momentum and continuity equations but with the
heat of condensation/evaporation (plus the small enthalpy of the condensate itself) included
in the energy equation as it is integrated to find dTm/dx. In all cases, we ignore any dynamic
effects of oscillating diffusion of the water vapor through the air.

Although the enthalpy of wet air calculated in DeltaE’s thermo algorithm includes
the latent heat of freezing and melting as the condensate passes through 0◦C, we have not
yet incorporated this latent heat, of the liquid-to-solid phase transition, into the numerical
integrations in STK segments, so integrating through Tm = 0◦C in wet air is of dubious value.
(Anyway, we have not thought of any good reason to use wet air in DeltaE below 0◦C,
because we believe the stack would simply plug up with ice.)

The saturated vapor pressure is accurate from −100◦C to 370◦C; other properties are
reasonably accurate from −50◦C to 150◦C.

C.7. nitrogen

Ideal gas approximation for equation of state and specific heat. Transport from Touloukian:

k0=0.0003609*ta**0.7512
mu=0.3577e-6*ta**0.6885
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C.8. hydrogen

Ideal gas approximation for equation of state and specific heat. Transport from Touloukian:

k0=0.002627*ta**0.744
mu=0.19361e-6*ta**0.6723

C.9. deuterium

Ideal gas approximation for equation of state and specific heat. Transport from Touloukian:

k0=0.002795*ta**0.686
mu=0.2726e-6*ta**0.6721

C.10. co2 (carbon dioxide)

Ideal gas approximation for equation of state and specific heat. Transport from Touloukian:

k10=2.8646E-5*ta**1.1318
k20=3.692E-5*ta**1.0940
k0=k10+(pm-1.01e6)/(1.01e6)*(k20-k10)
u10=1.4187E-7*ta**.8216
u20=1.5416E-7*ta**.8094
mu=u10+(pm-1.01e6)/(1.01e6)*(u20-u10)

C.11. #.###nexe (neon-xenon mixtures)

Ideal gas approximation for equation of state and specific heat. Transport from ??: (Thermal
conductivity not very accurate for high xenon concentrations.)2

k0he=0.001149*ta**0.65907
amuhe=0.735e-6*ta**0.66065
k0xe=4.75e-5*ta**0.84*(1.+1.e-7*pm)
amuxe=0.187e-6*ta**0.85*(1.+25.e-9*pm)
frxe=1.-fhe(ns)
k0=k0he*fhe(ns)+k0xe*frxe-1.3*(k0he+k0xe)*frxe*fhe(ns)**2.5
mu=amuhe*fhe(ns)+amuxe*frxe+0.12*(amuhe+amuxe)*frxe*fhe(ns)**4

2As we learn more about the importance of oscillating thermal diffusion in the thermoacoustics of gas
mixtures, we will probably have to revise DeltaE’s gas-mixture algorithms dramatically. In the meantime,
we simply use the expressions presented here.
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C.12. NGcbProd (natural-gas combustion products)

Natural Gas combustion products with 5% excess air. Use around 1 atm only. Data supplied
by British Gas, with references to Pritchard. Molar weight is a gaussian curve fit taken from
Pritchard’s data between 288 K and 4000 K.2

gamma=1.4
cp=gasprop(ta,1392.02d0,39.3769d0,-3.89819d0,-0.0317961d0,
& 0.0327554d0,-1.44149d-3)
if (ta.gt.2000.) then
mass=27.9495-7.81175*dexp(-((ta-4151.85)/1047.42)**2)

else
mass=27.84

endif
r=8314.
a=dsqrt(gamma*r*ta/mass)
rho=pm*mass/(r*ta)
beta=1./ta
k0=gasprop(ta,0.0997279d0,0.0125516d0,6.73728d-5,4.22761d-4,
& 1.43198d-4,1.35508d-5)
mu=gasprop(ta,50.2973d0,4.68523d0,-0.12061d0,0.0140082d0,
& -0.001488951d0,4.97968d-5)*1.d-6
goto 900
real*8 function gasprop(ta,a,b,c,d,e,f)
real*8 z,ta,a,b,c,d,e,f
z=(ta-1400)/200
gasprop=a+z*(b+ z*(c + z*(d +z*(e+f*z))))
return
end

C.13. sodium

Data for sodium from Foust, Sodium-NaK Engineering Handbook.

