
Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA



Los Alamos National Laboratory

Survey of Tools to Assess Reduced Precision on 
Floating Point Applications

By Quinn Dibble

Project Mentors: Terry Grové, Laura Monroe
Supercomputer Institute 2020

ASC Beyond Moore’s Law Inexact Computing
LA-UR-20-25935

August 6th, 2020



Los Alamos National Laboratory

Motivation

● Floating point computation is a staple of scientific computing
● High precision is accurate, but has high energy, runtime, and 

resource costs
● Mixed precision is a way to offset some of those costs

○ This is the goal of the ASC BML inexact computing project

● Manually figuring out mixed precision config is hard - tools?

Image: 
https://www.thecrazyprogrammer.com/wp-content/uploads/2018/04/Single-Precision-vs-Double-Precision.png

https://www.thecrazyprogrammer.com/wp-content/uploads/2018/04/Single-Precision-vs-Double-Precision.png


Los Alamos National Laboratory

Overview
Six tools will be covered:

● ADAPT
● FLiT
● FloatSmith
● FPBench
● HiFPTuner
● Precimonious



Los Alamos National Laboratory

Potatohead test system

● Small test cluster put together for ASC Beyond Moore’s Law 
Inexact Computing project

● Flexible and incorporated cutting-edge devices
● Relevant to tools tests:

○ 2x Xeon E5-2623 4 core CPU @3GHz
○ 126G Memory, 1G swap

Image courtesy of Andy DuBois, HPC-DES



Los Alamos National Laboratory

Potatohead schematic



Los Alamos National Laboratory

ADAPT

Harshitha Menon, Daniel Osei-Kuffuor, Markus Schordan, Scott Lloyd, Kathryn 
Mohror, Jeffrey Hittinger - LLNL Center for Applied Scientific Computing

Michael O. Lam - James Madison University
 

Algorithmic Differentiation Applied to Floating 
Point Precision Tuning

Github: https://github.com/LLNL/adapt-fp
Paper: https://dl.acm.org/doi/10.5555/3291656.3291720

https://github.com/LLNL/adapt-fp
https://dl.acm.org/doi/10.5555/3291656.3291720


Los Alamos National Laboratory

ADAPT - Overview

● C++ Library
● Find a lower precision version of your code within error bounds
● Estimates error caused by lowering precision



Los Alamos National Laboratory

● Include adapt header files
● Change FP variables to AD_real type
● Tag independent, intermediate, and dependent 

variables with macros
● Use function calls to change analysis behavior

ADAPT - Usage



Los Alamos National Laboratory

ADAPT - Workflow



Los Alamos National Laboratory

ADAPT Tests

● Applied to publicly available mini-app CLAMR
● Added ADAPT code in a function to test
● Ate up so much RAM, OS killed it

https://github.com/lanl/CLAMR


Los Alamos National Laboratory

● Works well on very small scale - might be easier to tune 
manually?

● Can implement on single function/algorithm within code
● Not great for large scale programs:

○ Resource and time hog
○ Have to modify large codebase

● Straightforward to implement!

ADAPT - Conclusion



Los Alamos National Laboratory

What if there was a more 
automated version of 
Adapt?



Los Alamos National Laboratory

FloatSmith

Tristan Vanderbruggen, Harshitha Menon, Markus Schordan - LLNL
Michael O. Lam - LLNL & James Madison University

Tool Integration for Source-Level Mixed Precision

Github: https://github.com/crafthpc/floatsmith
Paper: https://w3.cs.jmu.edu/lam2mo/papers/2019-Lam-Correctness.pdf

https://github.com/crafthpc/floatsmith
https://w3.cs.jmu.edu/lam2mo/papers/2019-Lam-Correctness.pdf


Los Alamos National Laboratory

Floatsmith - Overview

● Toolchain that leverages 3 tools:
○ TypeForge - find and replace variables
○ ADAPT (optional) - narrow search space
○ CRAFT - A tool to search and test different FP configs



