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ABSTRACT 

Damage Identification in Civil Engineering Infrastructure under Operational and Environmental 

Conditions 

by 
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1
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2
 

Real-world structures are subjected to operational and environmental condition changes that impose 

difficulties for detecting and identifying structural damage. In fact, the author believes that separating 

changes in sensor readings caused by damage from those caused by changing operational and 

environmental conditions is one of the biggest challenges for transitioning structural health monitoring 

(SHM) technology from research to practice. The SHM process is posed in the context of the 

statistical pattern recognition (SPR) paradigm, where vibration-based methods are applied to detect 

damage in civil infrastructure. Even though this paradigm intends to pave the way for data-based 

models applicable to systems of arbitrary complexity, the bridge structures are the focus of this 

dissertation. 

The objective of this dissertation is to review, develop, and apply several SHM statistical procedures 

for feature extraction and statistical modeling for feature classification capable of detect damage on 

structures under unmeasured operational and environmental variations. In the feature extraction step, 

the auto-regressive (AR) model is focus of special attention due to its simplicity of application and 

capability to detect damage. Additionally, a novel algorithm for feature extraction is presented that 

uses the state-space reconstruction to infer the geometrical structure of a deterministic dynamical 

system from observed time series of a system response at multiple locations. The unique contribution 

of this algorithm is that it uses a multivariate auto-regressive model of a baseline condition to predict 

the state space, where the model encodes the embedding vectors rather than scalar time series. 

Moreover, four machine learning algorithms are presented to remove the effects of operational and 

environmental variations on the extracted features. These algorithms are desirable because they 

develop a functional relationship that models how changing operational and environmental conditions 
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influence the underlying distribution of the damage-sensitive features, without direct measurement of 

the factors such as temperature and humidity. 

The applicability of the SHM-SPR, along with the reviewed and proposed statistical procedures, is 

first demonstrated in a base-excited three-story frame structure tested in laboratory environment to 

obtain standard data sets from an array of sensors under several structural state conditions. Tests were 

performed with varying stiffness and mass conditions with the assumption that these sources of 

variability are representative of changing operational and environmental conditions (e.g. changing 

mass might represent varying live loads and changing temperature will influence stiffness properties 

on a structure). Damage is simulated through nonlinear effects introduced by a bumper mechanism 

that induces a repetitive, impact-type nonlinearity. This mechanism intends to simulate, for instance, 

the cracks that open and close under dynamic loads or loose connections that rattle. 

Finally, the applicability of the SHM-SPR paradigm is demonstrated in 12-year span data from the 

real-world undamaged Alamosa Canyon Bridge, near to Truth or Consequences, New Mexico. Herein, 

the AR models and machine learning algorithms are focus of special attention. The former because 

their applicability on civil infrastructure is still limited, and the latter because they might be useful for 

real-world applications, in situations where the operational and environmental variations cannot be 

measured. 
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RESUMO 

Identificação de Dano em Infra-estruturas de Engenharia Civil sob Condições Operacionais e 

Ambientais 

por 

Elói Figueiredo 

Doutoramento em Engenharia Civil 

Joaquim A. Figueiras
3
 e Charles R. Farrar

4
 

As estruturas estão sujeitas a alterações operacionais e ambientais que impõem dificuldades na 

detecção de danos estruturais. De facto, o autor acredita que, a separação das alterações nas respostas 

estruturais causadas por danos das alterações causadas por variações de natureza operacional e 

ambiental é um dos maiores desafios para a transição da monitorização da integridade estrutural 

(SHM) da investigação para a prática. Assim, o processo de SHM é integrado no contexto do 

paradigma de reconhecimento de padrões (SPR), onde métodos estatísticos baseados em vibração 

estrutural são aplicados para detecção de danos em infra-estruturas de engenharia civil. Mesmo 

embora o paradigma tem como objectivo abrir caminho a métodos estatísticos aplicáveis a sistemas de 

complexidade arbitrária, as pontes serão alvo de especial atenção nesta dissertação. 

O objectivo desta dissertação é o de rever, desenvolver e aplicar vários métodos estatísticos para a 

extracção de características (ou parâmetros da resposta estrutural) e para classificação das mesmas no 

contexto do paradigma SHM-SPR, capaz de detectar danos em estruturas sob condições operacionais e 

ambientais variáveis. Na fase de extracção de características é dado ênfase ao modelo auto-regressivo 

devido à sua capacidade e simplicidade de aplicação. Além disso, um novo algoritmo baseado no 

conceito de state-space reconstruction é proposto para inferir a estrutura geométrica de um sistema 

dinâmico e determinístico observado através de respostas estruturais em forma de séries temporais. A 

contribuição original deste algoritmo reside na utilização de um modelo auto-regressivo multi-variável 

do estado inicial, onde o modelo incorpora vectores ao invés de escalares. Uma hipótese é testada em 

que o modelo multi-variável não consegue prever o estado inicial quando o dano está presente. Além 

disso, quatro algoritmos de aprendizagem são apresentados para remover os efeitos das variações 

operacionais e ambientais sobre os dados de respostas estruturais. Esses algoritmos são desejáveis 

porque eles desenvolvem uma relação funcional entre as variações operacionais e ambientais e a 

distribuição das características. 
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A aplicabilidade do paradigma SHM-SPR, e dos vários métodos revistos e propostos, é verificada 

previamente num modelo reduzido de laboratório de três pisos. Esta estrutura é usada para obter 

respostas estruturais através da simulação de diversas condições operacionais e ambientais e também 

de dano. Testes foram realizados com diferentes condições de rigidez e de massa, com o pressuposto 

de que estas fontes de variabilidade são representativas da evolução das condições operacionais e 

ambientais (por exemplo, alteração da massa simula acções variáveis e a mudança de temperatura 

pode influenciar propriedades de rigidez de uma estrutura). O dano é simulado através de efeitos não 

lineares introduzidos por um mecanismo constituído por uma coluna suspensa e por um batente. Este 

mecanismo tem como objectivo simular, por exemplo, fendas que abrem e fecham devido a acções 

dinâmicas ou ligações aparafusadas soltas. 

Finalmente, a aplicabilidade do paradigma SHM-SPR é testada em respostas estruturais, de três 

períodos distintos dentro de um intervalo de 12 anos, recolhidas de um vão da ponte Alamosa Canyon 

Bridge, perto de Truth or Consequences, Novo México, Estados Unidos da América. Os modelos 

auto-regressivos e os algoritmos de aprendizagem são foco de atenção especial. Os primeiros porque a 

sua aplicabilidade em pontes é ainda limitada e os últimos porque eles são úteis em aplicações reais, 

onde as variações operacionais e ambientais não podem ser medidas. 
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1. INTRODUCTION 

1.1 SHM Background 

The process of implementing a damage detection strategy for aerospace, civil, and mechanical 

infrastructure is referred to as structural health monitoring (SHM). Here damage is defined as changes 

to the material and/or geometric properties of these systems, including changes to the boundary 

conditions and system connectivity, which adversely affect the system’s current or future 

performance. The goal of SHM is to improve the safety and reliability of aerospace, civil, and 

mechanical infrastructure by detecting damage before it reaches a critical state. To achieve this goal, 

technology is being developed to replace qualitative visual inspection and time-based maintenance 

procedures with more quantifiable and automated damage assessment processes. These processes are 

implemented using both hardware and software with the intent of achieving more cost-effective 

condition-based maintenance. A more detailed discussion on SHM can be found in [1, 2]. 

Nevertheless, throughout this chapter, a general overview of the SHM for civil infrastructure, with 

special emphasis on bridges, will be presented. 

1.1.1 Historical Perspective 

The damage detection in the past was mainly performed based on visual inspection methods, with 

occasional application of conventional non-destructive testing (NDT) techniques such ultrasonic and 

acoustic emission (e.g. tap tests on train wheels). However, vibration-based damage detection methods 

have received considerable attention during the last 40 years. A brief review of the SHM historical 

evolution using vibration-based structural damage identification is given below. However, the author 

recommends Doebling et al. [3] and Sohn et al. [4] for a review of literature on this subject. 

The most successful application of damage detection using vibration-based methods has been reported 

for rotating machinery. The shorter lifetime, controlled operational and environmental variability 

along with well-defined damage types permitted one to build up large data sets, from both undamaged 

and damaged conditions, and to pave the way for application of pattern recognition algorithms. In the 

broad sense, a pattern recognition algorithm simply assigns estimated spectra to types of damage. A 

relative recent state of the art review on monitoring rotating machinery was made by Randall [5, 6]. 
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The aerospace industry has pioneered the transition of SHM from research to practice in a variety of 

civilian and defense applications. In early 1980s, the development of the space shuttle motivated the 

aeronautics community to implement vibration-based methods. The Shuttle Modal Inspection System 

was developed to detect fatigue damage in the fuselage panels, typically covered with a thermal 

protection system making the visual inspection difficult. This system has been used successfully to 

detect and locate damage in hidden components using analytical and measured modal correlation 

procedures [1]. Another successful SHM application in the aerospace industry is the rotorcraft Health 

and Usage Monitoring System that were developed in early 1990s. These systems were initially 

installed in the rotor drive train and gearbox components for early failure detection. Well-defined 

operational conditions (e.g. the variation in rotor speed) provide the basis to correlate vibration 

spectrum changes with component degradation. Even though it was initially implemented to increase 

flight safety, it has been commercially developed for economic benefits, such as increasing mission 

reliability, downtime reduction, and customization of maintenance actions [7]. 

During the 1970s and 1980s, the oil industry also made attempts to detect damage on a global basis in 

offshore platforms using vibration-based methods. These methods were mainly based on inverse 

modeling approaches, where analytical models are adjusted with measured natural frequencies. The 

operational and environmental variability present in those structures such as platform machine noise, 

difficult access for measurement, changing mass caused by rise and fall of sea levels as well as liquid 

storage, and boundary condition changes were the main reasons that the damage detection procedures 

were not successful [1]. 

The civil engineering community has also studied vibration-based damage-detection methods for 

bridges since the early 1980s. Those methods were fundamentally based on inverse modeling 

approaches, using modal parameters as well as derived quantities such as mode-shape curvatures and a 

dynamic flexibility matrix [1]. However, the operational and environmental variability present 

significant difficulties to detect damage in such large-scale structures. Even though there is still a long 

way to go for a successful real-world SHM application, regulatory requirements are driving current 

research and development of vibration-based bridge monitoring systems. In the United States of 

America (USA), the Long-Term Bridge Performance Program was included in the latest highway 

legislation. This program attempts to provide quantitative data for network and bridge level 

management and, ultimately, to improve the safety assessment of the nation’s bridges [8]. 

Furthermore, in eastern Asian countries, the construction companies need to certify, periodically, the 

bridge structure condition. (Special attention on SHM for bridges and challenges are discussed in more 

detail in Chapter 2.) 

In a general sense, all the examples given above make use of two complementary approaches, namely 

inverse problem or pattern recognition techniques. The former tries to identify damage by relating the 

measured data from the structure to physics-based numerical models (e.g. finite element models). A 
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summary of these inverse modeling approaches for damage identification can be found in Doebling et 

al. [3]. The latter one is a data-based (or data-driven) modeling approach, where data from a damaged 

state condition is assigned to a known type of damage. Basically, the identification of damage requires 

data comparison between two state conditions, the baseline and damaged conditions. The later 

approach will be the focus of this dissertation. 

1.1.2 Statistical Pattern Recognition Paradigm 

The author believes that all approaches to SHM as well as all traditional NDT techniques can be cast 

in the context of a pattern recognition problem. Thus, the statistical pattern recognition (SPR) 

paradigm for the development of SHM solutions can be described as a four-step process as illustrated 

in Figure 1.1 [1]. 

 

Figure 1.1.   SPR paradigm for SHM. 

A necessary first step to developing SHM capability is to perform an operational evaluation. This part 

of the SHM solution process attempts to answer four questions regarding the implementation of a 

SHM system: (i) What are the life safety and/or economic justifications for monitoring the structure? 

(ii) How is damage defined for the system being monitored? (iii) What are the operational and 

environmental conditions under which the system of interest functions? (iv) What are the limitations 

on acquiring data in the operational environment? Operational evaluation defines, and to the greatest 

extent possible quantifies, the damage that is to be detected. It also defines the benefits to be gained 

from deployment of the SHM system. This process also begins to set limitations on what will be 

monitored and how to perform the monitoring as well as tailoring the monitoring to unique aspects of 

the system and unique features of the damage that is to be detected. 

The data acquisition portion of the paradigm involves selecting the excitation methods; the sensor 

types, numbers, and locations; and the data acquisition/storage/processing/transmittal hardware. The 
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actual implementation of this portion of the SHM process will be application-specific. A fundamental 

premise regarding data acquisition and sensing is that these systems do not measure damage. Rather, 

they measure the response of a system to its operational and environmental loading or the response to 

inputs from actuators embedded with the sensing system. Depending on the sensing technology 

deployed and the type of damage to be identified, the sensor readings may be more or less directly 

correlated to the presence and location of damage. Data interrogation procedures (feature extraction 

and statistical modeling for feature classification) are the necessary components of a SHM system that 

convert the sensor data into information about the structural condition. Furthermore, to achieve 

successful SHM, the data acquisition system will have to be developed in conjunction with these data 

interrogation procedures. 

A damage-sensitive feature is some quantity extracted from the measured system response data that is 

correlated with the presence of damage in a structure. Ideally, a damage-sensitive feature will change 

in some consistent manner with increasing damage level. Identifying features that can accurately 

distinguish a damaged structure from an undamaged one is the focus of most SHM technical literature 

[3, 4]. Fundamentally, the feature extraction process is based on fitting some model, either physics- or 

data-based, to the measured response data. The parameters of these models, or the predictive errors 

associated with them, become the damage-sensitive features. An alternative approach is to identify 

features that directly compare the sensor waveforms or spectra of these waveforms measured before 

and after damage. Many of the features identified for impedance-based and wave propagation-based 

SHM studies fall into this category [9, 10, 11, 12]. 

The portion of the SHM process that has received the least attention in the technical literature is the 

development of statistical models to enhance the damage detection process. Statistical modeling for 

feature classification is concerned with the implementation of algorithms that analyze the distributions 

of the extracted features in an effort to determine the structural condition. The algorithms used in 

statistical model development usually fall into three general categories: (i) group classification; (ii) 

regression analysis; and (iii) outlier detection. The appropriate algorithm to use will depend on the 

ability to perform supervised or unsupervised learning. Here, supervised learning refers to the case 

where examples of data from damaged and undamaged conditions are available. Unsupervised 

learning refers to the case where data are only available from the undamaged condition. Note that for 

high capital expenditure structures, such as most civil infrastructure, the unsupervised learning 

algorithms are often required because only data from the undamaged condition are available. 

Inherent in the data acquisition, feature extraction, and statistical modeling portions of the SHM 

process are data normalization, cleansing, fusion, and compression [2]. As it applies to SHM, data 

normalization is the process of separating changes in sensor reading caused by damage from those 

caused by varying operational and environmental conditions [13]. Data cleansing is the process of 

selectively choosing data to pass on to, or reject from, the feature selection process. Data fusion is the 
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process of combining information from multiple sensors in an effort to enhance the fidelity of the 

damage detection process. Data compression is the process of reducing the dimensionality of the data, 

or the features extracted from the data, in an effort to facilitate efficient storage of information and to 

enhance the statistical quantification of these parameters. These four activities can be implemented in 

either hardware or software and usually a combination of the two approaches is used. 

1.1.3 Hierarchical Structure of Damage Identification 

The damage identification should be as detailed as possible in order to describe the damage impacts on 

the system. In a broad sense, developments on damage identification can be broken down into three 

areas, namely damage detection, damage diagnosis, and damage prognosis. Nonetheless, damage 

diagnosis can be subdivided in order to better characterize the damage in terms of location, type, and 

severity. Thus, even though the original guidelines of Rytter [14] assumed a four-step process, the 

hierarchical structure of damage identification can be established into a five-step process (Figure 1.2) 

that answers the following questions [15]:  

1. Is the damage present in the system (detection)? 

2. Where is the damage (localization)? 

3. What kind of damage is present (type)? 

4. What is the extent of damage (severity)? 

5. How much useful lifetime remains (prognosis)? 

 

Figure 1.2.   Hierarchical structure of damage identification. 

