LA-UR-20-26068

Auto-Mounted
SquashFsS for
Charliecloud Containers

HPC Showcase 2020

{

Megan Phinney Anna Chernikov

Iowa State University NC State University
BS Computer Engineering 2022 BS Computer Science 2020
University of Arizona
PhD Student

Containers in HPC

& What are Containers?
o Contains Application,
Software Stack, and OS ENSe]

Container Container Container

o Can be moved between Slow program hEILo wOrID Perl
different machines

& Why Containers in HPC?
o Hides Complex Dependencies
Lightweight
Portable
Easy Deployment

Isolated Environment

Java Python MySQL

Debian CentOS Ubuntu

O O O O

What is Charliecloud?

& A Container Runtime
developed at LANL specifically
for HPC

Why Charliecloud?

& Light-weight
& Fully Unprivileged
& Better choice for HPC

What is a SquashFS File?

Compressed read-only filesystem
Like tarball but mountable
SquashFUSE enables mounting by
unprivileged users

et

/FUSE : Filesystem in)
Userspace

High Low
Level Level
_ J

-
Why Squash?

Distribution Time — LAMMPS on Woodchuck ~2GB .
R —————— B Faster Image

; t cp $IMG $TMPFS 1 1 1 1
- SquashFS scales better

than tarballs

751w SquashFS FUSE srun mkdir $TMPFS .
/1_
'1 % = =

time (seconds)

node count

Tarball
Workflow

Oold
SquashFS
Workflow

New
SquashFS
Workflow

Charliecloud Commands

ch-tar2dir ~/img.tar.gz /var/tmp
ch-run /var/tmp/img -- /bin/true
ch-mount ~/img.sqfs /var/tmp
ch-run /var/tmp/img -- /bin/true
ch-umount /var/tmp/img

ch-run ~/img.sqfs -- /bin/true

'é Unpack tarball

-9 Run Command
-9 Mount SquashFS
.9 Run Command
.9 Unmount SquashFS

'é Mount SquashFsS,
Run Command,
Unmount SquashFS

agpical Tarball Workflow

Unpack Mount Run Unmount
Tarball)
k| ch-tar2dir

Too Slow
Distribution
time

Takes up
too much
memory

old

SquashFS

Workflow '

Unpack Mount
No

automatic ch-mount

clean up

Typical SquashFS Workflow

Unmount

ch-umount

mechanism =

Doesn't play
well with
srun
(Slurm)

Y

3 User
Commands

New
SquashFS
Workflow

Unpack Mount

Automatically
cleans up user

mounts

Our New SquashFS Workflow

Run Unmount

ch-run

Only 1 User

Command

Works with
srun

Current SquashFUSE Our Modified SquashFUSE

ﬁ squashfuse.so
a squashfuse(1)

10

squashfuse(1)

P Refactored

libsquashfuse_la_SOURCES = swap.c cache.c table.c dir.c file.c fs.c \

decompress.c xattr.c hash.c stack.c traverse.c util.c \ S uaShFUSE
nonstd-pread.c nonstd-stat.c \

nonstd-pread.c nonstd-stat.c ops.c \
squashfs_fs.h common.h nonstd-internal.h nonstd.h swap.h cache.h table.h \

dir.h file.h decompress.h xattr.h squashfuse.h hash.h stack.h traverse.h \

v 278 mmmms hl.c (9 % hpc/squashfuse

static sqfs_err sqfs_hl_lookup(sqfs **fs, sqfs_inode *inode, forked:from vexsysquashiuse

const char *path) { > 6 NEEE" Makefile.am (5]

bool found;

sqfs_hl *hl = fuse_get_context()->private_data;

278 mEmEE" hl.c [©
EEEEE ops.c (7 > o

static sqfs_err sqfs_hl_lookup(sqfs **fs, sqfs_inode *inode,
const char *path) {

=]
282 HEENEN ops.c
bool found; > P U

sqfs_hl *hl = fuse_get_context()->private_data;

> 23 EEEEE ops.h [J]

EEEEE ops.h ()

+ #ifndef SQFS_OPS_H

+ #define SQFS_OPS_H

+ typedef struct fuse_operations fuse_operations;
+ typedef struct sqfs_hl sqfs_hl;

Linked SquashFUSE Libraries to ch-run

All Fuse File System operations in ch-run are referenced from SquashFUSE libraries:

& Mount
& Unmount
& Reads

Charliecloud

File System squashfuse.so —l
gcc squashfuse.so ch-run.o

Operations

12

Updated ch-run source
code and documentation

& hpc/charliecloud

if(sqfs_hl_open(argv[arg_next],0)) @ Squash FUSE auto-mount option for ch-run
goSquash(sq.parentdir, &argv[arg_next]);
Description

By de
auor Using Squash FileSystems

squas

willb ch-run will handle Squash Filesystems passed in as the IMAGE . They will be