Los Alamos National Laboratory

FloatSmith - Overview

Figure taken from paper: https://w3.cs.jmu.edu/lam2mo/papers/2019-Lam-Correctness.pdf

https://w3.cs.jmu.edu/lam2mo/papers/2019-Lam-Correctness.pdf


Los Alamos National Laboratory

● Interactive script, ask user how to:
○ Build the program
○ Run the program
○ Declare a configuration valid (error, output match)

● Batch mode exists for automation

Floatsmith - Usage



Los Alamos National Laboratory

Floatsmith Tests

● Tested examples in Floatsmith repository
○ Ran premade batch mode scripts: looked good
○ Ran interactive: results depended on choices 

(search algorithm)
● Tested Floatsmith on CLAMR

○ Asked different things than example
○ Couldn’t generate list of variables



Los Alamos National Laboratory

FloatSmith Conclusions

● Very easy to use on small programs (inc. examples)
● Absolutely use it with smaller programs
● Difficult to get working for complex code bases

○ Possibly pull out an algorithm from bigger 
codebase?



Los Alamos National Laboratory

Precimonious

Cindy Rubio-González, Cuong Nguyen, Hong Diep Nguyen, James 
Demmel, William Kahan, Koushik Sen - EECS Department, UC Berkeley

David H. Bailey, Costin Iancu - Lawrence Berkeley National Lab (LBL)
David Hough - Oracle Corporation

Tuning Assistant for Floating-Point Precision

Github: https://github.com/corvette-berkeley/precimonious
Paper: https://web.cs.ucdavis.edu/~rubio/includes/sc13.pdf

https://github.com/corvette-berkeley/precimonious
https://web.cs.ucdavis.edu/~rubio/includes/sc13.pdf


Los Alamos National Laboratory

Precimonious - Overview

● Finds a lowest floating point configuration of code within error
● Utilizes LLVM bitcode for modifications
● Tests error by running every configuration in search space



Los Alamos National Laboratory

Usage
● Create search file (manually or script)
● Run search script
● Test against original code with user specified error bound

Precimonious - Workflow

Image taken from Figure 3 in the paper: link

https://web.cs.ucdavis.edu/~rubio/includes/sc13.pdf


Los Alamos National Laboratory

Precimonious Conclusions

● 6 year old project - might cause dependency issues with 
newer projects

● Not much in the documentation, only says how to install 
& run example

● Actually runs all configurations - large runtime costs



Los Alamos National Laboratory

HiFPTuner

Hui Guo, Cindy Rubio-González
Department of Computer Science - UC Davis

Exploiting Community Structure for Floating-Point 
Precision Tuning

Github: https://github.com/ucd-plse/HiFPTuner
Paper: https://web.cs.ucdavis.edu/~rubio/includes/issta18.pdf

https://github.com/ucd-plse/HiFPTuner
https://web.cs.ucdavis.edu/~rubio/includes/issta18.pdf


Los Alamos National Laboratory

HiFPTuner - Overview

● An algorithm on top of Precimonious to improve search 
efficiency

● Still uses Precimonious for actual tuning



Los Alamos National Laboratory

HiFPTuner approach:
1. Create LLVM bitcode file of program
2. Run analysis and transformation passes to attain 

dependence graph
3. Run Networkx and Community packages
4. Tune code with Precimonious

HiFPTuner - Approach



Los Alamos National Laboratory

HiFPTuner - Conclusions

● Slightly faster search than Precimonious due to 
improved algorithm

● Have to change between Clang versions between steps
● If you really want to use Precimonious instead of 

FloatSmith/ADAPT, use this



Los Alamos National Laboratory

FLiT

Geof Sawaya, Michael Bentley, Ian Briggs, 
Ganesh Gopalakrishnan - University of Utah

