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The Richtmyer-Meshkov instability is caused by a
shock interacting with a density-stratified interface.
The mixing of the fluids is driven by vorticity
created by the interaction of the density and pressure
gradients. Because the flow is shock driven, the
ensuing mixing occurs rapidly, making experimental
measurements difficult. Over the past 10 years,
there have been significant improvements in the
experimental techniques used in shock-driven mixing
flows. Many of these improvements have been
driven by modelling and simulation efforts, and
others have been driven by technology. High-
resolution measurements of turbulence quantities are
needed to advance our understanding of shock-driven
flows, and this paper reviews the current state of
experimental diagnostics, as well as paths forward in
studying shock-driven mixing and turbulence.

1. Background

Significant new measurements of mixing in Richtmyer—
Meshkov (RM) flows have been made since the review
of the instability theory, computations and experiments
in 2002 [1]. Shock-driven instabilities and mixing
have been studied in many different experimental
configurations, ranging from the weak shock regime
to highly compressible, turbulent regimes. Generally,
as the driver Mach number, Ma, and overall speed
of the flow increase, it becomes more difficult to
measure important flow parameters, such as the density
distribution and the mean and fluctuating velocities.
Over the past decade, the RM instability has been
studied in shock tubes [2], drop tanks [3], laser-driven
capsules [4] and explosively driven systems [5]. These
experiments illustrate the breadth of scales and Mach
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numbers that are experimentally accessible as well as the limitations of the experimental
diagnostics as the driver Mach numbers are increased.

Limitations in diagnostics, along with the need to understand some fundamental behaviours
about RM instability flows, caused experimentalists to focus for many decades on making
integral measurements of the largest scales of mixing. This gave scientists the ability to make
generalizations about the growth rate of the mixing region over time. As our ability to simulate
these complex, shock-driven flows improves [6,7], experimental measurements that enable us to
validate simulations and inform us about the finer scales of mixing in the flow are required.

The initial driver for mixing in RM unstable flows is the baroclinic deposition of vorticity at the
interface between the two fluids. In examining the vorticity equation (equation (1.1)), it is clear
that the early-time evolution of the flow will be dominated by the baroclinic term (last term in
equation (1.1)).
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If we examine the other terms in equation (1.1), the advection term is relatively small for these
flows, but the stretching term increases over time as more three-dimensional mixing effects come
into play. If compressibility effects are low, then the dilatation term will be small, but it is still
unclear when these effects will become important. The first velocity field measurements and first
large-scale vorticity measurements were made about a decade ago in RM flows using particle
image velocimetry (PIV) [8], with more vorticity measurements since then [9]. Since that time,
the spatial resolution has increased for both velocity measurements using PIV [10] and density
measurements using planar laser induced fluorescence (PLIF) [11].

Although great improvements have been made in experimental diagnostics, we are at the
nascent stages of application of these methods to a variety of RM flows to understand mixing
down to the smallest scales. The effects of variation of Mach number, perturbations in the initial
conditions, changing the relative densities of the two gases (Atwood number, A= (p2 — p1)/
(p2 + p1)), and three-dimensional effects have yet to be discerned. This paper describes our
current level of understanding of the impact of these parameters on mixing in RM flows based
upon experimental measurements. The focus will be on shock tube and related laboratory-
scale experiments, because these have produced the highest resolution measurements of mixing
thus far.

2. Mach number effects

Several experiments have been performed to examine the effect of increasing Mach number on
RM mixing. While these experiments are an obvious first step, they are not a simple one. In a
shock tube, as you increase the driver pressure, the resultant shock speed will increase. In ideal
conditions, a pressure ratio of 1.5 is needed to create a Mach 1.2 shock. Owing to losses, usually
this ratio is higher. For example, in the shock tube at Los Alamos, the ratio is about two. For a
Mach 5 shock in air, the ideal pressure ratio is 29. Very high pressures and shock speeds have the
potential to damage weaker portions of the shock tube, for example, the glass windows. Some
advantage can be gained by changing the driver gas but it remains difficult to go to very high
shock speeds and still capture the time evolution of the flow, so most shock tube experiments are
performed with Ma < 3 for the driver shock.