a0=2578.
at1=-.52
ap=6.1e-7
r0=950.1
rt1=-2.2976e-1
rt2=-1.46e-5
rt3=5.638e-9
c0=1.4361e3
ct1=-5.8024e-1
ct2=4.6208e-4
k0=.918e2-4.9e-2*t1
if(t1.le.500.) then
e1=.697
e2=1.235e-5
else
e1=1.04
e2=8.51e-6
endif
a=a0+at1*t1
rho=r0+rt1*t1+rt2*t1**2+rt3*t1**3
beta=(-rt1-2.*rt2*t1-3.*rt3*t1**2)/rho
bt=beta**2-(2.*rt2+6.*rt3*t1)/rho
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cp=c0+ct1*t1+ct2*t1**2
rp=1./a/a+ta*beta**2/cp
bp=-beta/(rho*a**2)+2.*at1/(rho*a**3)-beta**2/rho/cp
bp=bp-2.*ta*beta*bt/rho/cp-ta*beta**3/rho/cp
bp=bp+ta*beta**2*(ct1+2.*ct2*t1)/rho/cp/cp
cpp=-ta*(beta**2+bt)/rho
c So far, everything is evaluated at p=0.
a=a+ap*pm
rho=rho+rp*pm
beta=beta+bp*pm
cp=cp+cpp*pm
gamma=1.+ta*beta**2*a**2/cp
mu=e2*rho**(1./3.)*exp (e1*rho/ta)

C.14. nak-78

This is for eutectic NaK-78. Data for sodium-potassium from Foust, Sodium-NaK Engineer-
ing Handbook.

a0=2051.
at1=-.53
ap=0.
r0=876.4
rt1=-2.183e-1
rt2=-2.982e-5
rt3=0.
c0=970.69
ct1=-.36903
ct2=3.4309e-4
k0=21.4+2.07e-2*t1-2.2e-5*t1**2
if(t1.le.400.) then
e1=.688
e2=1.16e-5
else
e1=.979
e2=8.2e-6
endif
a=a0+at1*t1
rho=r0+rt1*t1+rt2*t1**2+rt3*t1**3
beta=(-rt1-2.*rt2*t1-3.*rt3*t1**2)/rho
bt=beta**2-(2.*rt2+6.*rt3*t1)/rho
cp=c0+ct1*t1+ct2*t1**2
rp=1./a/a+ta*beta**2/cp
bp=-beta/(rho*a**2)+2.*at1/(rho*a**3)-beta**2/rho/cp
bp=bp-2.*ta*beta*bt/rho/cp-ta*beta**3/rho/cp
bp=bp+ta*beta**2*(ct1+2.*ct2*t1)/rho/cp/cp
cpp=-ta*(beta**2+bt)/rho
c So far, everything is evaluated at p=0.
a=a+ap*pm
rho=rho+rp*pm
beta=beta+bp*pm
cp=cp+cpp*pm
gamma=1.+ta*beta**2*a**2/cp
mu=e2*rho**(1./3.)*exp (e1*rho/ta)
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C.15. External–provided by user’s file.

Files can have any name valid under the operating system under which DeltaE is running,
and should end with the extension .tpf. If the root filename is the same as any pre-defined
fluids, DeltaE will replace its internal calculations for that fluid with those given in the
user file. To request a user-defined fluid, simply use the root file name as you would any
other fluid. The .tpf file should be in the same directory or folder as the model file. The
name of the fluid is set to the root filename of the external fluid file. Up to five distinct
external fluids can be used at one time.

Each property is specified by a line containing 1—10 real coefficients to be read in as C0−9,
where unused parameters are set to zero. The order of the property lines is ρ, cp, K, a2, and
µ. Comment lines can be added with an initial ‘!’, and blank lines are ignored.

Each of the five properties is derived from its 10 coefficients using the following equation:

property = C0 + C1
pm

T + pmC2
+ C3T + C4T

2 + C5T
C6 + C7p

2
mT

C8 + pmC9, (VI.70)

where T and pm are the absolute temperature (K) and mean pressure (Pa) for each point at
which a segment using the fluid is evaluated.

D. Solids

We provide an artificial temperature floor of 10 Kelvin to prevent DeltaE from trying to
use negative temperatures when it is really lost. Consequently no temperature below 10
Kelvin can be used.

In what follows, ta is temperature in Kelvin, t1 is temperature in Celsius.