Dong H. Ahn - LLNL

Cross-Platform Floating-Point Result-Consistency 
Tester and Workload

Github: https://github.com/PRUNERS/FLiT
Paper: https://ieeexplore.ieee.org/document/8167780

https://github.com/PRUNERS/FLiT
https://ieeexplore.ieee.org/document/8167780


Los Alamos National Laboratory

FLiT - Overview

● Test infrastructure to find variation in FP code caused by 
different factors:
○ Compilers
○ Compiler Optimizations
○ Hardware
○ Execution Environments



Los Alamos National Laboratory

FLiT - Components

● C++ reproducibility test infrastructure
● dynamic make system
● SQLite database and analysis tools for results
● Bisection tool that can isolate file(s) and function(s) that 

introduce variability



Los Alamos National Laboratory

FLiT - Approach

● Runs every combination of compiler(s) & optimizations
○ Compares results to “ground truth” - unoptimized run
○ Measures runtime

● Create database for results
● Comes with “litmus tests”

○ Tests that common FP algorithms
○ Tests designed to expose runtime/compiler behavior



Los Alamos National Laboratory

FLiT - Workflow



Los Alamos National Laboratory

FLiT - Test

● Ran “litmus-tests” with GCC and Clang, excluded intel 
compiler

● Took ~12 hours to compile and run all configurations
● Command line utility is very easy to use!



Los Alamos National Laboratory

FLiT - Conclusions

● If you’ve finished your code, and want to test portability
● Must have your own “goodness metric” output
● Very good documentation



Los Alamos National Laboratory

FPBench

Nasrine Damouche, Matthieu Martel - Université de Perpignan Via Domita
Pavel Panchekha, Chen Qiu, Alexander Sanchez-Stern, 

Zachary Tatlock - University of Washington

Toward a Standard Benchmark Format and Suite for 
Floating-Point Analysis

Website: http://fpbench.org/index.html
Github: https://github.com/FPBench/FPBench

http://fpbench.org/index.html
https://github.com/FPBench/FPBench


Los Alamos National Laboratory

FPBench - Overview

● A suite that provides benchmarks, compilers, and 
standards for FP research

● Includes FPCore format - standardized way to express 
FP algorithms



Los Alamos National Laboratory

FPBench - Workflow

● Write algorithm in FPCore format
● Run transform tool:

○ Simplify preconditions
○ Unroll loops
○ Expand syntactic sugar

● Run export tool to convert FPCore to language like C



Los Alamos National Laboratory

FPBench - Conclusions

● If you already have a written program, no tool to convert 
it to FPCore

● Not for using FP to research other topics
● For researching FP computation

○ Example: what happens if I have this FP equation 
with these conditions?



Los Alamos National Laboratory

Conclusion

● All these tools can be useful, but are pretty niche
○ Expect to spend a decent chunk of time getting tools 

working with your code
● You are expected to know what results are “good”
● For precision tuning, I recommend starting with 

FloatSmith



Los Alamos National Laboratory

Tool Reference
Tool What it is Use Recommended 

When?

ADAPT C++ library Find mixed precision with fine 
control (e.g. just one 
algorithm)

Only when fine control is 
needed, small 
program/algorithm

FloatSmith Interactive Toolchain Interactive script to find mixed 
precision, fast checking on 
small program

When it works, easiest to get 
running → try this first
Tune entire small program

Precimonious Tool (scripts) Find mixed precision version 
of code with float, double, 
long double precision

Only on small program that has 
long doubles - must be able to 
compile to LLVM

HiFPTuner Tool (scripts) Find mixed precision version 
of code with float, double, 
long double precision, 
improved search algorithm

Small projects, must be able to 
compile to LLVM bitcode

FLiT Test infrastructure Test reproducibility in different 
compilers/environments

If you have defined output, and 
hardware time

FPBench Benchmarks + Standards FP-specific research Testing FP algorithms, haven’t 
implemented actual code yet



Los Alamos National Laboratory

Questions?

Acknowledgements:
Laura Monroe, Terry Grové - Mentors
Reid Priedhorsky - Director, Supercomputer Institute
ASC Beyond Moore’s Law Inexact Computing Team