The answers to the questions above can be made only in a sequential way, e.g., the answer to the 

severity of damage can only be made with a priori knowledge of the type of damage. When applied in 

an unsupervised mode, statistical algorithms are typically used to answer questions regarding the 

detection and localization of damage. When applied in a supervised learning mode and coupled with 
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analytical models, the statistical algorithms can be used to better determine the type of damage, the 

severity of damage, and remaining useful lifetime. Note that damage prognosis at step five cannot be 

accomplished without an understanding of the damage accumulation process. See [16] for further 

discussion on the concept of damage prognosis. 

1.1.4 Economic and Safety Considerations 

The ability to transition SHM from research to practice depends highly on the economical and/or life 

safety benefits it can provide. Besides the ultimate goal to prevent catastrophic failures and the 

usefulness to evaluate the bridge performance, as with any investment, the SHM system must prove to 

be a way of reducing the overall life-cycle maintenance costs related to a structure. 

For new bridges, currently the initial investment of a SHM system ranges between 0.5 and 3% of the 

total bridge construction cost. Additionally, every year the maintenance and data management 

typically add 5-20% of the SHM system cost. Therefore, over the first 10 years of a medium-size 

bridge, the SHM system may require an investment in the order of 2-5% of the total construction cost 

[17]. 

In the light of the previous cost estimates, a SHM system must be designed as an integrated system 

that can be developed during the construction stage as well as over the bridge lifetime. Note that for 

the construction stage, the SHM system can potentially be used to supervise the construction and thus 

put pressure on the contractors to deliver a high-quality product as well as to support the construction 

of new lightweight structures. Note that many failures occur during construction and the SHM system 

can be used to minimize these risks. 

An overview of the motivation to deploy SHM systems on bridges is well stated by Ko and Ni [18]. 

Even though the main goal of SHM systems is for early damage identification and, ultimately, to 

prevent catastrophic failures, from a more general perspective, SHM systems for bridges might be 

designed to: 

(i) provide structural monitoring during the construction stage with the potential benefit of 

reducing manufacturing costs and to permit lightweight structures by fully exploit the 

material strength; 

(ii) validate design assumptions to measure the actual structural response as well as to improve 

design specifications for future structures;  

(iii) detect anomalies and/or damage at early stages; 

(iv) reduce and/or support visual inspections; 

(v) provide the owners with a real-time tool to support the decision-making process: 

a. reduce unnecessary ad hoc maintenance; 

b. extend the structures’ lifetime by preventive maintenance; 

c. reduce downtime costs; 



Introduction        7 

 

d. traffic management and control. 

(vi) after extreme events (e.g. earthquakes and blast loading) the SHM systems can be used for 

condition assessment regarding the integrity of the structure; 

(vii) finally, the ultimate goal to deploy SHM systems in the bridge structures will always be to 

prevent catastrophic failures. 

1.2 Current Status and Motivation 

In real-world structures, the separation of changes in sensor readings caused by damage from those 

caused by changing operational and environmental conditions is one of the biggest challenges for 

transitioning SHM technology from research to practice. Even though those challenges affect almost 

every structure, the civil infrastructure, and specially the bridges, is the focus of this dissertation. 

Currently, in the SHM field, there are two well-known approaches to separate those changes. The first 

approach consists of measuring the factors related to operational and environmental variations such as 

live loads, temperature, wind speed, and/or moisture levels, as well as the structural response at 

different locations. Then, the normal condition can be parameterized as a function of different 

operational and environmental conditions. With such parameterized model, novelty detection 

procedures can be used to detect when the measured structural response deviates from the normal 

condition that corresponds to the appropriate operational and environmental conditions. The second 

approach, and the one used in this dissertation, attempts to establish the existence of damage for cases 

when measures of the operational and environmental factors that influence the structure’s dynamic 

response cannot be measured. Thus, this approach intends to eschew the measure of operational and 

environmental variations and physics-based models such as finite element analysis and, therefore, 

pave the way for data-based models applicable to systems of arbitrary complexity. 

Fundamentally, this dissertation poses the SHM process in the context of the SPR paradigm. 

Essentially, the motivation of this dissertation is to contribute to steps three and four of this paradigm, 

specially the development of vibration-based damage detection procedures in an unsupervised mode, 

which use observed structural response data to detect damage in the civil infrastructure in the presence 

of unmeasured operational and environmental variability. Actually, the author believes that vibration-

based damage detection procedures will not be feasible without robust algorithms that are capable of 

normalizing the effect of operational and environmental variations in the measured data. Thus, data 

normalization algorithms, derived from the machine learning field, will be the focus of this 

dissertation. 

1.3 Objective and Organization of this Dissertation 

The objective of this dissertation is to review, develop, and apply several SHM statistical procedures 

for feature extraction and statistical modeling for feature classification, in the context of the SPR 
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paradigm, capable of detect damage on structures under unmeasured operational and environmental 

factors. To test their performance, the procedures are first applied on standard data sets measured from 

a laboratory three-story frame structure and then on response data from a real-world structure – The 

Alamosa Canyon Bridge. The three-story structure intends to validate SHM statistical procedures in 

order to bridge the gap between laboratory experiments and real-world structures. Note that even 

though this procedure might be applied to civil infrastructure of arbitrary complexity, in this case the 

procedures are specially posed in the context of bridge applications. 

In the hierarchical structure of damage identification, this dissertation addresses the need for robust 

incipient vibration-based damage-detection procedures. Therefore, this dissertation is mainly 

concerned with detection of damage in the structures. Even though locating and assessing the severity 

of damage are important in terms of estimating the residual lifetime of the structures, the reliable 

detection of damage existence must precede these more detailed damage descriptions. 

For several years the monitoring systems have been installed on bridges around the world without any 

damage detection strategy. Thus, in order to have a glimpse on the state of the art in monitoring 

applications on bridges as well as the motivation behind them, Chapter 2 performs a literature review 

on several bridge disasters over the recent history and the reactive actions taken by the authorities to 

mitigate future accidents. Additionally, it points out several limitations and challenges for 

implementing of effective SHM systems to detect damage on a global basis under operational and 

environmental variations. Chapter 3 summarizes several feature extraction techniques and statistical 

algorithms for feature classification that have been widely used in different engineering fields. 

Machine learning algorithms are presented to remove the effects of the operational and environmental 

variability from the features. Furthermore, a novel algorithm for feature extraction based on state-

space reconstruction from time series is presented. Chapter 4 tests and applies the described statistical 

procedures on standard data sets from a base-excited three-story frame structure under simulated 

operational and environmental conditions. To the extent possible, all SHM research should be 

validated using data from real-world structures. Thus, in Chapter 5 the SHM-SPR paradigm is applied 

on vibration data from the Alamosa Canyon Bridge. Finally, Chapter 6 summarizes the main 

conclusions and contributions of this dissertation as well as points out future research topics. 

1.4 Original Contributions and Extension of Knowledge 

A considerable number of research projects have been funded to improve the damage identification in 

two independent but complement areas: sensing system development and signal processing. This 

dissertation is a contribution at the signal processing level, with special emphasis on the feature 

extraction techniques and statistical modeling development for feature classification. Nevertheless, the 

author recommends further reading for a discussion of recent developments in SHM-related sensing 
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technology [19]. The following content attempts to highlight some of the original contributions of this 

dissertation at the signal processing level. 

In Chapter 3, the feature extraction techniques and machine learning algorithms are summarized using 

the same nomenclature for easier understanding. In Section 3.2.5, a novel algorithm is proposed for 

feature extraction in structures under varying operational and environmental conditions. It uses the 

state-space reconstruction to infer the geometrical structure of a deterministic dynamical system from 

observed response time series at multiple locations. The unique contribution is the use of a 

multivariate auto-regressive (MAR) model of the baseline condition to predict the state space, where 

the model encodes the embedding vectors rather than scalar time series. Notice that most of the 

techniques described in Chapter 3 have been incorporated into a software package called SHMTools. 

This package is presented in Appendix A as the beginning of a larger effort to collect and archive 

proven approaches to support the SHM process. The package provides a set of functions organized 

into modules according to the three primary steps of the SHM-SPR paradigm: data acquisition, feature 

extraction, and statistical modeling for feature classification. A modular function design and a set of 

standardized parameter formats make it easy to assemble and test customized SHM process. 

Throughout the last 15 years many studies have proposed both feature extraction and statistical model 

for feature classification algorithms. However, most of the studies generally restrict their performance 

to specific damage-sensitive features and statistical modeling algorithms. Thus, Chapter 4 contributes 

to the SHM field by verifying the performance of a variety of statistical procedures to detect damage 

under simulated operational and environmental conditions by using standard data sets from a 

laboratory frame structure. Although several machine learning algorithms have been reported in the 

literature, there is no study that has compared these algorithms on a common set of data to assess their 

relative performance. Therefore, the study reported herein intends to provide such a comparison. 

Moreover, another study is carried out to highlight the importance of the still complex issue of 

estimating the appropriate auto-regressive (AR) model order. Additionally, an attempt is made to 

correlate the optimal AR model order to the classification performance using an information criterion 

technique. 

Finally, in Chapter 5 the applicability of the AR models to extract damage-sensitive features on real-

world response data from one simply supported span of the Alamosa Canyon Bridge is demonstrated. 

Moreover, the machine learning algorithms are applied, to remove changes in the sensor readings 

caused by operational and environmental variability, using real-world data from three distinct periods, 

namely in 1996, 1997, and 2008. To the author knowledge, no other researchers have examined bridge 

SHM data over that long of a time span.  





 

2. CIVIL INFRASTRUCTURE: THE BRIDGE CASE 

For more than 40 years, several structural monitoring systems have been installed on bridges around 

the world. However, in the last decade, the number of implemented SHM systems in bridges has 

increased considerable. Note that here SHM is distinguished from structural monitoring, because the 

former assumes a priori a strategy for damage identification. 

In the last decade, the USA and China have played an important role in the SHM community. The 

USA have been the driving force in development of sensing and data acquisition technology while 

China has led the deployment of SHM technology in real-world civil infrastructure [20]. Nonetheless, 

one should note that important contributions have also been made in Europe as will be shown 

throughout this chapter. 

Despite enormous developments in technology, the number of real-world examples from long-time 

application is still limited to gain enough knowledge of their performance. Thus, SHM for civil 

infrastructure, particularly bridges, is still a challenge [21]. Upon a historic perspective on several 

bridge disasters, this chapter gives the big picture of the motivation behind some real-world SHM 

systems on bridges. Additionally, it points out some of the limitations and shortcomings for effective 

successful implementation with particular focus on the effects of operational and environmental 

variations on the damage detection process. 

2.1 Bridge Disasters: Causes and Challenges 

In the USA, it is speculated that the first bridge construction boom started along with the road 

construction program mandated by the Federal Highway Act of 1956 [22]. During that time, the whole 

emphasis was centered on the construction of new bridges rather than on routinely inspections or 

preventive maintenance of the existing ones. In 2002 more than 800 of the 1100 long-span bridges 

(those with spans of 100 m or longer) in the National Bridge Inventory (NBI) were classified as 

fracture-critical [23]. The Federal Highway Administration (FHWA) stated in 2005 that 28% of their 

595 000 bridges were rated deficient [21]. (Note that, normally, this assessment is based on visual field 

inspections and/or preliminary NDT.) Besides these warning reports, several catastrophic bridge 

failures have occurred in the USA. Actually, the safety and/or deterioration of the existence bridges 

came up in the late 1960s when the pin-connected link suspension US Highway 35 Silver Bridge 



12        Chapter 2 

 

suddenly collapsed on December 17, 1967, and killed 46 people (Figure 2.1). This catastrophic event 

prompted the FHWA to establish the National Bridge Inspection Program in 1970. This program 

required the bridges to be inspected every two years and the creation of the NBI database. Despite the 

efforts to inspect the bridges, in June 1983 the Mianus River Bridge on I-95 collapsed killing three 

people. This disaster caused more concerns regarding fatigue and fracture-critical bridges. The 

National Transportation Safety Board (NTSB) determined the disaster as a result of undetected 

anomalies in the pin and hanger assembly by the inspection and maintenance program. In 1987 and 

1989, the scour-induced failures at the Schoharie Creek Bridge in New York and at the Hatchie River 

Bridge in Tennessee, respectively, pushed the need to design bridge piers to resist scour and also the 

initiation of the underwater bridge inspection program [22]. Realizing the need to inspect the bridges 

for scour, the FHWA issued a technical advisory in 1988 revising the National Bridge Inspection 

Standards (NBIS) to require evaluation of all bridges for susceptibility to damage resulting from scour. 

Actually, scour is statistically considered the most common cause of highway bridge failures in the 

USA [24]. From 1961 to 1976, 46 out of 86 major bridge failures were a result of scour near piers. 

Note that more bridge failures during that period were caused by scour than by earthquakes, wind, 

structural, corrosive, accidental, and construction-related failures [25]. A glimpse on bridge scour 

research and evaluations can be found in the references [26, 27]. 

 

 

Figure 2.1.   Collapse of the Silver Bridge on December 17, 1967, that killed 46 people, USA. 

 

In 2007, the Minneapolis I-35W Bridge over the Mississippi River, Minnesota, collapsed during the 

rush hour killing 13 people (Figure 2.2). Later, the NTSB determined that the probable cause of the 

collapse was the inadequate load capacity of the gusset plates at one node along with additional weight 
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on the bridge [28]. Curious the fact that, in 2005, the bridge was rated as “structural deficient” 

according to the NBI database and, in 2006, subsequent report found cracking and fatigue problems 

[29]. In the same year, in a lower advertized event, a heavy truck collapsed the 40-year-old Harp Road 

Bridge in a rural southwest Washington. The reasons to the non-fatality accident were related to live 

load caused by the truck that was much higher than the design capacity of the bridge. 

 

Figure 2.2.   Collapsed north section of the Minneapolis I-35W Bridge, Minnesota, USA [28]. 

In spite of these facts, real-world field SHM applications on bridges in the USA are still limited to few 

deployments. For instance, in response to the I-35W Bridge collapse, a SHM system was incorporated 

in the new I-35W Saint Anthony Falls Bridge. The main targets of the system were to support the 

construction stage, structure monitoring, and bridge security. The system includes a wide range of 

sensors such as vibrating wire strain gauges, thermistors (to measure ambient and gradient 

temperature), linear potentiometers (to measure joint movements), accelerometers, concrete corrosion, 

humidity sensors, and SOFO (French acronym of Surveillance d’Ouvrages par Fibres Optiques) long-

gauge fiber optic deformation sensors [30]. In New Orleans, a monitoring system has been installed on 

the Huey P. Long Bridge over the Mississippi River, Jefferson Parish. The system is composed of an 

array of over 800 vibrating wire and full-bridge resistance strain gauges designed to measure axial and 

bending load effects on the truss structure. The system was completed with tiltmeters and temperature 

sensors [31]. The Commodore Barry Bridge that spans the Delaware River is another example of a 

long-span bridge with an integrated SHM system in the USA [32]. 

In China, several bridge disasters have kept the attention of the authorities for efficient regulation 

codes as well as better maintenance programs. For instance, on January 4, 1999, the collapse of the 

three-year-old pedestrian Rainbow Bridge, Qijiang county, killed 49 people. Investigations into the 

collapse showed that the steel was of poor quality and that the accident resulted from dereliction of 

duty by several government officials [33]. Since 2000, the Ministry of Science and Technology along 
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with the National Natural Science Foundation of China have intensely supported research programs to 

develop SHM systems [34]. At the present day, hundreds of SHM systems have been implemented 

into civil infrastructure, such as bridges, buildings, highways, high-speed railway, and offshore 

structures. The recently constructed long-span cable-supported bridges in Hong Kong, namely the 

Tsing Ma Bridge, the Kap Shui Bridge, and the Ting Kau Bridge (Figure 2.3), are equipped with the 

Wind and Structural Health Monitoring System (WASHMS) installed and operated by the Hong Kong 

Highways Department to ensure road user comfort and safety [35, 36]. The WASHMS consists of 

roughly 800 sensors in seven major types: anemometers, temperature sensors, dynamic weigh-in-

motion sensors, accelerometers, displacement transducers, level sensing stations, strain gauges, video 

cameras, and GPS systems. The structural responses measured are vibration of cables and main 

girders, displacement of expansion joints, temperature of box girders, strain of main girders and 

towers, cable forces, and global position at the top of towers and center of girder spans. The 

operational and environmental factors measured are the air temperature, wind velocity at top of towers 

and above bridge deck, and traffic weight. For further reading, the application of SHM technology on 

bridges in China has been extensively reported in the literature [37, 38]. 

 

Figure 2.3.   Tsing Ma and Ting Kau Bridges in Hong Kong, China [36]. 