DeltaE looks for a 10-character field to determine solid type. Be sure to use plenty of
trailing spaces after short solid names like “mylar” to get comments like “solid-type” out
of the field.

D.1. ideal

ks, rhos, and cs are effectively infinite, so �s = 0.

D.2. copper

ks=398.-.0567*(ta-300.)
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rhos=9000.
cs=420.

D.3. nickel

if (ta.lt.631) then
ks=63.8+.08066*(631.-ta)
else
ks=63.8+.02156*(ta-631.)
endif
rhos=8700.
cs=530.

D.4. stainless (stainless steel)

rhos=8274.55 -1055.23 *dexp(-((T1-2171.05)/2058.08)**2)
ks=(266800*ta**(-5.2)+0.21416*ta**(-1.6))**(-0.25)
cs=(1.7054e-6*ta**(-0.88962)+23324/ta**6)**(-1/3) + 15/ta

Prior to version 3.5b2, DeltaE’s stainless steel properties were very inaccurate at cryo-
genic temperatures.

D.5. molybdenum

rhos= 10868.6 -2637.52 * exp (-((T1-11383.7)/9701.36)**2)
cs= 253.791 +0.0583812 *T1-2.73919e-06*T1**2
ks= (33.9616 -0.00947953 *T1-4.12809e-08*T1**2)*4.186

D.6. tungsten

cs=.13576e3*(1.-4805./ta**2)+.0091159*ta+2.31341e-9*ta**3
ks=135.5+1.05e4/ta-.023*ta
rhos=19254*(1.-3.*(-8.69e-5+3.83e-6*t1+7.92e-10*t1**2))

D.7. kapton

ks=0.2*(1.-exp(-ta/100.))
rhos=1445.-0.085*ta
cs=3.64*ta

D.8. mylar

ks=0.11+1.7e-4*ta
rhos=1400.-0.175*ta
cs=3.7*ta
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D.9. External-provided by user’s file.

External solids, like external fluids, are derived from coefficients in user-written text files.
Up to five external solids can be used at once. Each property is specified by a line containing
1—10 real coefficients to be read in as C0−9, where unused parameters are set to zero. The
order of the property lines is ρs, cs, and Ks. Comment lines can be added with an initial ‘!’,
and blank lines are ignored.

Each of the three properties is derived from its 10 coefficients using the following equation:

property = C0 + C1 exp(−TC2) + C3T + C4T
2 + C5T

C6 + C7p
2
mT

C8 + pmC9. (VI.71)

To request a user-defined solid, simply use the root file name as you would any other solid.
The .tpf file should be in the same directory or folder as the model file. If the name matches
any pre-defined solid name, the (constant) user-defined properties will replace DeltaE’s
internal calculations. External solids are similar in most respects to external fluids; see
Section V E for more relevant information.

E. Menu Options

We list DeltaE’s menu options in the order in which they appear.

(r)un model instructs DeltaE to begin its computation, adjusting the elements of the
guess vector until either all targets are met or an error condition is reached. If one or
two plot-independent variables are set, DeltaE will step through them.

(w)rite current model state saves the current state in a .out file. If the file already
exists, you will be given the option of overwriting or renaming it.

(n)ew model input file brings a new .in (or .out file from the disk. If changes have
been made in the current model, the user will be prompted to save it first.

(R)estore vectors. Use this option to restore all the parameters that were changed to
their starting point after an unsuccesful iteration, then modify some value(s) and try
again. Do not use this option if the vector table has since been edited.

If you do not respond ‘y’es to the prompt about vector restoration and you have one
or both plot loops enabled, you will be give an additional option:

Restore to state before last (B)egin or (r)un (y|n)? n
Restore from a recently plotted point? y
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DeltaE will now proceed to display the .plt file one line at a time. After each line
this prompt appears:

Return to this state (y|n|Q)? y
Typing ‘y’ at this point causes the independent plot variable(s) and all members of the
guess vector to be returned to those values displayed in the file. Typing ‘n’ (or simply
<CR>) causes the next line to be displayed. ‘Q’ skips to the end of the file and makes
no changes. No outputs are changed when this option is executed, so the model must
be (r)un again to update them; however, be sure to disable the outer plot loop first if
you want only one point. Alternatively, you can change the step or endpoints of the
plot loop and start plotting again.

This option only works on the current (open) plot file, and it is not useful until after
a run which has produced plot points.

