
Managed by Triad National Security, LLC, for the U.S. Department of Energy’s NNSA.Managed by Triad National Security, LLC, for the U.S. Department of Energy’s NNSA.

Monitoring Clusters Using Extended Berkeley Packet Filter (eBPF)
Weston Cadena (westoncadena@tamu.edu); Alexis Ng (alexism.ng@ku.edu); Matthew Phillips (mphillips8687@gmail.com) | Mentors: Travis Cotton, Nick Jones, Johnathan Nielsen

Background
eBPF Overview
eBPF tools are used for performance analysis and
observability at a low overhead and cost by attaching
probes (kernel, user, tracepoints). This project primarily
focused on the BPF Compiler Collection (BCC) tools:
pre-written tools utilizing eBPF. They provide greater
insight into the processes that are running “under the
hood” of the Linux kernel and software applications using
tracing, sampling, and snooping.
eBPF in HPC
eBPF can target certain layers within the cluster
(filesystems, CPU usage, network connections, etc.),
which are typically blackboxed when diagnosing
problems and monitoring the system beyond the existing
Linux tools. eBPF output can also be written directly to
/var/logs or into files.
Admins can use eBPF
● across separate nodes to diagnose slow or congested

nodes
● diagnose user issues and cluster problems using

kernel probes
● create custom probes based on syscalls, bringing

flexibility and relevance in HPC for accurate targeting
Users can use eBPF to
● find inefficiencies in their code
● understand how their code scales and distributes work

during jobs.
● with root access, but without it, system admins can

find alternative solutions to grant permissions for
desired tools.

Project Scope
We aimed to determine the viability of BCC tools in an
HPC environment by monitoring a 10 node cluster while
performing kernel compilation and physics simulations
testing. Tool output, obtained through a series of
benchmarking tests, was graphed using R to evaluate
the clarity and efficacy of the tool results.

CPU
Context/Purpose: Tracking user stack with the offcputime tool on
VPIC-KOKKOS benchmark test. Figure 3 shows the current load on the
system from the test. It may be noticed that there is “[unknown]” which is
when the user stack can not recursively find the process name.

Conclusion
eBPF was able to provide reasoning and insight into slow
nodes, high levels of traffic, and CPU activity at a
detailed level. With each tool having different purposes of
debugging or job evaluations, eBPF is able to help
scientists and admins reach performance objectives.
Future Work
Greater testing on overhead and integration within the
existing ecosystems for logging softwares (Splunk,
Grafana) is recommended.

LA-UR-23-28968

File Systems
Context/Purpose: Tracing the reads and writes of three serial kernel compilation using sbatch to
stress the NFS. BCC’s nfsslower shows reads/writes with latencies greater than 1 ms. Figure 5
shows a scatter plot of reads and writes per command separated by node. Figure 6 shows that there
are outliers of the xz command (data decompression).

Figure 3: CPU User Stack Visualization

Figure 6: Command Latency on Node 9

TCP
Context/Purpose: Sampling the TCP transmissions of VPIC Harris input
deck using tcptop without mpi working (figure 1) and with MPI working
(figure 2) amongst nodes. The width is based on the amount of data
transmitted in kilobytes between processes and the color is based off
process.

Vector Particle-In-Cell (VPIC)
A physics code simulating coupled
Maxwell-Boltzmann system of equations. VPIC
uses Message Passage Interface (MPI) calls for
multi-node applications. In addition, VPIC
checkpoints its data, allowing for flexible restarts at
the cost of excess writes during the simulation.

bpftrace
bpftrace is a front end tool meant for one-liners and
custom scripts allowing for flexibility and more specific
probing on the stack. bpftrace does not allow for
custom probes; however, the pre-made probes target
syscalls much more effectively than BCC tools.
https://github.com/iovisor/bpftrace

Memory
Context/Purpose: Sampling the CPU cache hits
and TCP transmission amounts with llcstat and
tcptop every second on VPIC-KOKKOS
benchmark test. Figure 4 shows ~20 minute
snapshot of a 2 hour test.

Figure 1: TCP Transmissions without MPI Figure 2: TCP Transmissions with MPI

Methods
A systemd service was used to run the BCC’s
tools to monitor our desired benchmarks. The
service is able to start up tools, redirect outputs,
and the end them correctly with a sigint-
preventing corrupted or incomplete outputs.

Figure 4: CPU Cache and TCP Transmission over time Figure 5: Read/Write on NFS over Time

Checkpoint