In Portugal, the Hintze Ribeiro Bridge disaster boosted the owners and authorities for regular bridge 

inspections and to deploy SHM systems on bridges capable to anticipate disasters. The collapse of the 

centenary bridge (Figure 2.4), that killed 59 people, was later related to streambed scouring caused by 

illegal sand extraction, which compromised the integrity of the foundations of the pillars [39]. This 

disaster pushed the authorities to realize the need of periodic underwater bridge inspections. As a 

proactive measure to prevent that type of disasters, the SHM system integrated in the Leziria Bridge, 

Carregado, incorporates sonars to monitor the streambed around two piers. Besides, in the last decade, 

the authorities and owners have carried out several inspections in the existence bridges and installed 
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SHM systems on new ones. Real-world examples of SHM systems are the overpasses of the Metro do 

Porto railway system, D. Luiz I Bridge, Sorraia Bridge, and the already mentioned Leziria Bridge. 

 

Figure 2.4.   Hintze Ribeiro Bridge collapse in 2001, Portugal [39]. 

In the rest of the world, several disasters have happened over the years. For instance, in South Korea, 

on October 21, 1994, the collapse of the Seongsu Bridge, Seoul, killed 31 people. Further 

investigations into the disaster concluded that the central section of the structure sheared off during the 

morning rush hour and fell into the river. It was determined that the structure failure was caused by 

no-properly welded joints of trusses supporting the bridge concrete slab [39]. In Canada, Quebec, on 

September 30, 2006, five people were dead when part of the Concorde Boulevard overpass collapsed 

into the Highway 19. The collapse was related to shear failure in one of the abutments. Later, from the 

Inquiry Commission’s view, no single entity or person was responsible for the collapse, rather it 

resulted from a sequential chain of causes, namely, inappropriate code standards, defects and lapses 

during the design and construction, and management during its useful life. The Commission also 

strongly recommended proper management programs to better face aging infrastructure [40]. 

Nevertheless, several implementations of long-term SHM systems on bridges have been widely 

reported. For long-span bridges, the most famous examples are the Great Belt Bridge in Denmark, the 

Confederation Bridge in Canada, the Akashi Kaikyo Bridge in Japan, and the Seohae Bridge in Korea. 

Further information on several SHM case studies is available in the International Society for Structural 

Health Monitoring of Intelligent Infrastructures website [41]. Furthermore, several companies have 

given the first steps to install SHM systems on bridges. For instance, in Switzerland, the SMARTEC 

SA is involved in the SHM process for more than a decade, having participated in more than 250 SHM 

projects worldwide. See [42] for further reading on some of the lessons learned from those projects. 

At the same time the SHM process evolves and matures under long-term research programs supported 

mainly by public funding, currently, many bridge owners around the world have adopted the so-called 
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Bridge Management Systems (BMSs) to build inventories and inspection history databases. Basically, 

these systems are essentially visual-inspection-based decision-support tools developed to analyze 

engineering and economic factors and to assist the authorities in determining how and when to make 

decisions regarding maintenance, repair, and rehabilitation of structures in a systematic way [21]. In 

the early 1990s several software packages were developed to assist in managing bridges, such as 

PONTIS and BRIDGIT in USA, DANBRO in Denmark [43], and GOA in Portugal [44]. To date, the 

structural condition assessment of these systems essentially relies on weighted indices based on visual 

inspections and/or preliminary NDT technologies. Note that these systems are currently described as 

part of the Asset Management process [45, 46]. 

2.2 SHM Application: Limitations Due to Operational and Environmental Variability 

Among several others, current procedures in SHM for bridges have a considerable number of 

limitations and prevailing uncertainties due to non-stationary variability sources associated with 

operational and environmental conditions. Varying operational conditions include live loads such as 

traffic loads, speed of operation, and changing excitation sources. Varying environmental conditions 

are frequent result of the temperature, humidity, wind, rainfall, and snow. Note that other sources of 

variability exist at the experimental level such as instrumentation, random noise, estimation methods, 

vibration source, etc. 

For the last three decades, several studies have investigated the effects of operational and environment 

conditions as well as damage on dynamic characteristics. In a global basis, when the damage is 

substantial, such as loss of a primary element of the structure, these procedures have some success to 

identify damage. However, the operational and environmental variability present in the bridges can 

often impose changes in the structure response, and mask the changes caused by damage such as 

concrete cracking, yielding of steel elements, or material deterioration related to aging [47]. Actually, 

those changes have made the physics-based model approach to detect damage in civil infrastructure a 

challenge. In other to understand the challenge associated to damage detection under those sources of 

variations, this section summarizes some real-world examples of measured variability on the dynamic 

characteristics, with special emphasis on the modal parameters. Additionally, the vulnerability of the 

boundary conditions to change due to environmental conditions (especially the temperature) is also 

addressed.  

Kim et al. [48] studied the effect of vehicle mass on the dynamic characteristics of three different 

bridges (three-span suspension bridge, five-span continuous steel box girder bridge, and simply 

supported plate girder bridge). The natural frequencies were estimated using ambient vibration tests 

with traffic-induced vibration as source to excite the structures. The authors concluded that for the 

middle and long-span bridges, the differences could be hardly detected. Actually, in the case of the 

long-span suspension bridge, where the mass ratio of heavy vehicles to superstructure is about 0.38%, 
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the mass of vehicles does not have influence on the measured natural frequencies. However, for the 

short-span bridges whose mass is relatively small compared to traffic mass, the differences become 

distinguishable. In the case of the simply supported plate girder bridge (46 m), where the mass ratio of 

heavy traffic to the superstructure is about 3.8%, the measured natural frequencies could change up to 

5.4%.  

In a study to verify the possible variation in the dynamic properties of a long-span cable-supported 

bridge under routine traffic conditions, Zhang et al. [49] noted from a 24-hour ambient vibration 

monitoring that the natural frequencies, of the bridge’s modes up to 2 Hz, could exhibit as much as 1% 

change within a day. 

In Irvine, California, a three-span post-tensioned box girder concrete bridge was monitored with 

accelerometers for a five-year period. The bridge was opened to traffic in 1998 and the monitoring 

started in 2002. Soyoz and Feng [50] found variations over that period in the first natural frequency in 

the order of +/-10% comparing to those obtained in the beginning of the monitoring. The authors input 

those significant variations to changes in the mass of the bridge caused by traffic and environmental 

effects. To investigate the influence of the vehicle mass, the authors carried out a parametric study 

using 10 standard passenger vehicles. It was concluded that the vehicles changed the total mass of the 

bridge in the order of 10% and the fundamental natural frequency of the bridge in the order of 5%. 

Additionally, over the five-year monitoring it was observed a 5% decrease in the first natural 

frequency. Furthermore, based on the identified modal parameters and using a neural network-based 

identification method, it was observed a 2% decrease in the superstructure stiffness. The authors also 

believe that in the context of the FHWA’s Long-Term Bridge Performance Program, the stiffness 

values can be used to support or partially replace the visual inspections for condition assessment. 

Based on a three-year continuous monitoring of the concrete three-cell box girder Westend Highway 

Bridge in Berlin, Rohrmann et al. [51] noted that the natural frequencies are, approximately, linearly 

dependent on the measured temperature in the range -9 to 27ºC, and that the frequencies of the first 12 

modes vary between 0.75x10
-2

 and 4.3x10
-2

 Hz per 1ºC change in bridge temperature. Also, it was 

shown that the higher modes are generally more sensitive than the lower ones. Based on results from 

traffic, the authors also pointed out that additional mass due to traffic is irrelevant to input changes on 

the natural frequencies. Additionally, the effect of the Young’s modulus of concrete and asphalt was 

investigated with a dynamic model. It was observed that the effect of temperature on the Young’s 

modulus of asphalt is significant. During the winter time, the Young’s modulus of the asphalt 

coincides with the concrete. In contrast, during the summer time the asphalt layer looses it strength 

completely for asphalt temperature over 50ºC. 

In the case of highway bridges, numerous investigations indicate that the temperature can cause modal 

variability that might reach 5-10% [18]. In a nine-span monitoring program, Roberts and Pearson [52] 
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found that normal environmental changes could account for changes in natural frequencies between 3-

4% during the year. Askegaard and Mossing [53] found that a three-span footbridge exhibits normal 

frequency variations of 10% over the year. 

Based on experimental data obtained from the Alamosa Canyon Bridge, in New Mexico, Farrar et. al 

[54] noted that natural frequencies were found to vary approximately 5% during a 24-hour time period. 

Those changes at that time and one year later were correlated with surface temperature differentials 

across the deck, but were uncorrelated with absolute air temperature. Additionally, in 2008, a study 

carried out in one simply supported span at the end of the same bridge, the author found an 

asymmetrical variation in the first mode shape that changed throughout the day, as shown in Figure 

2.5. This asymmetry along the longitudinal axis was correlated with the time of day and associated 

solar heating. These thermal effects were more pronounced because of the north-south orientation of 

the bridge. If not properly accounted for, such changes in the dynamics response characteristics can 

potentially result in false indications of damage. Notice that if the mode in Figure 2.5a was considered 

to be the baseline condition, a classification algorithm would identify the mode in Figure 2.5b as some 

form of an outlier. This outlier could inappropriately be labeled as damaged if the environmental 

variability associated with this feature was not taken into account in the outlier detection process. 

(a) (b) 

  

Figure 2.5.   First mode shape of one simply supported span of the Alamosa Canyon Bridge, New 

Mexico, USA, during two distinct times of the day: (a) in the morning (7.75 Hz); and (b) in the 

afternoon (7.42 Hz). 

Xia et al. [55] investigated the relation between dynamic properties and the environmental factors, 

temperature and humidity, in a laboratory reinforced concrete slab. The study indicated that the natural 

frequencies of three bending modes decreased 0.13-0.23% for 1ºC of increasing temperature and 

decreased 0.03% for 1% of increasing relative humidity. 

Sohn and Farrar [56] successfully identified the location of plastic hinges at the bottom of a column 

using acceleration time series, but also claimed that further investigation into the influence of 

environmental effects was needed, because the authors were not able to distinguish changes caused by 

damage from changes in the environment when both were present at the same time. 

Farrar et al. [57] performed vibration tests on the I-40 Bridge over Rio Grande, in New Mexico, USA, 

in order to investigate if modal parameters could be used to identify damage in the structure. Cuts in 

four increase level stages were made in a mid-span plate girder to simulate the formation of fatigue 
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cracks (Figure 2.6). Intuitively, the natural frequencies should decrease as the damage level increases. 

However, for the fundamental natural frequency, it was observed that the magnitude increased for the 

first two levels of damage and decreased for the other two levels. Later investigation concluded that 

the ambient temperature of the bridge played a major role in the variation of the bridge’s dynamics 

characteristics. 

 

Figure 2.6.   Vertical cut used to simulate a fatigue crack in a mid-span plate girder of the I-40 Bridge, 

New Mexico, USA. 

In Switzerland, under of the European SIMCES project, the post-tensioned concrete box girder Z-24 

Bridge was monitored during almost one year before it was artificially damaged. (Note that this 

project was only possible because the bridge needed to be demolished.) The monitoring system was 

composed of sensors to measure air temperature, wind, humidity, bridge expansion, soil temperatures 

at the boundaries, and concrete temperatures. Based on the continuous monitoring, the authors found 

strong correlation between temperature and natural frequencies. However, they found no relation 

between others environmental factors and modal parameters. Furthermore, it was claimed that 

“moisture absorption” does not significantly change the mass of the bridge based on the assumption 

that bridge hardly absorbs water and besides every bridge has a draining system to reduce the amount 

of water on the bridge [58]. In 2001, for the same bridge, Peeters et al. [59] performed a study 

addressing the influence of the excitation source and the effect of temperature on the modal 

parameters. The authors concluded that ambient excitation yielded comparable results to the use of 

shakers. This was a very important conclusion, because it validates the ambient vibration tests to 

estimate the modal parameters in continuous monitoring. The authors speculated that, for one-year 

monitoring, differences in the natural frequencies ranging from 14-18% must be explained by normal 

environmental changes. Additionally, the authors found a bilinear behavior, with turning point at 0ºC, 

to describe the relationship between natural frequencies and temperature. The authors attributed such 
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behavior to the asphalt layer that during cold periods contributes significantly to stiffen the bridge. 

Finally, data-based models were used to first establish the correlation between the natural frequencies 

and temperature, and then to detect damage. Note that in this case the damage was simulated using 

settlement systems at the piers as shown in Figure 2.7 [60]. 

 

Figure 2.7.   Settlement-related damage scenario at Z-24 Bridge, Switzerland [60]. 

Alampalli [61] tested several structures including a 1/6-scale model highway bridge, an abandoned 

fracture-critical highway bridge, and an in-service highway bridge. The first two bridges were tested 

under intact and simulated-damage conditions. Note that for obvious reasons it was not possible to 

introduce damage on the in-service bridge. The damage-scenarios were based on currently observed 

fatigue damages in bridges: (i) a gusset-plate weld crack; (ii) a longitudinal-stiffener bottom weld 

crack; and (iii) a crack in weld and base material at a cover-plate toe. The results indicated that natural 

frequencies, in conjunction with modal shapes, might be used to identify the existence of damage 

(especially when it changes significantly the structure condition) or deterioration. Furthermore, cross-

diagnosis using multiple features is important for such detection. On the other hand, damping ratios 

were more sensitive to testing and estimation methods rather than to detect damage. However, the 

author highlighted difficulties to locate damage using those modal parameters, referring that 

operational conditions affect the modal parameters and are critical in establishing a baseline condition. 

In another study based on tests performed on a two-steel girder concrete-deck bridge located over Mud 

Creek on Van Duesen Road, in Claverack, New York, Alampalli [62] performed saw cuts across the 

bottom flanges of both main girders. After careful examination of the data sets, the modal results from 

the damaged condition were split into two groups, namely, above- and below-freezing temperatures. 

Comparing the first three natural frequencies from the damaged condition above-freezing temperature 

and the ones from the undamaged condition measured at similar operational and environmental 

effects, the author concluded with high certainty that the structure has suffered stiffness loss due to the 
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simulated damage, reflected in 8.2, 2.6, and 4.2% averaged reduction in the first three natural 

frequencies, respectively. However, for the damaged condition above- and below-freezing 

temperatures, comparison of the same frequencies suggests different conclusions. The authors noted 

that the first three natural frequencies increase in average 67, 43, and 58%, respectively, between 

above- and below-freezing temperatures. Further investigation indicated frozen supports as the 

probable cause of the significant increase in the structural stiffness. 

As shown above, boundary conditions might also change due to varying environmental conditions, 

especially the temperature, and radically modify the structural system. In a laboratory study, Woon 

and Mitchell [63] carried out an experimental investigation on a rectangular steel plate to verify the 

effect of two different boundary conditions (clamped and free plate) along with temperature changes 

on the natural frequency variability. Besides the fact that the natural frequencies of the plate decrease 

as temperature increases, it was observed that shifts are significantly higher in the clamped plate than 

in the free plate, which indicates that certain boundary conditions may amplify the variability caused 

by changing temperature due to induce of different thermal stresses. Furthermore, the authors 

concluded that the percent shift in natural frequency (relative to the warm reference frequency) is 

approximately the same for each mode. Actually, this is a clear indication that the temperature affects 

the Young’s modulus of the plate. 

As part of the general discussion on the limitations of using modal parameters for damage detection in 

the presence of changing boundary conditions, Cawley [64] compared the effect of crack formation at 

the fixed end of the cantilever beam to the varying length of a beam on the natural frequency. The 

varying length of the beam was intended to simulate the sensitivity of the natural frequency to the 

boundary conditions. He demonstrated that the resonance-frequency change caused by a crack, which 

was a 2% cut through the depth of the beam, is 40 times smaller than that caused by a 2% increase in 

the length of the beam. 

Final note to other sources of variability that often the damage detection process needs to deal with. In 

a long-term monitoring, the sensors and data acquisition systems are themselves vulnerable to 

humidity and temperature. It is current to observe the drifting phenomenon in the measured responses 

not caused by structural behavior [65]. Another source of variability that needs to be addressed 

carefully, when using data-based methods for damage detection, is the consistency of the experimental 

techniques. For instance, it is well known that the modal testing, especially on ambient vibration 

testing, produces variable results when repeated because of inevitable noise caused by electrical 

disturbance, operator errors, and test environment [62]. 