(E)xtras This option enters a submenu containing less commonly used features (described
below).

(d)isplay shows information on the screen. It prompts the user to select the .dat file
(option d), the .plt file (option p), the entire out file (option o), or a single segment
in .out-file format (option n, the segment number). Typing ‘N+’ will display the .out
file from segment N until the end, and typing ‘S’ will display an abbreviated list of
the segment titles. On PC or Unix platforms, these screens have an automatic pause
feature after 23 lines are typed–press <CR> to continue, or ‘q’ to quit the display.
There is no ‘back up’ yet.

(o)utput to printer is the same as “display” above, but for a printed copy instead of
screen display. We have made no effort to maintain this in recent pc operating systems,
so don’t be surpried if it doesn’t work in your pc. In many Windows systems, (o)utput
to printer now makes a file FORT009 which you can print by opening it with notepad.
Alternatively, just use a text editor in your operating system to open and print the
desired files.

(f)orm feed printer makes the printer finish the page and spit it out after doing an
“output to printer.”

(t)hermophysical properties is used to look at properties of any gas, liquid, or solid
supported by DeltaE. The user is prompted to select material, temperature, pres-
sure, etc., with current values as defaults, selectable with a carriage return. Data are
displayed on the screen in this format:

FLUID: 0.880hexe, 302.0 K, 20.000 bar
gamma a(m/s) rho(kg/m3) cp(J/kg/K) beta(1/K) k0(W/m/K) Prandtl mu(kg/s/m)
1.67 465.91 15.356 1078.2 0.331E-02 .10586 0.260447 2.5572E-05
Frequency= 0.16 Hz, delta_nu= 1.8250E-03 m, delta_kappa= 3.5760E-03 m
Print this? (y/n):

(e)xit DeltaE returns us to the computer’s operating system, prompting for several choices
of saving the current model state.
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(p)lot another parameter adds another parameter to the plot. When a number and
capital letter is selected, its variable is added to the list of dependent plot variables.
When a number and lower case letter is selected, its variable is used as an independent
plot variable, and the user is prompted to choose it as either inner or outer loop
variable, and to give its beginning, ending, and increment (or decrement) values.

(P)lot status summary simply displays the current plot status on the screen.

(c)lear from vectors and plots is used to eliminate variables from the guess vector, the
target vector, the plot dependent-variable list, or the plot independent-variable list.
Remember to use lower-case letters when selecting guesses,targets, or plot independent
variables, and capital letters for plot dependent variables.

(C)lear|set all guesses&targets clears everything from the guess and target vectors, if
they contain anything. This is most useful in the early stages of model development:
If DeltaE doesn’t converge, return to your initial guesses (they may be way out of
line by now), clear everything, run it, and examine the results to see if one particular
segment is giving ridiculous results due to a typographical error in the .in file. If the
model has empty vectors after a previous (C)lear, selecting this option again causes
DeltaE to generate a set of default iteration vectors appropriate to the model.

(u)se in guess/target vector allows the user to add a new variable to the guess or
target vector, using a number to define ther segment number and a lower-case letter
to define the variable. (Target pairs in HARDEND, SOFTEND can be set in pairs by using
the letter ‘z.’)

(v)ector status summary shows the current members of the guess and target vectors on
the screen.

(m)odify parameter value followed by a segment number and lower-case line letter allows
the user to change the value of a guess or input variable. Three special Uppercase
pseudo-parameters are also recognized. Selecting nG or nS permits the Gas type or
Solid type, respectively, of segment n to be changed by selecting interactively from
a list of all defined types (including currently active user-defined properties). The T
character brings up the segment’s title string.

When editing lines of information (the segment title or the instruction string of an
RPNTArget, several special editing characters are recognized. \match\replace replaces
the first occurrence of match with the text in replace (replacement strings are always
offset by spaces). ˆtext prepends text to the line; $text appends it.

(s)pecial modes editing allows parameter linking modes to be set for any address (seg-
ment number and parameter letter) that accepts them. Special modes allow geometric
relationships to be maintained when parameters are changed by the solver, by the user,
or as an independent plot loop variable.

(D)OS command shell temporarily suspends DeltaE and executes a new DOS command
environment. This is intended to let the user examine files that are part of other
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models (not available under (d)isplay), to run plotting software on recent results,
etc., without having to save all changes and leave DeltaE. To return to the program,
type exit.

