Generative Modeling for Machine Learning on the D-Wave

Sunil Thulasidasan
Information Sciences (CCS-3)
Los Alamos National Laboratory
sunil@lanl.gov

LA-UR-16-28813
Generative Models

• Two approaches in machine learning:
 – Discriminative: Learn $P(y|x)$
 – Generative: Learn $P(y,x)$

• Discriminative models are easier to train, but generative models are more powerful because in some sense it “understands” the world better.
Boltzmann Machines: A Generative Model

• Energy based model. Assign a scalar energy value to configurations of interest
• Associate lower energy with plausible configurations
• Probability given by
 \[P(x) = \frac{e^{-E(x)}}{Z} \]

• Consists of **visible units** (data) and **hidden units** (capture dependencies between data)

 General Boltzmann machines have arbitrary connectivity. Hard to train.
Restricted Boltzmann Machines

- Restrict connections to occur only between pairs of visible and hidden units. No connections among visible units or hidden units.

- h’s are independent given v and v’s are independent given h (Markov property)
Restricted Boltzmann Machines

- Energy given by

\[E(v, h) = -b'v - c'h - h'Wv \]

- Conditional independence implies:

\[p(h|v) = \prod_i p(h_i|v) \]
\[p(v|h) = \prod_j p(v_j|h) \]

- Once we know the parameters \((b, c, W)\) generating data is easy
Learning Parameters: RBM Training

• Learn parameters that maximize log-likelihood of data. Assuming data independence, we have

\[
\arg \max_{(w,b,c)} \ell(w, b, c) = \sum_{t=1}^{n} \log P(v^t)
\]

• The gradient is given by

\[
\nabla_{\theta} \ell(\theta) = \sum_{t=1}^{n} \mathbb{E}_{p(h|v)} \left[\nabla_{\theta} (-E(v^t, h)) \right] \\
- n\mathbb{E}_{p(v,h)} \left(\nabla_{\theta} (-E(v^t, h)) \right)
\]
RBM Training

\[\nabla_\theta \ell(\theta) = \sum_{t=1}^{n} \mathbb{E}_{p(h|v)} \left[\nabla_\theta (-E(v^t, h)) \right] \\
- n \mathbb{E}_{p(v,h)} \left(\nabla_\theta (-E(v^t, h)) \right) \]

- Gradient depends on joint distribution

- Intractable since it involves the partition function \(Z \)

- To avoid this, use Gibb’s sampling to sample from joint (Boltzmann distribution). Involves running a Markov chain to convergence (Markov Chain Monte Carlo or MCMC)
Practical Ways to Train RBM

• Instead of running MCMC to convergence, run it for just a few \(k \) steps. Sample from this distribution (Contrastive Divergence)

• In practice, \(k \) (number of steps) is < 100. Some times even 1 step works well!
D-Wave as a Boltzmann Sampler

• D-Wave is a physical Boltzmann machine

• In theory, should give samples from a Boltzmann distribution (parameterized by some effective temperature) after annealing

• Approach: Instead of Gibbs’s sampling, map RBM onto D-Wave and sample from solution states
Mapping RBM onto the D-Wave

- RBM’s are full bipartite graphs. D-Wave has sparse connectivity.
- Using logical qubits, can implement up to 48x48 bipartite graph. Lots of qubits lost
- For this work, no qubit chaining. Map each pixel of the training image directly onto a qubit
Chimera Restricted RBM

Same embedding as in Benedetti et al (2015) and Doulin et al (2014)
Mapping binary RBM to Ising Model

- RBM’s are binary \{0,1\} units.
- To map this to Ising model, where units are in \{+1,-1\} we use the following transformation described in Domoulin (2014)

\[
W' = \frac{W}{4} \\
b'_i = \frac{1}{2} b_i + \frac{1}{4} \sum_j W_{ij} \\
c'_i = \frac{1}{2} c_i + \frac{1}{4} \sum_j W_{ji}
\]
Experiments

• Basic Outline (classical side):
 – Initialize visible units and hidden units
 – Clamp visible units to a training sample
 – Run few steps of contrastive divergence for gradient
 – Update parameters
 – Run till convergence

• On the D-Wave, same process except we do not run contrastive divergence, but sample from solution states
Data

- MNIST (handwritten digits 0-9)
- Train on 1000 digits and learn features.
- And then see if the model can generate its own representations.
D-Wave Effective Temperature, Parameter Noise etc

• D-Wave effective temperature is different from physical temperature. Estimate this via sampling and then find a best fit
• Did not do any corrections for weight and bias noise.
• Effective temperature also fluctuates during training (Benedetti et al 2015). Did not correct for this.
Experiments:
Contrastive Divergence (CD) 1 Step

Filters learned after epoch 1
Filters learned after epoch 15
Generated Images
After 50 Steps of CD

Generated Images

Filters

LA-UR-16-28813
After 100 Steps of CD

Filters

Generated Images

LA-UR-16-28813
D-Wave (Experiment 1)

Filters learnt are sparse due to sparse connectivity graph

Generated images are noisy and largely indistinguishable from one another
D-Wave (Experiment 2)
D-Wave (Experiment 3)
D-Wave Observations

• Effective temperature and parameter noise affect modeling
• However, limited connectivity is a much bigger problem
 – RBM’s are robust to limited connections. But the D-Wave has less than 1% of connections of a complete bipartite graph.
 – Qubit chaining can overcomes connectivity issues, but then image has to be significantly down-sampled.
References

• **Dumoulin et al 2014.** On the Challenges of Physical Implementations of RBMs. *In Proceedings of AAAI 2014*

• **S. Adachi, M. Henderson, 2015.** Application of Quantum Annealing to Training of Deep Neural Networks

• **Benedetti et al. 2015.** Estimation of Effective Temperatures in Quantum Annealers for Sampling Applications: A Case Study with Possible Applications in Deep Learning