2.3 Summary 

Several bridge disasters around the world have been associated with lack of visual inspections and 

inappropriate maintenance programs. At the same time, the community and authorities have claimed 
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that the visual inspections are insufficient to characterize the health of the structures. This limitation 

has motivated the implementation of SHM systems to better quantify the condition of the structures. 

However, the limitations and challenges caused by operational and environmental variability make full 

implementation of SHM for bridges more difficult than any monitoring of a well defined mechanical 

structure, such as the rotating machinery. Irrespectively of the structural-type bridge, the effect of 

operational and environmental conditions on the dynamical characteristics (especially the modal 

parameters) is real even thought the sensitive (linear or non-linear) can be different for each case. The 

studies have confirmed that the temperature plays the major role on the modal parameters variability, 

and so most of the studies were focused on the relationship between the temperature and modulus of 

elasticity. On the other hand, even though not consensual, other studies have reported that concrete 

absorbs considerable amount of moisture that increases the mass of the bridges. Even though the 

degree of influence of the traffic loading on modal parameters has been related to the mass ratio of the 

vehicles to the superstructure, several studies have reported significant changes associated to the 

traffic loads. It was also noted that often when the temperature drops at freezing level, it might change 

the boundary conditions and, consequently, change the (quasi-) linear relationship between the 

temperature and natural frequencies. Besides, it was also shown that often changes caused by the 

operational and environmental variations are greater than those changes caused by damage. Thus, 

establish the baseline condition and determining sensitivity of the damage-sensitive features (e.g. 

natural frequencies) to operational and environmental effects are critical for SHM successful 

application. 

As such, the author believes that vibration-based damage identification procedures will not be feasible 

without robust algorithms capable of normalizing such effects caused by operational and 

environmental variations in the measured data. In that regard, machine learning algorithms present in 

this dissertation can play an important role to detect damage under operational and environmental 

variations, because they model the effect of those variations on the extraction damage-sensitive 

features. Note that these algorithms do not require the measure of the operational and environmental 

factors such as temperature and traffic. Rather, they rely only on measured structural responses. 

Furthermore, those algorithms might be also important to support, or even replace, the traditional 

visual inspection techniques. 

 



 

3. STATISTICAL PATTERN RECOGNITION PARADIGM 

3.1 Introduction 

In Chapter 1, the SHM process was posed in the context of the SPR paradigm. It was mentioned that 

this paradigm might be broken down into four steps. Even though the first two steps, namely 

operational evaluation and data acquisition, are discussed later, this chapter is only concerned with the 

discussion of the remainder steps, namely feature extraction and statistical modeling for feature 

classification. Thus, several statistical models for discrete time series are presented as well as 

examples of their application in civil infrastructure. Additionally, in order to enhance the damage 

detection process, machine learning algorithms for data normalization are presented to separate 

changes in the features caused by operational and environmental variability from changes caused by 

damage. 

3.2 Feature Extraction 

A damage-sensitive feature was described as some quantity extracted from the measured system 

response data that is correlated with the presence of damage in a structure. Moreover, damage was 

defined as changes to the material and/or geometric properties of these systems, including changes to 

the boundary conditions and system connectivity, which adversely affect the system’s current or future 

performance. 

Ideally, changes in the extracted damage-sensitive features are correlated with the level of damage 

present in the structure. However, in real-world structures, operational and environmental variations 

can mask the damage-related features as well as change the correlation between the magnitude of the 

features and the damage level. Furthermore, currently damage that manifests itself by a local reduction 

in stiffness tends to cause the structure to respond as a linear system before and after damage. Thus, to 

overcome this drawback, “intelligent” feature extraction procedures are usually required [66]. 

Therefore, the goal of this section is to briefly review the theory behind of some of the widely used 

feature extraction techniques, in different engineering fields, based on time and frequency domain 

analysis as well as on time-frequency domain analysis. It is shown that the appropriate sort of feature 

to use, is damage-specific, and so, each feature has its advantanges and disadvantages regarding its 

sensitive to a particular type of damage. 
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Generally, the data measured from SHM systems are in the form of time series, where observations 

have some dependence. To understand the nature of this underlying dependence, regression models 

are presented, including discussion of several techniques to determine the appropriate model order. 

These models are specially relevant in SHM because, for linear stationary systems, their parameters 

are constant and do not dependent on the amplitude of the response. Moreover, the AR models are 

normally used to model the linear phase and so, along with the Holder exponent, they are potentially 

sensitive to detect damage in the form of nonlinearities over time. Based on the assumption that many 

“real-word” damage modes induce transitions from linear to nonlinear response in a system and that 

the operational and environmental variations usually manifest themselves as linear effects on 

measured data, a novel algorithm to extract features based on the state-space reconstruction is 

proposed. The first four statistical moments are also presented as features for type of damage that 

introduces changes into the normally assumption. Other features regarding global changes in the 

signal are described, such as modal parameters and correlation procedures. Spectral analysis 

comprises one class of techniques for time series analysis, but it is not the main focus of this 

dissertation. Nonetheless, the short-time Fourier transform (STFT) and wavelet transform (WT) are 

also described in order to extract damage-sensitive features from signals. Finally, the principal 

component analysis (PCA) is described as a feature extraction technique, even though it can also be 

used in the context of data normalization. 

Notice that this section intends to summarize the mathematical formulation, present several 

applications, and highlight some advantages and disadvanges of the feature extraction techniques used 

by the author, rather than showing all possible techniques.  

3.2.1 Modal Parameters 

Modal parameters as damage-sensitive features were widely used in early SHM studies [3]. The 

motivation behind this approach is that modal parameters (natural frequencies, mode shapes, and 

modal damping ratios) extracted from experimental data are function of the physical properties of the 

structure (mass, damping, and stiffness). Therefore, any changes in the physical properties caused by 

structural damage will result in changes in the modal parameters. The theory behind the modal 

parameters has been extensively discussed in the literature among the community. Therefore, the 

author recommends further reading [67]. 

The applicability of the modal parameters as damage-sensitive features was discussed in Section 2.2, 

where it was shown that operational and environmental variability can cause changes in the modal 

parameters and mask the changes resulting from damage. Additionally, it was shown in many cases 

that modal parameters do not have the required sensitivity to small defects in a structure. Nonetheless, 

a real-world bridge application as well as a review on structural damage detection through changes in 

the natural frequencies can be found in [58, 68]. However, one should be aware that many studies 
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using these features only investigate numerical models or simple laboratory structures, and, therefore, 

they do not include the effects of the operational and environmental variability on the modal 

parameters. 

3.2.2 First Four Statistical Moments 

The first four statistical moments (mean, standard deviation, skewness, and kurtosis) are often 

computed when examining raw time series data. It should be noted that many classical statistical tests 

depend on the assumption of normality, and when time series data have significant skewness and 

kurtosis diverges from three, the normality assumption is no longer valid. A brief review on the first 

four moments is given here for completeness. 

When a random variable 

! 

x  is measured in terms of deviations from its mean, its expectation yields 

moments about the mean also referred to as central moments. The k
th

 central moment of the 

probability distribution of 
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x  is defined as 
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x , i.e., in simple terms, the expectation operator calculates the mean of a random quantity. 

Thus, the first central moment of a standard normal distribution is zero, because the first moment of a 

symmetric distribution about the mean is zero. 

The variance is the second central moment. The variance of a random variable is a measure of the 

dispersion from the mean, and is defined as 
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The square root of the variance is called the standard deviation and is denoted as 
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. While the mean 

describes the central tendency of the data, the standard deviation describes the spread about the mean. 

The third statistical moment is a measure of the asymmetry of a probability distribution function 

(PDF). The normalized third statistical moment is called the skewness, and is defined as 

! 

S
x

=
E(x "µ

x
)
3

#
x

3
, (3.3) 

where a positive skewness means that the right tail is longer and the area of the distribution is 

concentrated below the mean. On the other hand, a negative skewness means that the left tail is longer 

and the area of the distribution is concentrated above the mean. The skewness of a standard normal 

distribution is zero. 
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The fourth statistical moment is a measure of the relative amount of data located in the tails of a 

probability distribution. The kurtosis is the normalized fourth statistical moment and is defined as 
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The kurtosis of a standard normal distribution is three, where a kurtosis greater than three indicates a 

“peaked” distribution that has longer tails than a standard normal distribution. This means that there 

are more cases far from the mean. Kurtosis less than three indicates a “flat” distribution with shorter 

tails than a standard normal distribution. This property implies that fewer realizations of the random 

variable occur in the tails than would be expected in a normal distribution.  

It is well known that a zero-mean Gaussian input to a linear system will always elicit a zero-mean 

Gaussian response [69]. Thus, for instance, when a Gaussian input is known, the statistical moments 

can be used as damage-sensitive features to detect deviations from the normal assumption. Farrar et al. 

[70] used the skewness and kurtosis to detect nonlinearities associated with damage in an eight-degree-

of-freedom system. Soon et al. [71] applied the statistical moments as damage-sensitive features on 

residual errors derived from AR models. In another study, Mattson and Pandit [72] used statistical 

moments of AR residuals for damage localization. 

3.2.3 Auto-regressive Model 

The linear stationary models are an important class of stochastic models. In fact, the AR models have 

received special attention in the SHM community for feature extraction. For a time series 
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the AR(p) model of order p is given by 
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where 
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 is the measured signal and 
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i
 is an unobservable random error at discrete time index 

! 

i . The 

unknown AR parameters, 

! 

" j , can be estimated by using the least-squares technique or the Yule-

Walker equations [73]. 

In SHM, an AR model can be used as a damage-sensitive feature extractor based on two approaches: 

(i) using the residual errors 
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e
i
; and (ii) using the parameters

 

! 

" j . The first approach consists of using 

the AR model, with parameters estimated from the baseline condition, to predict the response of data 

obtained from a potentially damaged structural condition. The residual error, which is the difference 

between the measured and the predicted signal, is calculated at time i as follows 

, (3.6) 
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where 
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i  is the prediction observation at the i

th
 sampling instant. For the baseline condition, the 

residual errors are generally assumed to be independent and normally distributed with zero mean and 

variance 
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) . This approach is based on the assumption that damage will introduce 

either linear deviations from the baseline condition or nonlinear effects in the signal and, as a result, 

the linear model developed with the baseline data will no longer accurately predict the response of the 

damaged structure. As a consequence, the residual errors associated with the damaged structure will 

increase. Note that for a fitted AR(p) model, the residual errors can only be computed for   

! 

i > p  time 

points. The second approach consists of fitting an AR model to signals from the undamaged and 

damaged structural conditions. In this approach, the AR parameters are used directly as damage-

sensitive features, and some form of a multivariate classifier can be used to distinguish between the 

damage classes. Notice that the parameters should be constant when obtained from times series of a 

time-invariant structural system. 

As will be discussed later in Section 3.3, an AR model can also be used for data normalization by 

encoding the operational and environmental effects in its parameters. The procedure would be similar 

to the first approach discussed above. However, in this case, the AR model will be established based 

on the mean of the parameters estimated on time series from several operational and environmental 

conditions. For n time series from the same number of conditions, the parameters are equal to 

  

! 

" j =
1

n
" j

i

i=1

n

#   for  

! 

j =1,2,..., p . (3.7) 

Therefore, the AR model of Equation (3.5) defined for varying operational and environmental 

conditions can be rewritten as follows 

  

! 

si = " jsi# j + ei

j=1

p

$ . (3.8) 

The appropriate AR model order is initially unknown. A high-order model may better fit the data, but 

may not generalize well to other data sets. On the other hand, a low-order model will not necessarily 

capture the underlying physical system dynamics. Model order estimation remains a very complex 

issue and various techniques to address this problem have been proposed. Based on the mathematical 

formulation, the techniques can be classified into three major categories [74]. The first category 

requires an a priori estimate of the model parameters in order to find the optimal order. The final 

prediction error, criterion auto-regressive transfer function [75], the Akaike information criterion 

(AIC), and partial auto-correlation function (PAF) have attracted much attention in the literature. The 

root mean square (RMS) error is a heuristic one to estimate the model order. Second, there are 

techniques that do not require an a priori estimate of the model parameters. This category is generally 
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based on the singular value decomposition (SVD) of the data covariance matrix. Another category of 

techniques, but not reported in this dissertation, includes Bayesian approaches which estimate the 

model order and model parameters, simultaneously, at the cost of more computational complexity. 

Note that often those techniques cannot be automated and require subjective interpretation [76]. A 

brief description of some techniques included in the first two categories is given for completeness. 

The AIC has been used to assess the generalization performance of linear models [77, 78]. This 

technique simply computes a statistics that is the sum of two terms as follows 

    

! 

AIC( p) = N t ln(")+2 p , (3.9) 

where 
    

! 

" = SSE / N
t
 is an average sum-of-square errors, 

  

! 

N
t
 is the number of data points used in fitting 

the model, and p is the number of parameters in the model. It clearly represents a trade-off between 

the fit of the model and the model complexity. The first term is related to how well the model fits the 

data, i.e., if the model is too simple the residual errors increase. On the other hand, the second term is 

a penalty factor related to the complexity of the model, which increases as the number of parameters 

grows. The AR model with the lowest AIC value gives the optimal order p. Thus, the AIC criterion 

penalizes models with unrealistic large p. Note that the bias-corrected version, AICc, might also be 

used [79]. This version incorporates a penalty term that is relevant for small sample sizes. However, 

the AIC has also been reported to be too strict in model order estimation [80], yielding excessive 

model orders. In order to obtain an asymptotically unbiased estimate of the model order, Ciftcioglu 

[81] proposed a consistent information criterion (CIC) in the form of 

    

! 

CIC( p) = N t ln(" e
2
)+2 p ln(N t ) , (3.10) 

where 
  

! 

"
e

2
 is the variance of the residuals. For practical applications, this procedure attempts to 

eliminate the excessive model order convergence and, consequently, it might yield reduction in the 

model order estimation. Note that the form of the criterion in Equation (3.10), to some extent, 

corresponds to the Bayesian information criterion based on Bayesian modification of the AIC.  

The PAF has also been used effectively in order to estimate the AR model order by Box & Jenkins 

[82]. The PAF is defined by fitting AR models of successively increasing order p to the measured data 

and then plotting the amplitude of the last estimated parameter, 

! 

"pp , as a function of the model order. 

Thus, the AR model of Equation (3.5) can be rewritten as follows 

  

! 

si = " pjsi# j + ei

j=1

p

$ . (3.11) 

For an AR model of a noise-free order-p
 
process, the PAF coefficients, 

! 

"
kk

, will be non-zero for 

! 

k " p 

and zero for 

! 

k > p. For real-world structures with noise in the measurements, the partial auto-
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correlation coefficients of an actual AR(p) will not be exactly zero after lags greater than p, but will 

assume small random values. As a result, it is necessary to define upper and lower bounds such that 

the coefficients will be considered zero if they fall within these limits. The idea is to look for the 

points of the PAF that are essentially zero. An approach based on the standard deviation error, 

! 

"# , is 

defined as follows 

! 

"# [#
kk

] =
1

N
t

,  k $ p +1, (3.12) 

where the estimated partial auto-correlation coefficients of order p+1 and higher are approximately 

independently distributed. Placing a confidence interval for statistical significance is helpful for this 

purpose. For example, assuming an approximate 95% confidence interval, the limits are placed at 

! 

±2"# .  

A heuristic technique to establish the appropriate AR model order is by means of the RMS of the AR 

residuals for varying order p. For each model order, the RMS of the residuals becomes 

! 

RMS( p) =
1

Nt

(si " ˆ s i)
2

i=1

Nt

# . (3.13) 

In this case, plotting the RMS(p) for varying the model order p, the optimal model order will be at the 

convergence point of the RMS error values. The convergence point can be defined when the RMS 

error between two consecutive orders decrease below a pre-established percentage. 

Finally, an estimation of the optimal AR model order can also be given by using the SVD technique. 

In linear algebra, the SVD is a factorization of a rectangular matrix 

! 

M  defined as follows 

! 

M = U"V
T

, (3.14) 

where the matrix 

! 

"  contains the singular values sorted in descending order on the diagonal and zeros 

for the off-diagonal terms. The matrices 

! 

U  and   

! 

V  are both orthogonal, i.e.,   

! 

U
T
U = V

T
V = I. The 

SVD is used to determine the effective rank of a matrix 

! 

M  by counting the non-zero singular values. 

In order to conduct the AR order analysis, Equation (3.5) can be written as 

    

! 
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s p+2
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sN
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# 
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 (3.15) 

or  
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! 

s =M" , (3.16) 

where 

! 

s and 

! 

M  contain the measured signal data and 

! 