(K)ill segment. This option simply removes a segment from your model. It works on any
type of segment (except BEGIN), and it does nothing intelligent with any lengths that
are removed. The user must compensate another length where appropriate.

(I)nsert segment. DeltaE will prompt you for the correct number of parameters, giving
the parameter name and units. This function is not perfectly interactive. If you make
errors in typing in new parameter values, you will be left with a segment that is partly
the same as the previous occupant of this spot. You may be able to recover by using
the (m)odify value option in the main menu for numerical parameters. In the worst
case (a bad segment type, for example), you may have to (K)ill the new segment and
start over again. (I)nsert before #segments+1 is permitted to add a segment at the
very end.

(h)ighlight parameter. Use this to select variables of special interest that you want to be
displayed on the screen at the end of every (r)un. Add to this list with (h)ighlight,
remove with (c)lear.

E.1. (E)xtra options

The following less-used menu options are accessible after entering E to enter the (E)xtras
submenu:

(S)plit segment. This option automates the laborious process of splitting a duct segment
(or anything else that has a length) into two segments, each with half the original
length, correcting the sameas and math segment references, and correcting the itera-
tion, optimization, and plot vectors. (All math segments, vectors, or sameas references
to the segment specified are incremented by one; that is, the number of the original
segment is incremented by one, and the ‘clone’ segment is effectively inserted before
it.)

(G)enerate state variable plot performs a single run to generate output of position,
area, temperature, pressure, and enthalpy throughout the model. The .spl file that
is written contains Nint/2+1 (see Tolerances/debugging, below) for each integrated
segment in the model (ducts are also integrated in this mode). Non-integrated segments
dsiplay one line at the beginning and one at the end processing.

(g)eometry file causes X-Y points representing a simple sketch of the model to be written
to a file ending in .geo. Plotted using most any graphing software, these points will
give a visual feel for the shape of the design. See the Section V G for an example plot
and discussion.
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(F)lip model. This will take every segment between the BEGIN and the last HARDEND or
SOFTEnd and reverse their order. Segments within TBRANches are left in their original
order, however. sameas, math segment and plot references are all adjusted and an at-
tempt is made to reform the guess and target vectors. Each HSXFRst segment becomes
an HXLAst, and vice versa.

(T)olerances/debugging DeltaE has numerous internal parameters that can be altered
by the experienced user to control the amount of diagnostic information printed or the
behavior of DeltaE’s solver. The dialog that appears for this command looks like
this, if we keep all the default values by hitting <CR>:

Nprint <= 0, save only converged endpoint to .dat file.
Nprint > 0, save and display every Nprint intermediate iterations; also
If Nprint < 0, the iteration vector line is omitted.
Nprint = -1?

If PlotDat >= 0, all error messages are announced.
Otherwise, they are only written to the .dat file.
If PlotDat >= 1, all converged endpoints are written to the .dat file.
(for PlotDat = 0, only the most recent)
PlotDat = 0?

Convergence tolerance (1.e-2 > tol > 1.5e-9 recommended):
Tolerance = .300E-03
New value (<CR> to keep)=?

Number of Runge-Kutta steps (should be even:)
Nint = 10?

Normalization mode: 1=standard; 2=special
mode = 1?

Solver step bound factor (.01-100 recommended):
Bound = 100.
New value (<CR> to keep)=?

(Larger values of FCNerr can speed iterations, with a
slightly less accurate endpoint. Too small a value
can cause the solver to loose its way completely.)
Solver assumed function error (>5.e-15):
FCNerr = .100E-09
New value (<CR> to keep)=?

Minimum Temperature (K):
Tmin=10.0
New value (<CR> to keep)=?

Display exergy in .dat file? 0=no 1=yes
Exergy display = 1?

Environment temperature for exergy calculation:
Envionement temperature (K) = 300.
New value (<CR> to keep)=?

Some plot/spreadsheet packages prefer delimited
columns when reading in plot or state variable files.
Plot field delimiter: 0=fixed space; 1=comma
plot_f_sep = 0?

For further details of the effect of each of these parameters, refer to the discussion in
Chapter V.
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(e)xit to Main Return to the main menu. Typing <CR> alone has the same effect.