The < automatically mounted prior to execution, and unmounted as part of the cleanup. the --
« 13 EEEE" bin/ch_core.h [7) squashmnt option allows you to specify the parent directory at which the squash
filesystem will be mounted.

v 92 EEEE" bin/ch_core.c [%)

+ int squashmount(struct squash *s)

+

+ struct squash {

i . Example 1: Create and Run a SquashFilesystem image:
+ char *filepath; // path of sqgfs file

+ char *mountdir; //location where squashfs is mounted

$ ch-build -t hello $HOME/chorkshop/hello

$ ch-builder2squash hello $HOME/images/

+ struct fuse_chan *ch; //fuse channel associated with squash fuse session 4 $ ch-run $HOME/images/hello.sqfs -- ./hello.py

+ pid_t pid; // process id of the fuse loop

+ struct fuse *fuse; //fuse struct associated with squash fuse session

+ char *parentdir; //location of mountpoint parent directory Example 2: Create and Run a Squash Filesystem image but with preferred mount

s 3) directory:

extern struct squash *s;) $ ch-build -t hello $HOME/chorkshop/hello
$ ch-builder2squash hello $HOME/images/
$ ch-run --squashmnt=/tmp/mytmp/ $HOME/images/hello.sqfs -- ./hello.py

/** Function prototypes **/

void containerize(struct container *c);
void run_user_command(char *argv[], const char *initial dir);
int squashmount(struct squash *s);

void kill fuse_loop();

Phase New Process Tree Original Process Tree
ch-run ch-mount
(squashfuse)
Daemon
LibFUSE Fuse
Mount Loop
Mount
Fuse
Loop
ch-run
Run User
Command l
ch-umount
LibFUSE (fusermount -u)
Unmount Unmount

‘e

14

New ch-run

Image]
g Image Logic

mount 1n mount 1n
<DIR> /var/tmp

g

Execute
Contailner

Im C /5
_ra%f unmount 4 /
y p l;;mo-ﬂEND
15

b o oo

How does the startup and
teardown time of the new
workflow compare to the old
workflow?

* w

High Level Fuse API
o New Workflow

(High Level Fuse API)
Surround each step of the
workflow with date
Calculate total durations
Repeat x1000

date '+%s.%N’
CHMOUNTLL $SQFS /var/tmp
date '+%s.%N'

date '+%S.%N'
CHRUN /var/tmp/$NAME -- $PROG
date '+%s.%N'
date '+%Ss.%N'
CHUMOUNT /var/tmp/$NAME
(date '+%s.%N'

New SquashFS
Workflow

Old SquashFS
Workflow
(Low Level)

Old SquashFS
Workflow
(High Level)

Total Workflow Time

Duration (seconds)

Median Timeline for SquashFS Workflows

New SquashFS Workflow:

Old SquashFS Workflow (Low Level)

& Reduces Mount and
' i
U e
& Container Execution
Time is constant

Old SquashFS Workflow (High Level)

|

e deaey ae avie - mount and

New SquashFS Workflow

i

unmount
times so
small?

= Py Y §

Unmount

19

Possible Causes for Shorter Mount Times

Mounting with Old

Mounting with New

el SquashFS Workflow

Workflow

b

CProgram =

= \ 1
= |
i ! Q
> 3 4 ‘x /
4 4 3
i
o) o)
= 4 S

Child
Process

20

b o oo

-

How does running an image
multiple times scale?

* :

Mount Once

Unmount Once

New SquashFS Workflow

for i in $N
do

ch-run ~/img.sqfs -- /bin/true
done Unmount N Times

Mount N Times

Multiple ch-run
Execution Runtime

& As ch-run steps increase,
the New SquashFS
workflow time increases

& However when running
any meaningful
application the added
time is insignificant

duration (s)

Old Workflow (Low Level)

New Workflow (High Level)

4 8 12
amount of times ch-run was executed (N) 23

Conclusions

Our New SquashFS Workflow:

st

More user-friendly

No additional performance cost
Plays well with srun
Auto-cleans SquashFS mounts

$ %8

Future Work

Merge branch into Charliecloud
Add low-level FUSE API

Test the new workflow with larger
SquashFS images

Submit pull-request for SquashFUSE

& 29

Credits: This
presentation template
was created by Slidesgo,
including including icons
by Flaticon, and
infographics & images by
Freepik

Megan Phinney

Iowa State University
Computer Engineering
mphinney@iastate.edu

Jordan Ogas Alfred Torrez
Creator of R. Peezee Grill Dad

T
Y g

Anna Chernikov

NC State , University of Arizona

Computer Science

chernikov@email.arizona.edu

Goff

Brofessional

Shane

Reid Priedhorsky
King of Charliecloud

26

Mount Time Run Time Unmount Time

New SquashFS
Workflow

Old SquashFS
Workflow
(Low Level)

Old SquashFS
Workflow
(High Level)

PSSR 0 00 0.02 0.04 0.06 §0.00 0.03 0.06 0.09 §0.00 0.02 0.04 0.06 7