"  contains the AR parameters. One can also 

express Equation (3.15) in the form of 

      

! 

s p+1

s p+2

!

sN
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# 

$ 
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% 

$ 
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!
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 (3.17) 

or, in an obvious notation, 

! 

s p+1 ="ps1 +"p#1s2 + ...+"
1
s p . (3.18) 

Hence, the SVD counts how many of the   

! 

s -vectors (the columns of 

! 

M ) are linearly independent and 

therefore needed for an accurate model, which in turn defines the number of necessary AR parameters. 

As highlighted above, the AR models have been used in SHM to extract damage-sensitive features 

from time series data, either using the model parameters or residual errors. For instance, in order to 

discriminate time series from two different conditions, Soon et al. [71] applied AR models to 

measured strain data from a Norwegian surface-effects fast patrol boat with fiber-optic strain gages. 

The residual errors between the measured and predicted time series were used as damage-sensitive 

features. Regression models have been also used in the Ting Kau Bridge [18]. In this case, the 

regressive model was used to fit sequences of the first natural frequency. 

3.2.4 Auto-regressive Model with Exogenous Inputs 

The auto-regressive model with exogenous inputs (ARX) can also be used in SHM as feature 

extraction technique when the input is known. In this case, for an output time series 

! 

s1,s2,...,sN  and an 

input time series 

! 

v1,v2,...,vN , the ARX(a,b) model with a auto-regressive terms and b exogenous input 

terms is given by 

  

! 

si = " jsi# j + $k vi#k#% + ei

k = 0

b#1

&
j=1

a

& , (3.19) 

where 
  

! 

" j  and 

! 

"
k
 are, respectively, the auto-regressive and exogenous input parameters, 

  

! 

e
i
 is assumed 

a white-noise residual error, and 

! 

"  is the number of input observations that occurs before the input 

affects the output. This model permits to reproduce the input/output relationship of 

! 

s and 

! 

v . The 

model orders can be estimated using the AIC or minimum description length [83]. The parameters can 

be estimated using the least-squares technique. 
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Besides the capability to extract damage-sensitive features, and as will be discussed later in Section 

3.4, this technique can also be used for statistical modeling. Peeters et al. [59] used the ARX model to 

establish the relationship between temperature time series (input) and sequence of natural frequencies 

(output) estimated from accelerations time series. Based on the previous example, this technique can 

be used for statistical modeling for feature classification as follows: (i) ARX model is used to fit data 

from the normal condition (undamaged condition with operational and environmental variations); and 

(ii) for new data, the ARX model is used to predict new temperature and natural frequencies; when the 

predicted natural frequencies fall beyond established confidence intervals, the structure is assumed to 

be damaged or at least the structural response has suffered statistically significant changes. On the 

other hand, for those cases where the operational and environmental factors are unknown, Soon et al. 

[84] proposed a novel time series analysis to locate damage sources, in a mechanical system running 

under operational and environmental effects, where the residual errors obtained from a combination of 

AR-ARX model are defined as the damage-sensitive features. Further discussion of this algorithm to 

normalize the measure data with respect to varying operational and environmental conditions can be 

found in [85]. 

3.2.5 State-space Reconstruction and Time Series Modeling 

A novel algorithm for nonlinear time series is presented to extract features in systems under varying 

operational and environmental conditions. This section summarizes the use of the state-space 

reconstruction to infer the geometrical structure of a deterministic dynamical system from observed 

time series of a system response at multiple locations. The unique contribution of this algorithm is that 

it uses a MAR model of a baseline condition to predict the state space, where the model encodes the 

embedding vectors rather than scalar time series. A hypothesis test is established that the MAR model 

will fail to predict future response if damage is present in the test condition.  

3.2.5.1 State-space Representation 

The dynamics of linear multi-degree-of-freedom system is given by the well-known second order 

differential equation 

, (3.20) 

where   

! 

M,   

! 

D , and   

! 

K  are the mass, damping, and stiffness matrices of the system, respectively,   

! 

f  is 

the input force vector, and       

! 

q(t)  is the vector of the responses of each degree-of-freedom in the 

system. The general state space description for a linear time-invariant, continuous-time dynamical 

system is 

, (3.21) 
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where  is the state vector (commonly position and velocity),   

! 

u  is a vector representing 

the input, and   

! 

y  is a vector representing the observed output. The matrices   

! 

A ,   

! 

B  and   

! 

C determine 

the relationships between the input, output, and the state variables, and are referred to as the state, 

input, and output matrices, respectively. The state-space representation of Equation (3.21) can then be 

expressed as 

,
 

(3.22) 

where   

! 

I  is the identity matrix. Of course, if the system is nonlinear, a similar formulation may be 

defined, although additional terms would appear on the right-hand side. 

3.2.5.2 Embedology and Multivariate Auto-regressive Model 

An alternative way to describe this physical-based state-space representation is to build a similar 

model directly from data. This approach is referred to as state-space reconstruction.  For data obtained 

discretely in time from measured observations of a dynamic system response, the continuous-domain 

evolution described by ordinary differential equations, e.g. system in Equation (3.22) becomes a map 

    

! 

x
i+1 = G(x

i
;f ), (3.23) 

where the mapping G describes the evolution rule for the system. Since only measured data are 

available and the form of G is not generally known, recourse is made to reconstructing the dynamics 

via the embedding theorem of Takens [86], which provides the conditions under which a state space 

can be reconstructed from an observed time series, including even a single time-sampled 

representation (i.e.,   

! 

x  reduces to a scalar time series, say 

! 

s). One method commonly implemented to 

convert observations into state vectors uses delay time reconstruction. Assuming a single observed 

time series     

! 

s
1
,s
2
,...,s

N
, where indices are time-based, one can reconstruct an m-dimensional state 

vector in the form of delayed versions of the time series 

    

! 

x
i
= s

i
,s

i+" ,...,s
i+(m#1)"( ) , (3.24) 

where     

! 

i = 1,...,n
 
and     

! 

n = N " (m"1)# . The time delay embedding depends on two parameters, the 

embedding dimension m and the lag or delay time 

! 

" , which have to be chosen properly in order to 

yield an equivalent representation of the original state space. Note that     

! 

m " 2D +1, where D is the 

unknown dimension of the original state space. Thus, the trajectory matrix (or vector space) 

! 

X  is 

defined as 
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. (3.25) 

A straightforward way to verify the influence of the embedding parameters on the state-space 

reconstruction is by examining the convergence of topological properties. However, this approach 

carries more computational efforts when an embedding dimension is higher than the minimal for 

appropriate representation of the attractor. Therefore, some techniques have been proposed to find 

suitable estimates of those parameters [87, 88]. Broomhead and King [89] proposed the SVD on a 

trajectory matrix of w-dimensional state vectors (w>m) to estimate the embedding dimension m and 

also defined a criterion for the choice of the window length, w, because it determines the form of the 

singular spectrum. The goal of this approach is to obtain a basis for the embedding space such that the 

attractor can be modeled with invariant geometry in a subspace with fix dimension, i.e., the number of 

linearly independent vectors that can be constructed from the trajectory matrix in the embedding 

space. The set of vectors       

! 

{s
k
" R

n} are supposed to give a set of linearly independent vectors in   

! 

R
w

 

with orthonormal basis     

! 

{c
k

| k = 1,2,...,w}. Therefore, a natural choice for the embedding dimension m 

is the point of convergence of the singular spectrum. Note that this approach assumes unit lag. 

In the context of state-space reconstruction, the MAR(p) model of order p is defined as follows 

    

! 

x i = x + x i" j#j + ex, i

j=1

p

$ , (3.26) 

where 
    

! 

x
i  

and 
      

! 

e
x, i are the i

th
 predicted state vector and additive Gaussian noise vector, respectively,   

! 

x  

is the mean vector of the variables, and 
  

! 

"j  is an m-by-m matrix containing constant coupling 

parameters. Notice that the prediction can only be performed for   

! 

i > p . 

The approach presented for feature extraction is based on the assumption that when some source of 

damage affects the dynamical properties of a system, a MAR model with parameters estimated from 

the baseline system cannot accurately predict the attractor of the damaged system. Basically, this 

approach can be summarized in the following steps. First, as shown in Figure 3.1, a time series     

! 

s(t)  

from the baseline condition is embedded into a state space in order to establish the baseline and 

assumed undamaged vector space   

! 

X . Then, the MAR parameters 
  

! 

"j  are determined through the 

multivariate least-squares technique. Second, and for a similar input, the baseline MAR model is used 

to predict any new test vector space   

! 

Z from an unknown system condition in the form of 
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, (3.27) 

where the residual errors are given by 

! 

e
z,i = z

i
" ˆ z 

i
. Assuming that 

  

! 

"j  
contains the underlying 

information of the baseline system, a hypothesis test is established that the MAR model will fail to 

predict the attractor if damage is present and the dynamical properties of the new system have 

changed. Therefore, the residuals increase, and the system   

! 

Z
 
is said to correspond to a different class, 

under the damage hypothesis test. In this approach, the visualization of the predicted states, MAR 

parameters, and, in a very generalized form, the residual errors can be used as damage-sensitive 

features. 

 

Figure 3.1.   Schematic representation (for m=3) of the MAR model approach. 

One may think of the trajectory as exploring on average an m-dimensional ellipsoid [89]. Thus, the 

accuracy of the predicted states can be statistically quantified using the Mahalanobis metric (

! 

d
2
) in 

Equation (3.55), where 
    

! 

z
i

 

is the potential outlier state vector. The covariance matrix 

! 

" and mean 

vector   

! 

x  are established for the baseline system. (Note that the number of variables is equal to the 

embedding dimension m.) Once the Mahalanobis equation is established to incorporate the underlying 

distribution of the baseline vector space   

! 

X , the 
    

! 

d
i

2
 will increase for new state vectors when their 

coordinates statistically differ from the pre-defined variance along the axes (or variables) of the 

system. 

Finally, the order of the MAR model is initially an unknown. As shown in Section 3.2.3, the AIC is a 

measure of the goodness of fit of an estimated statistical model that balance the trade-off between 

fitting accuracy and number of adjustable parameters. In the context of MAR model as it applies to 

state-space reconstruction, Equation (3.9) can be rewritten as follows 

    

! 

AIC( p) = N t ln(")+2N p , (3.28) 

where 

! 

Np = pm
2
 is the number of estimated parameters,     

! 

N t = (n" p)m  is the number of predicted 

state vectors, 

! 

"
 
is the average sum-of-square MAR errors,  
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. (3.29) 

The optimal order p for the MAR(p) model is given by the one having the lowest AIC value. 

3.2.5.3 Multivariate Embedding Approach 

A multivariate embedding to reconstruct the state space of the structure can be extended from the 

univariate case in Equation (3.24) in the form of 

    

! 

x
i
= s

i

1
,s

i

2
,...,s

i

l
,s
1+"

1

1
,s
1+"

2

2
,...,s

1+" l

l
,...,s

i+(m
1
#1)"

1

1
,s

i+(m
2
#1)"

2

2
,...,s

i+(ml #1)" l

l{ }, (3.30) 

where l corresponds to the number of sensor channels. This approach permits one to combine 

structural response data measure at multiple locations into a global attractor. Note that the approach 

presented to the univariate case from Equations (3.24)-(3.29) is still valid for the multivariate one, 

where 
    

! 

M = m
1
+ m

2
+ ...+ m

l
 is the global embedding dimension. Even though this global embedding 

approach destroys localization information associated with each discrete sensor response, it takes into 

account all available sensor network information simultaneously to produce a low-dimensional feature 

set for discrimination that encapsulates the full observation space. 

3.2.6 Principal Component Analysis 

PCA is a classical linear technique of multivariate statistics for mapping multidimensional data into 

lower dimension with minimal loss of information [90, 91]. A brief description of this dimensionality 

reduction technique is given as follows. Let 

! 

X" #n$d
 be a feature data matrix with n cases and d 

variables. The matrix 

! 

X  can be decomposed as follows 

! 

X = TU
T

= t
i
u
i

T

i=1

d

" , (3.31) 

where   

! 

T  is called the scores matrix and   

! 

U  is a set of d orthogonal vectors 
    

! 

u
i
 also called the loadings 

matrix. The orthogonal vectors can be obtained by decomposing the covariance matrix 

! 

" of the data 

matrix   

! 

X  in the form of  

! 

" = U#U
T

, (3.32) 

where 

! 

"  is a diagonal matrix containing the ranked eigenvalues
   

! 

"
i
, and   

! 

U  is the matrix containing 

the corresponding eigenvectors. The eigenvectors associated with the higher eigenvalues are the 

principal components of the data matrix and they correspond to the dimensions that have the largest 

variability in the data. 



36        Chapter 3 

 

Basically, this technique permits one to perform an orthogonal transformation by retaining only the 

significant eigenvectors (principal components) m (<d). More precisely, choosing only the first m 

eigenvectors, the final data matrix can be rewritten without significant loss of information in the form 

of 

! 

X = T
m
U

m

T
+E = t

i
u
i

T

i=1

m

" +E  (3.33) 

and 

! 

E = X" ˆ X , (3.34) 

where   

! 

E  is the residual matrix and 

! 

ˆ X  is the estimated matrix of   

! 

X  using m principal components. 

The simplest method to assess the importance of a particular component is to take the ratio 

! 

"
i
= #

i
/ trace($)  or to plot each eigenvalue as a sequence from largest to smallest. 

In the SHM field, PCA might be used for four primary purposes: (i) evaluation of patterns; (ii) feature 

visualization; (iii) feature cleansing; and (iv) feature selection. The evaluation of patterns in the data is 

achieved through a linear mapping of data from the original feature space into a transformed feature 

space, where the eigenvectors are orthogonal to each other and, as a consequence, they are 

uncorrelated. One can extract a line, plane, or hyperplane that characterize the data. Furthermore, it is 

a useful graphical technique to take the scores of the first two or three components and to perform 

scatter plots to identify clusters or outliers. Basically, the scores are the projection of the data onto the 

new coordinate system, where it is simply scores plotted against each other. The loadings plot gives 

information on which variables are responsible for patterns found in the scores. This plot is simply the 

loadings of a principal component plotted against the loadings of another principal component. 

Feature cleansing is a process used to discard those linear combinations of the data that have small 

contributions to the overall variance, i.e., the principal components with low eigenvalues. This process 

can be achieved by reversing the projection back to the original feature space using only the principal 

components with higher eigenvalues. Feature selection is the process of choosing a subset of 

! 

X  by 

constructing a matrix 

! 

" X  composed of coordinates on the first m principal components, whose 

dimension is smaller than the original matrix. However, note that mapping the data into a lower 

dimension space may result in a loss of some information that can be necessary to discriminate the 

undamaged and damaged conditions. Additionally, note that PCA simply performs a coordinate 

rotation to align the transformed axes with the directions of maximum variance. Thus, there is no 

guarantee that those directions will preserve good features for discrimination. 

Several examples of PCA applied to feature extraction can be found in the literature. For instance, 

Soon et al. [71] applied the PCA for feature visualization. The original data matrix was composed of 
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the first four statistical moments extracted from time series. The authors were able to discriminate the 

structural conditions by projecting the original data matrix onto the first two principal components. 

One should note, as will be discussed later in Section 3.3, that PCA might also be cast in the context of 

data normalization, as proposed by Yan et al. [92, 93], to separate changes in the features caused by 

operational and environmental conditions from changes caused by damage. Additionally, a numerical 

application of PCA to separate changes in the sensor readings can be found in [94]. 

3.2.7 Time-frequency Analysis 

The time-frequency representation of the signals is used to track the evolution of the frequency 

components of a signal over time [95]. For a stationary system, the frequency content should not 

change over time. However, often nonlinearities introduced into the systems can result in a non-

stationary system. Therefore, if damage manifests itself as a nonlinearity, a signal from a damaged 

system can be time-variant and, as a consequence, the frequency content may change with respect to 

time in a manner that it might be correlated with damage. 

The STFT and WT are two techniques currently applied to detect changes in the time series that are 

associated with the non-stationary response characteristics. The WT stands as an alternative approach 

to the well-known STFT. While Fourier analysis consists of decomposing a signal into harmonic 

functions of various frequencies, wavelet analysis consists of decomposing a signal into the shifted 

and scaled versions of the original mother wavelet [96]. 

Mathematically, the Fourier transform [67] is the integral over time of the signal     

! 

s(t)
 
multiplied by a 

complex exponential in the form of 

    

! 

G(") = s(t)e
#i"t

#$

+$

% dt , (3.35) 

where     

! 