F. Troubleshooting, Common Problems, and Suggested Techniques

The most common problem is failure of a brand-new model to converge, and the most
common causes are order-of-magnitude typos in the input file and a premature attempt
to run DeltaE with too many variables in the guess and target vectors. The easiest way
to fix such a problem is to (C)lear everything from the guess and target vectors, run
DeltaE, and display the .dat or .out file. Often it is obvious where your typo is–one
of the output variables will go wild in a supposedly innocuous segment. If not, examine
the results more closely for reasonableness. Modify suspicious variables a little, to see what
effect they have on results. Try to get the model close to converging on your desired targets
just by modifying your desired guesses one at a time, manually. Then add one guess-target
pair at a time, running DeltaE each time, examining the results, and manually modifying
your other desired guess variables to try to keep your other desired target variables under
control. For further diagnostic information, try using the Nprint variable, found under the
(T)olerances/debugging menu described in the previous section and in Chapter V.

It is also useful to keep the model as simple as possible. Examples:

• Rely on nonzero U in BEGIN instead of a transducer segment if possible.

• Don’t try to model a thermoacoustically-driven thermoacoustic refrigerator from scratch
without first succeeding with a thermoacoustic driver and then a piston-driven ther-
moacoustic refrigerator.

• Understand the acoustics of a complicated resonator before adding the stack and heat-
exchanger segments.

• In really stubborn cases, start with only one segment; add segments one at a time,
inspecting results carefully.

Another cause of failure to converge is poor choice of guess-vector members. Obviously,
cross-sectional area of all the segments in a system has little effect on resonance frequency,
but a large effect on thermoacoustic power; similarly, it has little effect on =(1/z) but a large
effect on <(1/z), so don’t try using area as a guess to achieve a target =(1/z). Clearing
vector members and running DeltaE, manually modifying potential guess-vector members
individually to see if they have significant effects on potential target-vector members, is often
educational.

The solver withinDeltaE can sometimes become stuck around a local minimum, partic-
ularly if you are making incremental changes from a model that has already converged–and
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often, the internal representation of the ‘best guess’ does not agree with what we would like
for a given model. Try manually changing one of the guess vector members slightly and see
if DeltaE will loose its fondness for this particular point. Or, change one of the members
of the guess vector, if you can think of an appropriate alternate.

If these steps fail, consider some of the options in (T)olerances/debugging. Some patho-
logically difficult cases converge better with tighter tolerance, alternate normalization mode,
or one of the other tuning options described at the end of Chapter V.

Always check results carefully for reasonableness, particularly when calculating compli-
cated models or using any of DeltaE’s more elaborate features. While DeltaE is a useful
tool, it is far from foolproof; for example, the shooting method can easily end up generat-
ing devices that are several wavelengths long, if initial convergence is slow. All INS-type
segments, TBRANches and UNIONs containing thermoacoustic elements also deserve special
skepticism.

G. Error and Informational Messages

Most of DeltaE’s diagnostics are meant to be self-explanatory, but some require additional
information. In the following subsections, we offer some additional hints for the more obscure
ones.

G.1. Convergence errors

These errors occur while DeltaE’s solver is iterating during a (r)un:

This is not going well...DeltaE gives up! Associated with this error will be a mes-
sage “info=4,” and a listing of all the current guesses followed by all current target−result
values. The solver is not able to find an iteration direction that gives improved results.
During a plot loop, this error sometimes occurs multiple times, after which the solver
once again finds its way. If it persists, a revision to the solution or target vector may
be needed, or the starting point (or plot range) may need to be shifted significantly.
Examine the .dat file for clues, and think carefully about what is occurring. Simplify
the model or iteration if possible. If the error occurs on a model that you know to have
good convergence under other conditions, you may be reaching a pathological point.
You may be able to jump start it by manually (somewhat intelligently) changing the
value of one or two members of the guess vector to put the solver on the right track, or,
you may find it very stubborn at this point. Consider revising the guess and/or target
vectors, or, (C)lear all vectors and targets and examine the outputs to see if you can
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find clues as to the difficulties. Often, the desired targets may not be reachable, given
the constraints you have specified. In all cases, if you have spent some effort reaching
this point, (w)rite the model to save your work because a floating point error that
could cause a crash may occur soon.

