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Why Segmentation is Hard

3D Segmentation of neurites in EM images Lack of X-ray contrast between crystals and binder

PBX-9501 Image courtesy of
Brian Patterson
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MAMA Segmentation is competitive with SOA

ISBI Benchmark for 3D segmentation in EM images i Current SOA
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The Need for Segmentation Uncertainty

= PBX-9501 dataset courtesy of Brian Patterson.
Result 1 Result 2

Thanks to Amy Ross (MST-16) for inspiring this proposal
and identifying a unique dataset and opportunity.
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Segmentation as Graph Coloring/Partitioning

Edge
Neural Boundary .

i Segmentation
Input Image Network Prediction ngght:d g
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= Neural network with logistic function outputs: We R D
* How does the segmentation uncertaintyrelate to the edge uncertainty?
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Probabilistic Graph Coloring/Partitioning

Image G =(V,E,w) Coloring / Partitionin
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Image with P pixels Edge weighted graph Labels y; € {1,2,..., |V}
Potts model: Y = argminy ZeijeEI(yi * yj)wij

Gibbs distribution: p(y|lw,B) = exp (—ﬁ LeyeE I(y; # yj)wij — logZy)
Estimate marginal: p(vi,y;16)

Size of 6: [VI|V|IE]
Kappes, J. H., et al. (2015). Probabilistic Correlation Clustering and Image
Partitioning Using Perturbed Multicuts, Cham, Springer International Publishing.
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MAMA'’s “Hierarchical Watershed” Method

» Hierarchical segmentation as a multi-layered graph

Input Super-pixels Final Labeling

Label Based
Pooling

2 2

= Two-layer energy function: E(Z,Y,X) = Z 92(21,2, X, Y) + Z Z 91 O Yo X)
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MAMA'’s “Hierarchical Watershed” Method

= Two-layer energy function: E(Z Y, X)= Z 92(2i,2, X,Y) + Z Z 91> Y, X)

e;jE€Ey Vi€EVy emn €V

» A tractable subset of energy functions based around dynamic programming

Minimum Spanning Forrest Minimum Spanning Tree
Local basins of weighted graph Global threshold on weighted graph
1 Watershed __ ) ¢ Connected
Cuts Components
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Watershed Segmentation

Catchment Basins

Watershed Lines ——p»

.o

Local Minima of Graph

~
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Probabilistic Watershed

= Consider all possible spanning forests is actually tractable! = For each vertex estimate probability that
it will appear in a tree associated with a
teT Spanning tree particular minima.
fEF Spanning forest
w(t),w(f) Sum of tree/forest weights
_ w(f) . . . .
P(f) = ————= Gibbs distribution over all possible forests
LW

Matrix tree theorem:

1 1
T) = t) = =—det|L+—11"
w(T) z w(®) Z 1_[ w(e) V| © ( + V| ) = Equivalent to a diffusion type model

teTl’ teTl e€E . . . o
‘ where vertex is assigned to a minima it is
most likely to visit first on a random walk.

Sanmartin, E. ., et al. (2019). Probabilistic Watershed: Sampling all spanning forests for seeded

segmentation and semi-supervised learning: 2776-2787.
Grady, L. (2006). "Random Walks for Image Segmentation." IEEE

transactions on pattern analysis and machine intelligence 28(11):
1768-1783.
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Random Walker

Edge Weights Segmentation Entropy of Assignment
Probabilities

~
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Watershed Segmentation

®

argmin WPlx; —x,]7 9= 1 when x;>0.5
x ijiot J 0 otherwise

ejjEE

= Asp — o0 we only consider Minimum Spanning Forests.
= This has significant computational advantages.
*  The minimum entropy Gibbs distribution.

Couprie, C., et al. (2009). Power watersheds: A new image segmentation

framework extending graph cuts, random walker and optimal spanning forest.
Computer Vision, 2009 IEEE 12th International Conference on.

= Assign vertex to minima that has the lowest minimax path.

Minimum Spanning

-ve Edge

Labeling of Pixel Locations in 1D Image g

Challa, A. et. al., (2019). Watersheds for semi-supervised p -
classification, IEEE Signal Processing Letters, 26:720-724. q 0 finite oo
Collapse to seeds Graph cuts Power watershed g = 1
2 ¢2 norm Voronoi Random walker | Power watershed ¢ = 2
00 ¢1 norm Voronoi | #¢; norm Voronoi Shortest Path Forest
Los Alamos

NATIONAL LABORATORY




Connected Component Segmentation

Minimum Spanning Tree

f = ) I(Yi = y].) min [ max (Wij) Global threshold on edge weights
= argminy PeP;\ijeP
ei€E ¢ Connected
Components
1. Cut negative edges: w;<0 e e T e

2. Use Connected Components to label partitions

Edge weight

= Cannot be expressed as MAP solution of an exponential family
probabilistic model!