G(") describes the system response in the frequency domain. The STFT is used to determine 

the frequency content of small segments (or windows) of a signal over time. Basically, the Fourier 

transform algorithm is applied to a window and is used to calculate related spectral quantities for this 

window. This process is repeated using a moving window where the data windows are allowed to 

overlap. This technique maps a signal into a function of both time and frequency domain. The 

limitation of this technique is that for a given sampling rate, the frequency resolution of the STFT is 

determined by the time length or period of the window. 

On the other hand, the WT has been developed to overcome the resolution limitations of the STFT. 

Recall that in STFT analysis the time and frequency resolutions are determined by the length of the 

window, and it yields a time-frequency representation of the signal that has constant resolution in time 

and frequency. However, wavelet analysis uses a different window technique with variable-sized 
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length. Actually, the wavelet analysis allows the use of long time interval for more precise low-

frequency information and shorter time interval to better capture the time varying nature of the high-

frequency information [96]. As a consequence, wavelets analysis can have a good time and poor 

frequency resolution at high frequencies, and good frequency and poor time resolution at low 

frequencies.  

The continuous wavelet transform (CWT) is defined by convolving the signal     

! 

s(t)  with scaled and 

shifted versions of the wavelet function 

! 

" , as follows 

    

! 

W (a,b) = s(t)
1

a

" *
t # b

a

$ 

% 
& 

' 

( 
) 

#*

+*

+ dt . (3.36) 

This process produces WT coefficients, W, which are a function of two parameters: scale   

! 

a  and 

position 

! 

b. The scale parameter,   

! 

a , is correlated with the frequency and it dilates or compresses the 

wavelet function. In terms of frequency, low frequencies (high scales) correspond to global 

information of a signal. High frequencies (low scales) correspond to a detailed view of a signal that 

usually lasts a relatively short time [97]. The position parameter, 

! 

b, intends to move the wavelet 

function along the time signal as a moving window. The resulting coefficients W estimated at different 

scales and positions provide both frequency and time information about the signal being analyzed. 

Note that a wavelet function is a waveform with finite duration and an average value of zero. There 

are many wavelet functions available [96], however the type of wavelet to use depends on the signal to 

be analyzed. 

The major advantage of the wavelets is the ability to perform local analysis. In the SHM field, this 

ability makes the wavelets useful in detecting damage in the form of nonlinearities related to 

discontinuities in the signal caused by transient processes, such as cracks that open and close under 

dynamic loading or loose connections that rattle. See [12] for an example of wavelet-based active 

sensing for delamination detection in composite structures. 

3.2.8 Holder Exponent 

Mathematically, the Holder exponent is a measure of the signal’s regularity. Because singularity 

points have no continuous derivatives, they can be identified when the Holder exponent suddenly 

drops to a value of zero or below [98]. Basically, the Holder exponent 

! 

"  can be obtained in time by 

    

! 

" =
logW (a,b)

log(b)
. (3.37) 

In SHM, the Holder exponent can be used to identify damage that introduces discontinuities into the 

measured dynamic response data. Basically, this technique indicates the presence of singularities and 

identifies when they occur over time. Therefore, drops in the Holder exponent can be used as damage-
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sensitive features. Examples of capturing the time-varying nature of the Holder exponent for systems 

excited by non-stationary random signals with underlying discontinuities and to a harmonically 

excited mechanical system that contains a loose part are described in [98]. In real-world civil 

infrastructure, it can potentially be used to identify singularities associated with cracks that open and 

close during dynamic loading or loose connections that rattle. 

3.2.9 Correlation Procedures 

Correlation is a statistical technique used in signal processing for analyzing the relationship between 

two or more signals. The cross correlation is a standard technique of estimating the degree to which 

two different signals are correlated. Considering two random variables   

! 

x  and   

! 

z , the cross correlation 

function 
  

! 

R
xz

 

at delay, or time lag, 

! 

"  is defined as 

! 

R
xz
(" ) =

E (x
t
#µ

x
)(z

t+" #µ
z
)[ ]

$
x
$
z

, (3.38) 

where 
  

! 

µ
x  and 

  

! 

µ
z  are the means of the corresponding variables, E is the expected value, and t is an 

integer for a discrete-time process. The standard deviations of the variables, 
  

! 

"
x  and 

  

! 

"
z
, in the 

denominator serve to normalize the range of the correlation, and for a stationary process, the 

correlation values are in the range [-1, 1]. A coefficient equal to 1 indicates perfect correlation, i.e., the 

variables overlap when they are shifted by 

! 

" , and -1 indicates perfect anti-correlation where the 

variables are completely out of phase when shifted by 

! 

" .  

Auto-correlation function (ACF) is the correlation of a signal with itself and for the variable   

! 

x  is 

defined as 

    

! 

R
xx

(" ) =
E (x

t
#µ

x
)(x

t +" #µ
x
)[ ]

$
x

2
. (3.39) 

The ACF is used to find out repeating patterns within the responses, such as the presence of periodic 

signals buried under noise. As a general rule, it is sufficient to compute the auto-correlation for values 

of 

! 

" # N / 4 , where N is the number of data points in the signal [99]. 

A particular case of the correlation function in Equation (3.38) is the correlation coefficient for 

! 

"  

equals to zero and is given in the form of 

    

! 

r
xz

=
E (x

t
"µ

x
)(z

t
"µ

z
)[ ]

#
x
#

z

. (3.40) 

Note that for m variables, one can define the covariance (or correlation for standardized variables) 

matrix 

! 

" with a dimension of m-by-m.  
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Another correlation technique is the so-called modal assurance criterion (MAC) [100, 101]. It has been 

a common technique of comparing numerical and experimental mode shapes. In the context of damage 

identification, this technique may be used to detect the presence of damage in the structure. In this 

case, one must replace the numerical and experimental modes by modes estimated from undamaged 

and damaged conditions. For two sets of measured mode shapes 
  

! 

"
b
 and an 

  

! 

"
d
, the MAC values are 

defined for the mode shape 
    

! 

"b, j  and 
    

! 

"
d,k  as 

    

! 

MAC( j,k ) =
|"b, j

T "d,k |2

("b, j
T "b, j )("d,k

T "d,k )
, (3.41) 

The MAC value is bounded between zero and one. The mode shapes are correlated if MAC value is 

close to one and totally uncorrelated if it is zero. A second type of MAC, called the co-ordinate MAC 

or COMAC, may be used for damage localization. The MAC in Equation (3.41) computes the 

correlation between two modes for all the measurement locations or nodes. On the other hand, the 

COMAC determines the correlation at nodes i for all the mode shapes l in the form of 

    

! 

COMAC(i) =

"b, j(i)"d, j(i)

j=1

l

#
$ 

% 

& 
& 

' 

( 

) 
) 

2

["b, j(i)]2

j=1

l

# ["d, j(i)]2

j=1

l

#
. (3.42) 

The COMAC value is also bounded between zero and one. If the modal displacements at node i of all 

mode shapes are similar, the COMAC value is one. On the other hand, errors or deviations between 

mode shapes of different sets may give COMAC values less than one. 

The correlation coefficients and MAC values can also be used as data fusion techniques to combine 

data from single and multiple sensors [15]. Actually, in a study carried out to detect damage in a 

bridge under operational and environmental variations, Alampalli [61] successfully applied MAC 

values to perform cross-correlation of multiple features in order to use them as damage-sensitive 

features. 

Another way to check the existence of correlation or patterns in the data is by means of the lag plot 

technique. For a time series   

! 

s , the lag plot consists of plotting the values 
  

! 

s
i
 versus 

  

! 

s
i"# , where 

! 

"  is 

the lag. If the underlying data are not random, it is possible to identify a trend or pattern in the lag plot. 

Lag plots can be generated for any arbitrary lag, however the most commonly used lag is one. 

Furthermore, the lag plot can also be used to identify the existence of outliers. Note that cluster around 

a straight line with a positive slope is an indication of positive auto-correlation in the observations. 
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3.2.10 Probability Density Function 

A common technique to verify the underlying distribution of the data is to estimate its PDF using non-

parametric density estimators. In statistics, the histogram and the kernel density estimators are two 

non-parametric techniques used to estimate an unobservable underlying PDF of a random variable. 

Although the former is the oldest and most widely used form of density estimation, the kernel density 

estimator is a generalization and improvement over histograms. Given data from a sample of a 

population, the kernel density estimator allows one to draw inferences about the entire population 

being studied. More details about this estimator can be found in the references [71, 102]. For 

completeness, a brief description is given as follows. Considering a series with N observations 

    

! 

s1,s2,...,s
N

, the estimated density distribution is given by 

, (3.43) 

where K is the kernel function and h is the bandwidth, also called the smoothing parameter. Even 

though there are many choices among kernels, it is common to take the standard Gaussian function 

with zero mean and unit variance as follows 

! 

K(s) =
1

2"
e
#
1

2
s
2

. (3.44) 

One of the most important factors for a good kernel density estimator is the choice of the smoothing 

parameter h. The quality of the kernel estimate depends less on the shape of the kernel function than 

on the value of its bandwidth. A value h that is too small or too large is not useful, because small 

values of h lead to spiky estimates and the kernel density estimate is said to be under-smoothed. On 

the other hand, large values of h lead to flat estimates and the kernel density estimate is said to be 

over-smoothed. In the SHM field, the definition of this parameter tends to be crucial because damage 

often manifests itself as small changes in the tails of the distribution. Several techniques to estimate 

the optimum value for h can be found in the references [103]. 

As an example of application, in the Tsing Ma Bridge, strain/stress PDFs of deck components have 

been estimated as part of the long-term SHM. It is expected that when the measured strain/stress 

distribution varies due to structural damage or loading condition, the estimated PDFs will also change 

accordantly [18]. 

A final consideration is made regarding the verification of normality distribution of the data. The 

normal probability plot might be used to graphically verify whether the measured data is from a 

normal distribution. The plot is linear if the data come from a normal distribution. On the other hand, 

if the data are related to another probability distribution, it introduces curvature into the plot [104]. 
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This technique follows the same procedure for feature extraction as described for the PDF case. 

However, in this case, the indication of damage is given by deviations from a Gaussian distribution. 

3.3 Machine Learning Algorithms for Data Normalization 

Currently, there are two well-known approaches to separate changes in damage-sensitive features 

caused by changing operational and environmental conditions from those changes caused by damage. 

The first approach consists of measuring the parameters related to operational and environmental 

variations such as live loads, temperature, wind speed, and/or moisture levels, as well as the structural 

response at different locations. Then, the features corresponding to the normal condition can be 

parameterized as a function of these operational and environmental conditions. Herein normal 

condition refers to those state conditions acquired under varying operational and environmental effects 

when the structure is undamaged. The second approach consists of applying machine learning 

algorithms to “learn” the influence of the operational and environmental conditions from the response 

data. This approach intends to eschew the measure of operational and environmental variations and 

pave the way for data-based models applicable to systems of arbitrary complexity. 

In SHM, the aim of the machine learning algorithms is to enhance the damage detection in the 

presence of varying operational and environmental conditions under which the system response is 

measured. Several statistical methods have been reported in the literature related to the data 

normalization procedure [92, 93, 105, 106, 107, 108, 109]. However, herein only reference is made to 

algorithms based on the auto-associative neural network (AANN), factor analysis (FA), Mahalanobis 

squared distance (MSD), and SVD. These algorithms are designed and developed in such a way that 

their performance is improved based on the analysis of normal condition data (i.e. they “learn” from 

data acquired under operational and environmental conditions and when the structure is thought to be 

undamaged.) Basically, the machine learning algorithms develop a functional relationship that models 

how changing operational and environmental conditions influence the underlying distribution of the 

damage-sensitive features [110]. When subsequent features are analyzed with these algorithms and the 

new set of features are shown not to fit into an appropriate distribution, they might be more 

confidently classified as outliers or, potentially, features from a damaged structure, because the 

varying operational and environmental conditions have been incorporated into the classification 

procedure.  

Even though these algorithms have different underlying mathematical formulations, they are 

implemented in a common sequence of steps; first, each algorithm is trained and its parameters are 

adjusted using feature vectors extracted from the normal condition, i.e., time series data collected 

under different operational and environmental conditions when the structure is assumed to be 

undamaged; second, in the test phase all the machine learning algorithms (with exception of the MSD-

based one) will transform each input feature vector into an output feature vector of the same 
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dimension. However, the elements of the new feature vector should be nearly invariant for the normal 

condition, assuming the test data are representative of the normal condition data. All the algorithms 

assume a training matrix composed of feature vectors extracted from the undamaged condition, 

! 

X" #m$n
, with m-dimensional feature vectors from n different operational and environmental 

conditions and a test matrix, 

! 

Z" #m$k
, where k is the number of feature vectors extracted potentially 

from the damaged condition. Note that here a feature vector represents some property of the system at 

a given time. Traditionally, the modal parameters have been used in the civil engineering field as 

features that characterize the global condition of the structure. However, for instance, the AR 

parameters and residual errors as well as statistical moments can also be used as damage-sensitive 

features. For completeness, the four algorithms will be briefly described. 

3.3.1 Auto-associative Neural Network 

The AANN is trained to characterize the underlying dependency of the identified features on the 

unobserved operational and environmental factors by treating that unobserved dependency as hidden 

intrinsic variables in the network architecture. As shown in Figure 3.2, the AANN architecture 

consists of three hidden layers: the mapping layer, the bottleneck layer, and de-mapping layer. The 

mapping layers consist of hyperbolic tangent sigmoid transfer functions (N). On the other hand, the 

bottleneck and output layers are formed with linear transfer functions (L). The number of nodes in 

each layer as well as the number of input features is problem specific. This type of network is also 

related to nonlinear principal component analysis, where the target outputs are simply the inputs of the 

network. More details on the AANN, including the number of nodes to use, can be found in the 

references [107, 111]. 

 

Figure 3.2.   Network architecture of the AANN. 

In the context of data normalization for SHM, the AANN is first trained to learn the correlations 

between features from the training matrix   

! 

X . The network should be able to quantify the unmeasured 
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sources of variability that influence the structural response. This variability is represented at the 

bottleneck output, where the number of nodes (or factors) should correspond to the number of 

unobserved independent variables that influence the structural response (e.g. temperature and 

humidity). Second, assuming the network is trained for the normal condition data, the errors will grow 

when the features are fed to the network come from the damaged condition. For the test matrix   

! 

Z, the 

residual errors matrix   

! 

E  is given by 

! 

E = Z" ˆ Z , (3.45) 

where 

! 

ˆ Z  corresponds to the estimated feature vectors that are the output of the network. If a feature 

vector   

! 

j  (    

! 

j = 1,2,...,k ) is related to the undamaged condition, then 

! 

z j " ˆ z j . On the other hand, if the 

features come from the damaged condition, the neural network should not be able to predict the 

targets, the residual errors increase, thereby indicating an abnormal condition in the structure. Notice 

that the technique presented here is a mixture of two different learning approaches, i.e., supervised 

learning is used to obtain the operational and environmental conditions dependency albeit without 

direct measure of these conditions, while unsupervised learning is used to detect damage. It is re-

emphasized that a key issue is to appropriately define the number of nodes in the bottleneck layer, 

which depends on the independent sources of variability present in the measurements. 

Several studies have used the AANN to remove the effects of the operational and environmental 

variability and to detect damage [112]. For instance, Li et al. [113] applied the AANN as a signal pre-

processing tool to distinguish temperature and wind effects on the modal parameters from other 

environmental factors. Oh et al. [114] proposed a kernel principal component analysis, as an AANN-

derived data normalization algorithm, and applied it to data obtained from Yeongjong Suspension 

Bridge in Korea. 

3.3.2 Factor Analysis 

Kullaa [115] proposed to use the FA technique in SHM in order to eliminate the effects of operational 

and environmental variations from the measured data. Statistically, FA is a multivariate technique 

used to describe the linear correlation among a number of observed dependent variables (features) m 

in terms of a small number of unobserved independent variables (or factors) 

! 

f  (

! 

< m) as shown in 

Figure 3.3. Mathematically, for one feature vector 

! 

z  of dimension 

! 

m "1, the linear factor model can 

be written as 

! 

z = "# + e , (3.46) 

where 

! 

"  is a 

! 

m " f  matrix of factor loadings, 

! 

"  is a 

! 

f "1 vector of factor scores, and 

! 

e  is a 

! 

m "1 

vector of unique factors (or error terms). The factors scores are independent with zero mean and unit 

variance. In a matrix form, the model can be written as 
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 (3.47) 

or in the most generic form, 

    

! 

zi = "i1#1 + "i2#2 +!+ "if# f + ei   with       

! 

i =1,2,...,m . (3.48) 

The elements in 

! 