Iteration is complete but some results may not be near their targets. If the
text associated with this message is “info=1,” and a listing of all the current guesses
is followed by all current target−result values, this is a WARNING message, and not
strictly an error. It may occur quite frequently. This message is produced by a sec-
ondary convergence check that is necessitated by the solver’s inclination to be ‘satisfied’
with agreement that may not meet the users standards. The check is inadequate; it
simply asks if the mean square error of targets−results is at least 100 times less than
tolerance (see Sec. V J). Based on the relative magnitude of the target values, this
threshold may be inappropriate. When this error message occurs during a plot sweep,
the line written to the .plt file will be preceded by an ‘∗’ to indicate that it requires
closer examination. The most common cause of this message is inadequate agreement
between results and targets at a HARDEnd or SOFTEnd. Often, the message will occur
for values that are only slightly off. For a model that has this problem, a good way
to judge the quality of the results is to add the residual acoustic power or energy flow
(parameter G or H) to the plot list. If the residual flow is orders of magnitude less
than the maximum acoustic power flow, the accuracy can usually be accepted. You
may also consider setting the normalization mode to 2 (see Sec. IV H) to increase the
significance of the endpoint errors.

Handling of convergence errors with plots

When a convergence error occurs during a plotting operation, a ‘∗’ is prepended to the plot
line for that point, followed by a single digit representing the “info” variable at that point.
A typical line in the .plt file might look like this:

*4 2.990 98.61 528.2 45.36 559.3 3219.

Below is a key to interpreting the “info” codes:

info= Significance
1 The solver considers the iteration successful, but the residual error is

suspiciously large.
2 The solver was making progress, but the maximum number of iterations

has been reached. Another (r)un might make further progress.
4 The solver was unable to progress toward convergence.
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There are some cases when one may want to delete the prepended asterisk and number.
For example, if the code is “info=2,” and the remaining error that the solver was working on
was already quite small, it might be quite valid to use this plot point instead of discarding
it.

G.2. Input

The following messages can occur when DeltaE is reading in a model description file:

i numerical parameters expected and only j were found in segtype segment,
Segment number n. Edit model file and restart. Last input was:
This message indicates that an input parameter could not be converted into a floating
point value. The value may contain stray, inappropriate characters, or one or more lines
may be missing and DeltaE may be trying to read the fluid name as the numerical
parameter it needs. For a math segment, be sure you have specified the initial Target
value first, even if you do not intend to use it.

Unknown segment type: segtype. The string at the beginning of the segment description
does not match any segments in the library. Be sure that at least the first five characters
are UPPERcase. The error could also be stray lines; for example, specifying the solid
type twice.

Illegal fluid: fluid string. This message occurs whenDeltaE cannot find the requested
fluid in the internal library or as a fluid.tpf file in the current directory. Check the
spelling of the fluid and be sure that there are enough spaces to fill a 10-character
field before any other text occurs. If you are using an external fluid, be sure the file
is present in the same directory. If all this appears correct, you may have one line too
many of numerical parameters (the giveaway here will be the contents of fluid string).

Unknown plate material: plate string. The comments regarding the Illegal fluid
message, above, also apply to the plate (solid) specification; however, the default
ideal solid type may also be specified by a blank line. If this is the intent, be sure
that a blank line truly separates each segment module.

Error reading segment/parameter address in segtype segment, Segment number n.
This error occurs while reading in one of the math segments (see Sec. V B.7) or when
processing a sameas reference. The characters read do not decode to a valid address
in the model.

More than 5 external fluids found....

More than 5 external solids found....
Only five distinct types of user-defined fluids or plates are allowed in a model at one
time.
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Guess/Result vectors are too long. Reduce count before proceeding. The
maximum problem order for this version of DeltaE is 18.

Too many plot parameters are selected. Reduce count before proceeding.
Up to 13 parameters for plotting can be specified, and the first N of these, where N is
the guess vector length, will be selected automatically; these cannot be cleared. You
must clear one of the user-selected parameters. In addition, one or two independent
variables are also part of the ‘plot’ file.

Nested TEE files are not permitted...compile one at a time. An input file
named in a TEE statement in turn contains another TEE statement. This is not sup-
ported. Running DeltaE on the input file first will generate a combined file that can
then be included as a branch.

G.3. Model editing

The messages below occur when a model is being modified online:

*** sameas relationship cancelled... The parameter you are affecting, by using it
in the guess vector, making it an independent plot variable, or (m)odifying it, is not
specified directly, but through a sameas statement. This connection is severed, and the
parameter takes on the value it currently has, until you (or DeltaE) give it another.