Many measurements of the mixing width of RM interfaces over various Mach number ranges
have been made using schlieren imaging, PLIF, and other light sheet diagnostics. The mixing
width is the largest scale of mixing in the flow, and it is dominated by the vorticity deposited
at the initial interface [12-15]. Mixing zone width measurements for Ma <2 show that growth
rates are independent of shock and reshock strength when the widths are plotted as a function of
distance travelled [16,17]. The University of Wisconsin shock tube group has done an extensive
parametric study of Atwood and Mach number effects on membraneless initial conditions for
Ma < 3, confirming that mix widths can be collapsed with downstream distance [15,18].
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Figure 1. (a) Mixing width versus downstream position for Mach 1.2 and 1.5 shock-accelerated heavy gas curtain experiments.
Growth rates are the same for each case, with slight offset owing to higher compressions at the higher Mach number. (b) Mixing
rate versus downstream position for two Mach numbers, showing steeper density gradients at early times for the higher Mach
number case.

From the past few decades of experiments, it is clear that mixing width scales with Mach
number. One could conclude from this that low Mach number experiments can be performed, and
the results can be scaled up to higher Mach configurations. Higher Mach number experiments,
such as Ma > 5, found in explosively driven flows, inertial confinement fusion capsules and gun-
driven experiments, have diagnostic access that is limited to quantities such as mixing widths and
possibly mean density in the mixing zone. It is also difficult to make time-resolved measurements
under these conditions. As mixing width and mean density are measurements of the largest scales
in the flow, it is not possible to determine how mixing and transition scale with Mach number
through those measurements alone, and higher resolution mixing measurements are necessary.

A study of Mach effects on small-scale mixing by the Los Alamos shock tube team [17]
showed that although growth rates will scale with Mach number, the mixing rate, as measured
by the gradients in the density field, is larger at initial higher Mach numbers. Figure 1 shows
both the growth rate comparison for two Mach numbers, as well as the mixing rate comparison,
where mixing rate is defined as D(Vp - Vp), and D is the average diffusivity of the gases [19].
High-resolution density-field images (figure 2) show that while the growth rates of the curtains
are similar for two different Mach numbers, the small-scale mixing behaviour is not the same.

Full understanding of the mixing in shock-driven flows is not complete without measurements
of the smallest mixing scales. The role of Mach number in introducing compressibility effects the
influence the turbulent mixing is unclear. To understand this effect, very high-resolution velocity-
field measurements are needed. The requirements for these measurements are discussed in the
last section.

3. Initial condition effects

The parametric analysis of Mach number effects cannot be completed unless the initial conditions
of the flow are incorporated into the mixing analysis. Recent numerical, theoretical and
experimental work has suggested that initial conditions play a more important role in mixing
transition than originally thought [20-25] and that even in late times of the mixing evolution, the
memory of the initial conditions is not lost [26,27]. Most of the fluid mixing in RM flows occurs
owing to the nonlinear growth of the instability; however, this growth is very dependent upon
initial conditions that dominate the vorticity deposition and subsequent mixing.

Early shock tube experiments were influenced by initial conditions that used a membrane
to separate the gas interface. Recent work has shown disagreement between simulation and
experiment when the shock moves from a light gas to a heavy gas, and the gases are separated
by a membrane [28]. Techniques that form initial conditions without membranes are a good
step towards understanding the impact of initial conditions on late-time mixing structures [13].
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Figure 2. Two time series of PLIF density images of shocked SFg gas curtains from the Los Alamos horizontal shock tube. Series
(a) isMach 1.2, and from left to right t = 0, 65, 265, 515,715, 915 5. Series (b) is Mach 1.5, t = 0,30, 115, 225, 315, 415 jus. Times
for each series have been chosen to match when normalized with advection speed, so downstream positions are x = 0,7, 28,
54,76,100 mm for both sequences.