"  are deterministic and are estimated from the training data matrix 

! 

X , and so they 

are parameters in the model. On the other hand, 

! 

z , 

! 

" , and 

! 

e  are unknown and need to be further 

estimated. 

 

Figure 3.3.   Linear factor model. 

In order to facilitate computation, it is presented a matrix representation considering n tests (or feature 

vectors) for the training matrix 

! 

X" #m$n
 and k tests for the test matrix 

! 

Z" #m$k
. Note that the 

training matrix should be composed solely of feature vectors from the undamaged condition, and test 

matrix might be composed of feature vectors from both undamaged and damaged conditions. In matrix 

representation, the linear factor model in Equation (3.46) can be rewritten as 

! 

Z = "#+E , (3.49) 

where 

! 

"  is a 

! 

m " f  matrix of factor loadings, 

! 

" is a   

! 

f " k  matrix of factor scores, and 

! 

E is a   

! 

m" k  

matrix of errors. The error variables 

! 

i =1,...,m  are assumed to be independent with 

! 

"
i
 specific 

variances. 

In the context of data normalization, the FA technique can be used as follows. First, the matrices 

! 

"  

and 

! 

" , diagonal matrix with the specific variances, are estimated using the covariance matrix 

! 

"# $m%m
 of the training matrix 

! 

X  under model assumptions of Equation (3.49) 
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! 

" = ##
T

+$ . (3.50) 

Note that the number of factors corresponds to the number of underlying unobserved variables 

affecting the features, e.g. temperature and humidity. Second, using the test data matrix   

! 

Z, with 

! 

k  

feature vectors, and given 

! 

"  and 

! 

"  from the normal condition, the factor scores 

! 

" (

! 

f " k) might be 

estimated using the linear regression method for a minimum mean squared error 

! 

ˆ " = #
T

($ +##
T

)
%1
Z . (3.51) 

Finally, the unique factors (

! 

m " k ) in Equation (3.49) are computed by  

! 

E =Z"# ˆ $ . (3.52) 

In terms of SHM applications, Kullaa [115] successfully applied the FA algorithm to eliminate 

environmental effects on simulated data to resemble the observations of the Z-24 Bridge. 

3.3.3 Singular Value Decomposition 

Ruotolo and Surage [116] proposed a data normalization algorithm based on the SVD technique. This 

algorithm relies on the determination of the rank of a state matrix   

! 

M composed of 

! 

r  known 

independent m-dimensional feature vectors contained in   

! 

X , and one potential outlier feature vector 
    

! 

z j  

in the form of  

! 

M = [X,z j ] . (3.53) 

If the potential outlier comes from the undamaged condition and it is a linear combination of the ones 

contained in   

! 

X , it is expected that the rank will not change and will be equal to 

! 

r . On the other hand, 

if the potential outlier feature vector comes from the damaged condition, and it is independent from 

the others, the rank will be equal to 

! 

r +1.  

However, when dealing with real-world data, noise is often present which can affect the rank of   

! 

M 

and introduce residual singular values [117]. For this purpose, the comparison of two singular spectra 

is preferred. Basically, a three-step process is adopted to use the SVD as a data normalization 

algorithm:  

(i) the singular values of the training matrix 

! 

X  are calculated and stored into the vector 

! 

"
X

; 

(ii) for each potential outlier 

! 

z j , 

! 

j =1,2,...,k , the singular values are calculated for 

! 

M  and stored 

into a vector     

! 

"
M, j ; if the feature vector 

! 

z j  is related to damage in the structure, a plot of the 

singular values contained in 
    

! 

"
M, j  

should not overlap with the ones contained in 

! 

"
X

 as shown 

in Figure 3.4; 
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Figure 3.4.   Singular spectra 

! 

"
X

 and 
    

! 

"
M, j . 

(iii) the residual errors for each feature vector, 

! 

e j , are then given by the difference between 

! 

"
X

 

and 
    

! 

"
M, j  

in the form of  

    

! 

e j ="
X
#"

M, j . (3.54) 

Notice this algorithm assumes that when a feature vector comes from the damaged condition and it 

differs significantly from the ones used in the training data, the singular spectrum 
    

! 

"
M, j  deviates from 

! 

"
X

 and the residuals increase. 

3.3.4 Mahalanobis Squared Distance 

The Mahalanobis distance differs from the Euclidean distance because it takes into account the 

correlation between the variables and it does not depend on the scale of the features. Considering the 

training matrix     

! 

X" #m$n
, with a multivariate mean vector 

! 

x " #m$1
 and covariance matrix 

  

! 

"# $m%m
, the MSD is defined for each feature vector of the test matrix 

! 

Z" #m$k
 as 

    

! 

d j
2

= (z j " x )
T
#
"1

(z j " x ) , (3.55) 

where 
    

! 

z j ( j =1,...,k )  is an m-dimensional potential outlier feature vector. In the context of data 

normalization, the mean vector and covariance matrix should encode all feature vectors extracted from 

the undamaged condition under different operational and environmental variability (normal condition). 

The Mahalanobis distance has been extensively applied in SHM for data normalization. For instance, 

Manson et al. [112] applied the Mahalanobis distance algorithm to vibration data obtained from a 

simplified model of a metallic aircraft wingbox to detect damage in the stringer. 

3.4 Statistical Modeling for Feature Classification 

The development of statistical models to classify the extracted damage-sensitive features is the fourth 

step of the SHM-SPR paradigm. Even though several statistical modeling algorithms have been 

proposed in the literature, this section only makes reference to the ones used and/or developed by the 

author. Herein, the unsupervised learning algorithms are addressed because currently for high capital 
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expenditure structures, such as most civil infrastructure, only data from the undamaged condition are 

available. Therefore, first the cluster analysis is presented as a classification technique that groups 

extracted features into different clusters (i.e. undamaged; damaged level 1, level 2, and so on). Second, 

within the outlier category of classification algorithms, the statistical process control (SPC) techniques 

are introduced for random processes in undamaged systems. Third, the machine learning algorithms 

described in Section 3.3 might also be used for outlier detection. Thus, the MSD-based algorithm is 

designed and developed in such a way that the 
  

! 

d
2
 in Equation (3.55) from the normal condition 

follows a chi-square distribution under certain assumptions. Additionally, in the presence of enough 

data, an approach is presented to transform residual vectors from the AANN-, FA-, and SVD-based 

algorithms into scores. Finally, even though the receiver operating characteristic (ROC) curves are not 

used for classification, they have been used in the machine learning community because of their 

capabilities to assess the performance of classifiers, where performance is assessed on Type I/Type II 

error trade-offs. 

3.4.1 Cluster Analysis 

Data clustering is a common statistical data analysis technique that is used in many fields, such as 

machine learning, data mining, and pattern recognition [118]. Data clustering is the classification of 

feature vectors into different groups (also called clusters), so that in each group the feature vectors 

share some common underlying similarity.  

There are many kinds of clustering [119], such as Hierarchical Clustering, which is a way to join 

feature vectors into different clusters by creating a cluster tree. In this process, clusters at one level are 

joined at the next higher level by progressively merging clusters. The higher the level in the tree, the 

smaller number of clusters. In the context of SHM for damage detection, cluster analysis might be 

applied in order to discriminate undamaged and damaged conditions into two clusters (binary 

classification), as shown in Figure 3.5 for instance for feature vectors 

! 

z j , with 

! 

j =1,2,...,6. 

 

Figure 3.5.   Traditional representation of the Hierarchical Clustering. 
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A relatively recent application of cluster analysis in a continuous monitoring system, for detecting 

CFRP debonding from a host reinforced concrete structure, can be found in [120]. 

3.4.2 Statistical Process Control 

The SPC techniques may be applied for feature classification in an effort to discriminate the 

undamaged and damaged conditions. SPC uses control charts for monitoring whether the process is 

operating in statistical control. The process is said to be in control when the data vary randomly within 

the control limits (or thresholds). The purpose is to detect any abnormal changes in the process. These 

changes are observed as abnormal points on the charts resulting from changes in the mean and/or 

variance of the data. Thus, abnormal conditions might be identified by a statistically significant 

number of points exceeding the control limits as well as by systematic changes to the data within the 

control limits (e.g. the data are no longer randomly distributed within the control limits). Control 

charts often make assumptions of normality (the data have a normal distribution) and independence 

(data are not correlated) for better performance [99, 121, 122]. 

Different charts are used depending on the nature of the data. Herein, the Shewhart X-bar control 

charts are introduced to identify when data points fall outside the control limits (these points are also 

called “outliers”). A statistically significant number of points outside the control limits indicate that 

the structure has unusual source of variability that deviates its responses from the baseline condition. 

On the other hand, if data points fall inside the control limits, the process is said to be in control. (Note 

that there are cases where all data points fall inside the control limits and the process is not in-control.) 

A brief description of X-bar control charts is provided below. 

Suppose a random variable   

! 

x  that is characterized by a normal probability distribution described by 

its parameters: mean 

! 

µ  and standard deviation 

! 

" . If 

! 

x1,...,xn  is a sample of size   

! 

n and   

! 

x  is the 

average of this sample then, based on the central limit theorem, the samples means 

! 

x 
i  are normally 

distributed with mean 

! 

µ  and standard deviation 

! 

"
x 

=" / n . Thus, in 

! 

100(1"#)%  of the cases, the 

sample mean 

! 

x 
i
 will fall between the following interval 

! 

µ " Z#/2

$

n

%x 
i
% µ + Z#/2

$

n

, (3.56) 

where 

! 

Z"/2  is a parameter related to the confidence interval and 

! 

"  is the desired significant level. The 

standard deviation of the distribution of the 

! 

x 
i
 values is 

! 

" / n , i.e., the standard deviation of the 

population divided by the square root of the sample size. It is also commonly referred to the standard 

error of the mean. Note that the limits are a function of data acquired when the process is thought to be 

in control and might not necessarily have any direct relationship to the actual process performance. 
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However, generally the parameters 

! 

µ  and 

! 

"  corresponding to the underlying process are unknown 

and they need to be estimated from samples when the process is thought to be in control.  

One method to estimate the parameters of the probability distribution is as follows. Suppose that  

samples of   

! 

x  with  observations each are available. The best estimator of  is given by 

! 

ˆ µ =
1

m
x 

i

i=1

m

" , (3.57) 

where  is the sample average value for the  sample. The standard deviation can be estimated from 

either the m standard deviations, or the ranges of the  samples. By using the former one, an estimate 

of the process standard deviation can be obtained by averaging the  sample standard deviations 
  

! 

std
i
 

! 

ˆ " =
1

m
std

i

i=1

m

# . (3.58) 

With these estimates of the process mean and standard deviation, the control charts limits (UCL - 

upper control limit, CL – centerline, and LCL - lower control limit) can be defined. Setting the control 

limits requires one to make a trade-off between false-positive and false-negative indications of 

damage. For instance, 99.73% confidence interval of a normal distribution corresponds to three 

standard deviations from the mean. Thus, in Equation (3.56), 

! 

Z"/2  is replaced by three and the control 

limits can be defined as  

 (3.59) 

Notice that the quantity plotted is the sample average 

! 

x 
i  and, therefore, the chart is usually called an 

X-bar chart. 

Several applications have been reported in the literature [123]. Soon et al. [71] applied control charts to 

examine changes in the mean value and standard deviation of the residual errors derived from AR 

models. Fugate et al. [124] applied control charts in an unsupervised learning mode to monitor data 

obtained from a concrete bridge column. In this case, the control limits were developed based on AR 

residual time series from the baseline condition. Then, for AR residual errors derived from vibration 

data acquired from the column at progressively increasing damage levels, the existence of damage was 

identified by counting the number of outliers beyond the control limits. One should notice that in this 
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experiment the AR residual errors were used as damage-sensitive features and an electro-magnetic 

shaker was used to generate random signals. 

3.4.3 Outlier Detection based on Central Chi-square Hypothesis 

Some authors [125] have used the MSD as a distance measure for multivariate statistics outlier 

detection. In the outlier detection approach presented herein, a hypothesis test is established, where the 

null hypothesis, 
  

! 

H
0
, is the undamaged condition and the alternative hypothesis, 

  

! 

H
1
, is presumably the 

damaged condition. To determine if a feature vector is from a structure in the undamaged condition, a 

thresholdable, single-dimensional measure of separation between a new feature vector and an existing 

distribution is established. In SHM, this value is often referred to as damage indicator (DI). In 

Equation (3.55) if a multivariate feature vector 

! 

z  is extracted from the undamaged condition and 

corresponds to a multivariate Gaussian random distribution, then the   

! 

d
2
, or DI, will be chi-square 

distributed with m degrees of freedom 

  

! 

DI = "
m

2
. (3.60) 

Note that as m increases the PDF begins to look more like a normal PDF, as predicted by the central 

limit theorem. Therefore, multivariate outliers can simply be defined as observations having large DIs. 

(Note that m is equal to the length of the feature vector.) The assumption of a chi-square distribution is 

important for outlier detection because it permits a defined cut-off value or threshold, c, for a level of 

significance, !, in the form of 

    

! 

c = invF
"

m

2 (1#$ ) , (3.61) 

where 

! 

F
"
m

2  is the cumulative distribution function of the central chi-square distribution. Thus, a feature 

vector is considered to be a multivariate outlier (the null hypothesis is rejected) when its DI is equal or 

greater than c. Note that the selection of ! carries a trade-off between the Type I error (“false-positive” 

indication of damage) and the Type II error (“false-negative” indication of damage). Alternatively, in 

statistical hypothesis testing, the p-value is the probability of obtaining a result at least as extreme as 

the one that is being tested. For a given DI, the p-value is defined as 

! 

pvalue =1"F
#m
2 (DI ) . Generally, 

one rejects the null hypothesis if p-value is less than !. 

A schematic representation of this MSD-based algorithm combining feature extraction, data 

normalization, and statistical classification is shown in Figure 3.6. The approach can be summarized in 

the following steps. First, the extracted feature vectors from time series are divided into training 

matrix   

! 

X  composed solely of undamaged condition data, and test matrix 

! 

Z  composed of both 

undamaged and damaged conditions data. The training matrix should be representative of the 

operational and environmental variations present in the structure. Second, the mean vector and 
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covariance matrix of   

! 

X  are computed as parameters for calculating the distances. Third, the   

! 

d
2
 (or 

DI) for each feature vector of the test data is computed. If DI is below the chosen threshold, c, the null 

hypothesis is accepted, otherwise it is rejected. Note that this approach assumes that the original 

features from the undamaged condition follow a multi-dimensional Gaussian distribution 

! 

{ f (xi) | i =1,2,...,m} and the features from the damaged condition follow an unknown distribution 

! 

h(x
i
) . Recall that the alternative hypothesis is not tested since no assumptions are made regarding the 

form of structural damage or its effect on the feature vector.  

 

Figure 3.6.   MSD-based algorithm combining feature extraction, data normalization, and statistical 

modeling for feature classification. 

3.4.4 Outlier Detection from Residual Errors 

The data normalization algorithms presented in Section 3.3, namely based on AANN, FA, and SVD, 

output a feature vector of residuals with dimension equals to the dimension of the original feature 

vector. From Equations (3.45), (3.52), and (3.54), it is possible to establish a quantitative measure of 

damage for each feature vector. Thus, in the absence of another measure, a DI might be adopted in the 

form of the squared root of the sum-of-square errors (or Euclidean norm) for each residual feature 

vector. Thus, a DI for each feature vector of  is given by 

    

! 

DI j =|| e j ||   with       

! 

j =1,2,...,k , (3.62) 

where 

! 

k  is the total number of vectors in the residual matrix 

! 

E. If a feature vector 
  

! 

z j is related to the 

undamaged condition, 
  

! 

e j " 0  and 

! 

DI j " 0. On the other hand, if a feature vector comes from the 

damaged condition, the residual errors increase and the DI deviates from zero, thereby indicating an 

abnormal condition in the structure. Then, it is necessary to establish confidence intervals to take into 
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account variability and to classify those DIs that significantly deviates from zero. However, often it is 

not possible to define confidence intervals based on parametric distributions and recursive is made to 

non-parametric distributions. Another way, and when a considerable number of representative data is 

available from the undamaged condition, one might simply find thresholds based on values 

corresponding to a certain percentage of confidence over the training data. Therefore, multivariate 

outliers can now simply be defined as tests having DIs beyond a specific threshold. 