*** Special mode affecting this value must be disabled first. This parameter
is linked back to another parameter that may change, and thereby, modify this value.
Such a link is not appropriate if you are trying to set the value independently, or if
DeltaE will try to do so while it is plotting or iterating; therefore, you will get the
message above when you are try to modify it or make it a guess or an independent plot
variable. (d)isplay this segment to find the root of this link that must be cleared. It
is indicated in () to the right of the parameter description.

This variable must be cleared from the guess vector first.
A guess vector member cannot be the target of a link (it may be the root), or an
independent plot variable, nor may it contain a sameas statement.

This parameter is part of a plot loop. It cannot participate in the guess vector.
Using this parameter as a guess would alter the independent variable of the plot loop
as the solver iterates.

This output is not in any vector. An attempt was made to (c)lear a parameter
that has not been (u)sed or (p)lotted in the target or plot vectors.

WARNING: could not find appropriate default targets. Modify
iteration vectors before solving this model. While trying to generate a set
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of guess and target vectors, DeltaE could not find anything suitable. Be sure all
HXFRST, STK*s, and HXLASts (or HXMIDls) are in proper sequence, and if this is not
the problem, DeltaE is not smart enough to help in this case: set your vectors
manually.

G.4. Consistency checks

These errors are detected when DeltaE begins processing during a (r)un:

FATAL Error: First segment must be BEGIN. A BEGIN segment is required as the first
segment for any model you intend to (r)un; without it, DeltaE has no values for the
initial conditions.

SAMEAS parameter types do not match SAMEAS error: Seg# n, Parameter p. Ex-
cept for math segments (see Sec. V B.7), all parameters specified by sameas must
have a parameter description that matches the root values description through the
first four characters. Hence, parameter a in a duct may come from areaI or areaF of
a cone, but not from its length.

Circular reference found processing SAMEAS Circular SAMEAS: Seg# n. This pa-
rameter is not rooted in an actual value. It is specified by a sameas that, either directly
or through additional references, refers back to the same address.

WARNING: you have i guess vector members and j target vector members defined.
You must either add k new target parameters or delete k guesses.
The guess and target vectors have different lengths. You must take some action to
balance them.

Adjustable length segment cannot refer to itself. The length of this segment
(parameter c) is either linked to itself or to another segment’s length that, either
directly or through additional segments, is linked back to this segment.

H. Known Bugs and Limitations

• DeltaE’s internal solver is very efficient at converging to solutions for complicated
systems; however, it knows nothing about acoustics, or any part of physics, for that
matter. If it ventures too far, it can give you more wavelengths than you intended
before reaching resonance. DeltaE does not know that negative frequencies, negative
pressures, or negative lengths are improper; it simply does the math. In short, the
reasonableness of the answers produced will almost always depend on the quality of
the initial guesses.
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• Numbers stored in .out files are stored with much less precision than DeltaE ac-
tually maintains internally. Sometimes, after storing a file in a particularly difficult
computation, the solver will converge a little differently if the file is loaded back in and
run again.

• Not all floating point errors are successfully trapped on all systems; some can cause
the program to crash and lose unsaved work. Save your work frequently if you are
exploring uncharted territory!

I. Registration

While there is no formal registration for this program, no fees, and no support or warranty
of any kind (please read the copyright notice), we are interested in maintaining a list of
users so that we can fix any bugs that are found and notify known users of serious errors.
If you use this program, please send your name, address, and any comments to Bill Ward,
by letter, fax, or electronic mail, at the addresses below. If you find any bugs to report, we
would be especially appreciative:

Bill Ward
Los Alamos National Laboratory
Group ESA-AET
MS C914
Los Alamos, NM 87545

Fax: 505-665-7176
E-mail: ww@lanl.gov

News of your successes using this code will encourage our sponsors to consider this effort
worthwhile and will enable us to respond to user’s questions. Please tell us how this code has
been helpful to you. We are grateful for your acknowledgments in publications and reports
and for mention of this work to individuals at agencies that support acoustics research. This
will improve our chance to create and pass on improvements in the future.

J. Obtaining DeltaE

DeltaE is under continual development and regular users should update their copies fre-
quently. The latest version is always available (for non-commerical and evaluation use) from
the LANL World Wide Web server www.lanl.gov/thermoacoustics/. Users contemplat-
ing commercial use of the software should contact ww@lanl.gov (Bill Ward) for an update
on the current policy.
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