While some experiments have been performed to look at the early-time evolution of RM mixing
with different initial interface conditions, at this point in time, we have very little experimental
information about smaller scale mixing or about how the modes present in the initial conditions
impact either transition or any late-time mixing behaviour. These types of experiments require
careful documentation of the initial conditions of each experiment.

Studies of two different wavelength initial conditions were performed at the University of
Arizona shock tube laboratory [29] and these studies examined the large-scale mixing of the flow,
determining that the mixing widths were able to collapse to a model developed by Sadot [30].
Conversely, studies at the Wisconsin shock tube, under a range of Atwood and Mach numbers,
were unable to collapse the mixing width data onto a single curve [31]. This effect was theorized
to be the result of changes in the initial conditions, as observed in their earlier work [32].
Experiments at the Ben Gurion University shock tube determined that the amplitude of initial
perturbations had some impact on mixing, but that the growth still followed a model based on
vorticity deposition at the interface [33].

Measurements that vary reshock timing on the single-mode heavy gas curtain experiments at
the Los Alamos shock tube show the impact that the modes in the interface have on the late-time,
small-scale mixing [34]. In figure 3, two interfaces with very different modes are shocked, and the
late-time density-field images show variation in the mixing behaviours. More detailed analysis of
the small-scale mixing is required to understand the nature of the mixing at late times. This will
require high spatial resolution velocity- and density-field measurements.

59L07L0C L€ /205 Y SUBLL 144 B1o'Buysygndigaposfedorers



Figure 3. Density-field images of two different gas curtain experiments. Image (a) is a time series of 0, 150, 180, 230, 280,
reshock just after 280 (vertical bar), 285, 290, 355, 430, 480, 530 jLs, times relative to first shock passage through initial
conditions. Image (b) is a time series of 0, 90, 260, 360, 510, 560, reshock at 600 (vertical bar), 660, 810, 910 jus. (Online version
in colour.)

4, Atwood number effects

Another important influence on fluid mixing is the density difference between the two fluids. The
most recent studies of Atwood number effects have come from the Wisconsin shock tube [18,31]
and the Polytech Marseille shock tube [35]. In these studies, the gases were changed and the
orientation of the interface with respect to the shock was also changed, with positive Atwood
number indicating that the shock moves from light to heavy gas and negative indicating heavy
to light. In both cases, the mixing widths and growth rates are compared to growth rate models
[36,37] and good agreement is found. No comprehensive study of the effects of Atwood number
on small-scale mixing has been made.

5. Three-dimensional effects

Some experiments have been designed with three-dimensional perturbations on the initial
interface, for the purpose of understanding how three-dimensional effects impact the growth
rates and how fully three-dimensional flows can be modelled [38,39]. Work at the Ben Gurion
shock tube visualized mixing widths for two- and three-dimensional initial conditions, with
single- and multi-mode perturbations, for two different Atwood numbers. They found different
growth rates for each mode of a multi-mode initial condition when compared with the single-
mode initial conditions [40]. These results are substantiated with work by Chapman & Jacobs [41]
using a drop tower and three-dimensional ‘egg crate” perturbations on the initial interface. Mixing
widths are determined using a three-dimensional vortex deposition model, but more nonlinear
growth is seen in the three-dimensional case when compared with the two-dimensional case [41].
Higher spatial resolution density-field information, including measurements at later times, would
assist in determining how best to model multi-mode growth of three-dimensional flows.
Convergent shock tubes [42], annular shock tubes [43] and shocked gas bubbles [44,45] have
shown some trends in overall mixing width development, including possible suppression of the
growth of shocked gas bubbles owing to the outer soap film containment [46]. Increased growth
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of the mixing zone was found in the convergent tube studies. In these cases, the membranes
separating the gases caused so much light scattering that they blocked the signal of the tracer
particles [47]. Experiments in more complex flow geometries appear to be plagued by diagnostic
difficulties and the challenges in setting up the non-planar drivers make this class of experiments
very difficult.