Tarlow, D., et al. (2012). Randomized optimum models for structured
prediction. Artificial Intelligence and Statistics, PMLR.

Labeling of Pixel Locations in 1D Image
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A Hierarchy of Closed Contours

Threshold at leaves Threshold mid tree Threshold at root node
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Ultra-metric Maps

Height where the Contour Disappears

Non-closed edge weights (w, = p,) Closed contour height (~ p.)

Height ~ Confidence
Captures non-local aspect of
segmentation.

O(NlogN) algorithm
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Ultra-metric Maps for Watershed Segmentation

= The Watershed-Cut can be expressed as a MST of a modified graph: Identify edges on saddles and ridges
5 ) I(y; # y].) min [ max (w; ;- w;;)
Y = argminy Z pep;lijep J
€;j€E
- Wij

. ) )
Wi = Max (MlnkENi\jwik, MlnkENN Wy j )

MSF Segmentation MST Segmentation Higher in Higher in

o »

"a Los Alamos Porter,R., Oyen, D., Zimmer, B.G., "Learning Watershed Cuts Energy Functions",
&=¥ NATIONAL LABORATORY Mathematical Morphology and Its Applications to Signal and Image Processing, 2015.



Ultra-metric Maps for Watershed Segmentation

» Likelihood ratio for watershed edge:

(wij — wy;) % I, Closed contours (segments) & I7
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Flat Zones and the Power Watershed

MSF MST

argmin

ejjEE
" p 0 finite o0
1 Collapse to seeds Graph cuts Power watershed ¢ = 1
2 {2 norm Voronoi Random walker | Power watershed ¢ = 2
00 /1 norm Voronoi | ¢1; norm Voronoi Shortest Path Forest

= Watersheds are not well defined when edges are not unique. e

= Power Watershed:
1. Minimum Spanning Forrest for unique edges.
2. Random Walker solution for flat zones.

= With equal weights, this is equivalent to assigning a vertex to
the minima that is closest in terms of geodesic distance.

Geodesic distance Random Walker
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Ultra-metric Likelihood Ratios

Watershed Connected Component Geodesic Distance

S tati . .
egmentation Ultra-metric Confidence Map  Ultra-metric Confidence Map Ultra-metric Confidence Map

Uncertainty Confidence Uncertainty

= MAMA’s Segmentation method is not a MAP solution to a standard exponential family probabilistic model.

= Ultra-metric Likelihood Ratios provide a segmentation centric worst case estimate for confidence.
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Ensemble and Perturbation Methods

[ X N N N N N )
000606 |
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» Ultra-metric distances have been used to weight votes in an ensemble.
= Sampling multiple segmentations can provide probability estimates and also smooth gradient
estimates in end-to-end learning.

L. Zheng, T. Li and C. Ding, "Hierarchical Ensemble Clustering," 2010 IEEE International
‘s Los Alamos Conference on Data Mining, 2010, pp. 1199-1204, doi: 10.1109/ICDM.2010.98.
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Securing our Technical Leadership in Hierarchical Watersheds

Project Description: The objective is to provide uncertainty
estimates for hierarchical watersheds (HWS). Success in this project will
provide a much needed (and requested) qualification to automated image
analysis and strengthen our case for using HWS in production environments.

Project Outcomes

Mentorship:

= Supported full time (but late starting) GRA.

= Provided technical guidance towards a PhD in materials image

analysis for a GRA in PT-3 (expected Dec’ 2021).

Publications:

= “Synthetic-to-Real Domain Adaptation for Autonomous Driving”, Har
Simrat Singh, Sunil Thulasidasan, Aqueel Jivan and Reid Porter,
Accepted for presentation at the SMC Data Challenge 2021.

= “End-to-end learning of Hierarchical Watersheds”, Reid Porter,
revisions to be submitted Oct’2021

Proposal: Enabling Manufacturing Proposal: Automated Grain

Delineation and Quantification for Production Processes, Kari Sentz (Pl),

with P-3 and MST-16 (not funded).

PI: Reid Porter
Total Project Budget: $60k
¢:§ Los Alamos ISTI Focus Area: Verifiable Al & ML
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