6. Future directions

There is currently no comprehensive understanding of the nature of shock-driven mixing from
the initial deposition of baroclinic vorticity at the density interface, to the smallest mixing scales
of the flow. In non-equilibrium flows such as this, there is a strong reliance upon experimental
data to inform the modelling and simulation efforts. As modelling and simulations demand
more information about vorticity, enstrophy, mixing fractions and turbulence quantities, such
as Reynolds stress terms and velocity—density cross-correlations, it becomes more critical that
measurements of mean and fluctuating density and velocity fields be made [48]. Density—velocity
correlations and Reynolds stress terms have been measured only using simultaneous PIV-PLIF
at the Los Alamos shock tube [10], and more measurements of turbulence quantities have
recently been made [49]. Many more turbulence measurements are needed for the many different
flow configurations described above. The impact of initial conditions, three-dimensional effects,
driver-shock Mach number and Atwood number can be determined only using measurements
that are sensitive enough to reflect the mixing at the smallest scales. And there are presently
no effective temperature or pressure field diagnostics that can be implemented in these high-
speed flows.

Some of today’s diagnostics can be reasonably extended up to Mach 5 regimes, but the time-
and length-scale measurement requirements pose challenges. For example, shock of Ma =5 has
a velocity behind it of about 1400 ms~!. Expected velocity fluctuations in the accelerated flow
are about 20% of this velocity, or u, =280ms~!. If one assumes a reasonable length scale of
eddies in the flow of about 7 =0.01 m, then Re,, =900 000 in air. Estimates of the Taylor scale are
1 =2n,/Re,; =0.7mm, and the Kolmogorov length scale of Lx =7 /Re%/ =03 pm. Approximate
eddy turnover times for this flow would be 7, = LIZ< /v=238ns.

These flow parameter estimates put several constraints upon diagnostics. Holographic
techniques have the spatial resolution to measure the Taylor microscale, with current technologies
possibly having resolutions of 10 pm [50]. Hotwires are unreliable for estimating velocity or
density in even low Mach number flows [51]. Laser Doppler velocimetry (LDV), with a finite
measurement volume, allows resolution of the Taylor microscale, so it is useful for a quick
understanding of the nature of the mean and fluctuating velocities at a point in the flow. However,
LDV is a point-measurement system that does not allow a comprehensive understanding of
non-equilibrium mixing. The current best spatial resolutions in PLIF are about 50 pm; however,
there are some concerns about the application of acetone PLIF to higher Mach number flows,
where the fluorescent response of the acetone is no longer linear, and dissociation of the acetone
will occur [52]. For the higher Mach number cases, a different density-field diagnostic will have
to be used.

In planar PIV, the basic technology used currently is a doubled Nd:YAG laser with two power
supplies, so that the 10ns light pulses can be controlled independently in time. For a Mach 1.2
shock wave, a typical pulse separation is 2 s, and with 2 megapixel charge-coupled device
cameras, this results in a resolution of approximately 150 um per velocity vector. For our Mach
5 example case, with velocities behind the shock that are 10 times that of the Mach 1.2 case,
our time between pulses would have to be approximately 200 ns. The actual pulse width of the
laser would create approximately 1 pixel of motion blur, adding to the PIV error, and cameras
with an interframe time of 200 ns are needed. This configuration is a definite possibility given
existing technologies but it is stretching the capability. A large advantage of PIV is that the image
processing is not computationally intensive.

010710 “LLE 05 § Suel] 1ud BioBuysiigndiaanosieforers:



If research in the RM community can continue to make progress in both spatial and temporal
resolution of measurements, we may be able to understand enough of the physics of these
unsteady flows to extrapolate to higher Mach numbers. This will require that close collaborations
among experimentalists, theoreticians and numerical physicists continue.

Funding statement. This work was supported by the Department of Energy under contract no. DE-AC52-
06NA25396.
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