3.4.5 Receiver Operating Characteristic Curves 

Assessment of classification performance is a critical aspect of evaluating and comparing models, 

algorithms, or classifiers. For the two-class problem in SHM (binary classification), in which the two 

sets of cases are labeled as damaged (or positive, P) and undamaged (or negative, N), for each 

threshold there are four possible outcomes as summarized in Figure 3.7 and Table 3.1. For a positive 

outcome, the case can be either true positive (TP) if the observed is positive or false positive (FP) if 

the observed is negative. On the other hand, for a negative outcome the case can be either false 

negative (FN) if the observed is positive or true negative (TN) if the observed is negative. The shaded 

portion of Table 3.1 represents the confusion matrix (also known as contingency table), where the 

numbers along the major diagonal represent the correct classifications, and the numbers off the 

diagonal represent misclassifications, also known as Type I (FP) and Type II (FN) errors. 

 

Figure 3.7.   Distributions from the undamaged and damaged conditions. 

Table 3.1.    Accuracy of binary classification. 

Observed 
Outcome 

Positive Negative Total 

Positive True Positive (TP) False Positive (FP) TP+FP 

Negative False Negative (FN) True Negative (TN) FN+TN 

Total TP+FN FP+TN TP+FP+FN+TN 

 

Receiver operating characteristic (ROC) curves provide a comprehensive and graphical way to 

summarize the performance of classifiers [126]. The ROC curves were introduced in signal detection 
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theory by electrical and radar engineers during the World War II for detecting enemy objects in battle 

fields. Since that the ROC curves have become increasingly common in fields such as finance, 

atmosphere science, and medicine. In the field of machine learning, these curves have become a 

standard tool to evaluate the performance of binary classifiers. 

The ROC curves focus on the trade-off between sensitivity and 1-specificity. As shown in Figure 3.8, 

the sensitivity is sometimes called the true-positive rate, TPR=TP/(TP+FN), and defines the fraction of 

true detection. The 1-specificity is sometimes called false-positive rate, FPR=FP/(FP+TN), and defines 

the fraction of false alarm. Each point on the ROC curve corresponds to a specific threshold, although 

the values of thresholds are not evident from the square plot. The diagonal line divides the ROC space 

into two parts and represents a classifier that performs random classifications. Any point in the upper-

left triangle means that the classifier has some understanding of the classes. Moreover, the closer the 

ROC plot is to the upper-left corner, the higher the overall accuracy of the classifier. On the other 

hand, any point in the lower-right triangle means that the classifier is performing worse that random, 

i.e., the classifier has some underlying information about the classes but applies it in the opposite way. 

 

Figure 3.8.   Example of a ROC curve; the diagonal line divides the ROC space into two parts and 

represents a classifier that performs random classifications. 

3.5 Summary and Contributions 

The major contribution of this chapter is the novel approach for feature extraction that makes use of 

the state-space reconstruction. The reconstruction of the state space obtained discretely, in time, from 

measured time series of a dynamic system response can be used when some source of damage affects 

the dynamical properties of a system. The assumption of this algorithm is that a MAR model with 

parameters estimated from the baseline system cannot accurately predict the attractor of the damaged 

system. Thus, the parameters encode the baseline condition and, for linear stationary systems, the 

amplitude of the excitation will not affect the prediction. This algorithm is appropriate when damage 

is present in the form of nonlinearities. Furthermore, when the parameters are representative of the 
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operational and environmental conditions, this algorithm can also be cast in the context of data 

normalization. In real-world structures, it can potentially be used to detect nonlinearities in the form of 

loose connections that rattle or cracks that open and close by modeling the response of induced 

excitations, such as traffic and/or wind. 

Nevertheless, other contributions are present in this chapter. Feature extraction techniques along with 

specific applications were presented, using the same nomenclature for better understanding. The AR 

model was the focus of special attention, because it is a useful feature extraction technique for civil 

infrastructure SHM applications based on three main reasons: (i) they are sensitive to damage when it 

manifests in the form of nonlinearities or transitions between two states; (ii) the extraction of features 

only depends on response time series data; and (iii) simple and easy implementation.  

It was also highlighted that the choice of the appropriate damage-sensitive feature is a damage-specific 

issue. Unfortunately, it is unlikely to find a feature that performs well under any type of damage and 

for every type of signal. Thus, in order to provide guidance on that issue, Table 3.2 summarizes some 

of the feature extraction techniques mentioned in this chapter along with proper scenario, where they 

might be applied to take advantage of their sensitivity to damage in the structures. Note that settlement 

can be derived from either piers or abutments and, in parentheses, one can find the type of 

measurement to be used.  

 

Table 3.2.    Feature extraction techniques along with potential detectable type of damages. 

 Technique/Feature  Type of Damage Observations 

 Modal Parameters 
When damage changes the global load path 

(e.g. accelerations) 

 Mean 
When damage introduces permanent 

deformations (e.g. strains) 

Skewness and 

Kurtosis 

When damage introduces changes into the 

normal distribution (e.g. accelerations) 

Correlation 

Coefficients 

When damage imposes permanent 

deformations (e.g. displacements and strains) 

PDF 

 Settlement, 

yielding steel 

elements, or 

complete severing 

of truss elements 

Changes in the loading path caused by loading 

conditions or different structural system (e.g. 

strains) 

AR Model 
When damage tends to change the stationarity 

property of the system (e.g. accelerations) 

STFT and CWT 

When damage is characterized by transitions 

between two state conditions (e.g. 

accelerations) 

Holder Exponent 

Fatigue cracks or 

loose connections 

When damage is reflected in the form of 

singularities in the signal (e.g. accelerations) 
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Four data normalization algorithms based on AANN, FA, MSD, and SVD were presented to separate 

changes in the sensor readings caused by damage from changes caused by operational and 

environmental variations. These algorithms are generally known as machine learning algorithms 

because they are developed in such a way that their performance is improved based on the analysis of 

normal condition data. Even though these algorithms have different underlying mathematical 

formulations, they are implemented in a common sequence of steps. All four algorithms offer some 

advantages over other parametric data normalization techniques because the operational and 

environmental variables (e.g. traffic loading and temperature) do not need to be measured to reveal 

their influence on the structural responses. Actually, the algorithms rely only on features extracted 

from measured response time series data acquired under varying operational and environmental 

conditions. However, these algorithms have potential problems if the training data are only 

characteristic of a limited range of operational and environmental variability. Hence, all sources of 

variability must be well characterized by the training data in order for the algorithms to accurately 

learn their influence on the system’s response. Thus, one should note that with these algorithms there 

is no guarantee that they will work effectively when new data correspond to operational and 

environmental conditions not used in the training phase. Also, if the damage produces changes in the 

system’s dynamic response characteristics that are similar to those produced by the sources of 

variability, it is not clear that these algorithms will be able to separate changes in the features caused 

by damage from changes caused by the operational and environmental variability. Thus, the training 

data should be representative of at least one full cycle to reduce the likelihood of misclassifications. In 

conclusion, it is the author’s belief that these algorithms have a wide application in SHM for the 

following reasons: (i) applicability for short- and long-term monitoring; (ii) it assumes any kind of 

input feature vector; (iii) these algorithms do not require a direct measure of the operational and 

environmental factors; and (iv) they can be updated when new training data become available. 

Additionally, for the MSD-based algorithm, under certain assumptions, a hypothesis test is established 

that the algorithm rejects the null hypothesis (undamaged condition) if DI does not follow a chi-square 

distribution.  

The SPC techniques, and particularly the Shewhart X-bar control charts, were presented as a 

procedure of statistical modeling for feature classification. Those charts allow one to detect any 

abnormal changes in the monitored process, especially when damage causes changes in the mean 

and/or variance of the response data. However, the performance of them depends highly on 

assumption of Gaussian process data. Thus, in a long-term SHM monitoring of civil infrastructure, the 

applicability of these charts might be conditioned by the existence of external excitation source. 

Nevertheless, these techniques might potentially be used on NDT and/or in the presence of integrated 

actuators capable to generate random excitation into the structural elements. 
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Finally, several feature extraction and statistical modeling procedures described in this chapter have 

been incorporated into a software package called SHMTools. This package is described in Appendix A 

as the beginning of a larger effort to collect and archive proven approaches to support the SHM 

process. 





 

4. VALIDATION ON A LABORATORY TEST STRUCTURE 

4.1 Introduction and Overview 

The goal of this chapter is to apply the SHM-SPR paradigm to standard data sets acquired from a 

base-excited three-story frame structure tested in a laboratory environment. It should be emphasized 

that this structure is not a scale model of any prototype system, but rather it was designed as standard 

test bed for SHM validation studies. For different studies on these data sets, one should see [127, 128, 

129]. 

The data sets are composed of force and acceleration time series measured under different structural 

state conditions. The damage was simulated through nonlinear effects introduced by a bumper 

mechanism that induces a repetitive, impact-type nonlinearity. The nonlinearities were intended to 

produce a small perturbation to an essentially stationary process, causing a nonlinear phenomenon 

called intermittency [130], i.e., the system alternates between two states in an irregular way. In this 

case, the irregular behavior is characterized by impacts, whose number depends on the input to the 

structure and the level of damage introduced by the bumper, which is quantified by the initial bumper 

gap. This mechanism was intended to simulate a crack that opens and closes under dynamic loads (a 

so-called ‘breathing’ crack), or loose connections that rattle. Several real-world examples have been 

published reporting bending and shear cracks that open and close under dynamic loads. For instance, 

in the prestressed bi-cellular box girder N. S. da Guia Bridge, in Portugal, cracks were measured that 

open and close 0.12 mm under the loads produced by two vehicles passing side-by-side at 20 km/h 

[131]. On the other hand, the operational and environmental effects were simulated through different 

mass and stiffness conditions (non-damage related events), which are indicative of changing system 

mass caused by varying live loads or changing system stiffness properties caused by changing thermal 

environments. Those changes were designed to introduce variability in the fundamental natural 

frequency up to approximately 7% from the baseline condition, which is perfectly within the range 

normally observed in real-world structures as highlighted in Chapter 2. 

In the hierarchical structure of damage identification, this chapter addresses the need for robust 

incipient damage detection methods. Therefore, it is essentially concerned with determining the 

existence of damage in the test structure. Even though locating and assessing the severity of damage 
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are important in terms of estimating the residual lifetime of the structures, the reliable detection of 

damage existence must precede these more detailed damage descriptions. To achieve that goal, this 

chapter is mainly focused on the application of the feature extraction, data normalization, and 

statistical modeling for feature classification procedures described in Chapter 3, i.e. steps three and 

four of the SHM-SPR paradigm. Nonetheless, a brief overview will be given to the operational 

evaluation and data acquisition steps of the paradigm. Recall that this approach for damage detection 

is solely based on signal analysis of the measured acceleration response data, and thus, it does not take 

into account any physical information about the structure being analyzed or the excitation source. 

The layout of this chapter is as follows. Section 4.2 addresses the first two steps of the SHM-SPR 

paradigm, providing a summary description of the test structure, data acquisition system, experimental 

procedure, simulated operational and environmental conditions, and the damage scenarios. In Section 

4.3, a physics-based numerical model is summarized. This model does not interfere in the damage 

detection process, rather it is used to validate some assumptions about the system response as well as 

the measured experimental data. Section 4.4 demonstrates the stationarity property of the data sets. 

Section 4.5 applies and discusses most of the SHM procedures described in Chapter 3 for feature 

extraction, with special attention on the AR model. In the statistical modeling for feature classification 

step, Section 4.6 applies the machine learning algorithms for data normalization and the novel 

algorithm based on the state-space reconstruction for outlier detection. Notice that those algorithms 

combine feature extraction (and/or data normalization) and statistical classification (outlier detection). 

Finally, Sections 4.7 and 4.8 conclude with a general discussion to summarize the main conclusions 

regarding the effectiveness of the various statistical procedures to identify damage under simulated 

operational and environmental variations as well as the main contributions of this study. 

4.2 Experimental Procedure 

The base-excited three-story aluminum frame structure shown along with its basic dimensions in 

Figure 4.1 is used as a damage detection test bed structure. The structure consists of columns and 

plates assembled using bolted joints. The structure slides on rails that allow movement in the x-

direction only. At each floor, four columns (17.7x2.5x0.6 cm) are connected to the top and bottom 

plates (30.5x30.5x2.5 cm) forming a (essentially) four-degree-of-freedom system. Additionally, a 

center column (15.0x2.5x2.5 cm) is suspended from the top floor. This column is be used to simulate 

damage by inducing nonlinear behavior when it contacts a bumper mounted on the next floor. The 

position of the bumper can be adjusted to vary the extent of impacting that occurs at a particular 

excitation level. 

An electrodynamic shaker provides a lateral excitation to the base floor along the centerline of the 

structure. The structure and shaker are mounted together on an aluminum baseplate (76.2x30.5x2.5 

cm) and the entire system rests on rigid foam. The foam is intended to minimize extraneous sources of 
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unmeasured excitation from being introduced through the base of the system. A load cell (Channel 1) 

with a nominal sensitivity of 2.2 mV/N was attached at the end of a stinger to measure the input force 

from the shaker to the structure. Four accelerometers (Channel 2-5) with nominal sensitivities of 1000 

mV/g were attached at the centerline of each floor on the opposite side from the excitation source to 

measure the system response. Because the accelerometers are mounted at the centerline of each floor, 

they are insensitive to torsional modes of the structure. In addition, the shaker location and the linear 

bearings minimize the torsional excitation of the system. 

 

Figure 4.1.   Basic dimensions of the three-story test bed structure. (All dimensions are in cm.) 

A Dactron Spectrabook data acquisition system was used to collect and process the data. The output 

channel of this system, which provides the excitation signal to the shaker, is connected to a Techron 

5530 Power Supply Amplifier that drives the shaker. The analog sensor signals were discretized into 

8192 data points sampled at 3.125 ms intervals corresponding to a sampling frequency of 320 Hz. 

These sampling parameters yield time series of 25.6 sec. A band-limited random excitation in the 

range of 20-150 Hz was used to excite the structure. This excitation signal was chosen in order to 

avoid the rigid body modes of the structure that are present below 20 Hz. Note that the rigid body 

modes occur at non-zero frequency because of the presence of (slight) damping and stiffness (caused 

by the friction between the structure and rails, and to some extent, the stinger of the shaker). These 
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modes were excluded from the analysis because their frequencies varied significantly even under the 

normal condition. Furthermore, the rigid body modes often overloaded the sensors, imposing 

difficulties in accurate measurements of the structure. The excitation level was set to 2.6 V RMS in the 

Dactron system, which corresponds to, approximately, 20 N RMS measured from the load cell. Force 

and acceleration time series for 17 different structural state conditions were collected as shown in 

Table 4.1 along with information that describes the different states. For example, the state condition 

labeled “State#4” is described as “87.5% stiffness reduction in column 1BD”, which means that there 

was an 87.5% stiffness reduction (corresponding to a 50% reduction in the column thickness) in the 

column located between the base and first floor at the intersection of plane B and D. For each 

structural state condition data were acquired from 10 separate tests. Each test consists of five time 

series from the same number of sensors. For illustration purposes, Figure 4.2 plots in concatenated 

format acceleration time series of State#1, 7, 14, and 17 from Channel 2-5, where one can see that the 

amplitude of the time series is relatively consistent.  

 

Table 4.1.    Data labels of the 17 structural state conditions. 

Label State Condition Description 

State#1 Undamaged Baseline condition 

State#2 Undamaged Added mass (1.2 kg) at the base 

State#3 Undamaged Added mass (1.2 kg) on the 1st floor 

State#4 Undamaged Stiffness reduction in column 1BD 

State#5 Undamaged Stiffness reduction in column 1AD and 1BD 

State#6 Undamaged Stiffness reduction in column 2BD 

State#7 Undamaged Stiffness reduction in column 2AD and 2BD 

State#8 Undamaged Stiffness reduction in column 3BD 

State#9 Undamaged Stiffness reduction in column 3AD and 3BD 

State#10 Damaged Gap (0.20 mm) 

State#11 Damaged Gap (0.15 mm) 

State#12 Damaged Gap (0.13 mm) 

State#13 Damaged Gap (0.10 mm) 

State#14 Damaged Gap (0.05 mm) 

State#15 Damaged Gap (0.20 mm) and mass (1.2 kg) at the base 

State#16 Damaged Gap (0.20 mm) and mass (1.2 kg) on the 1st floor 

State#17 Damaged Gap (0.10 mm) and mass (1.2 kg) on the 1st floor 
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Figure 4.2.   Acceleration time series of various state conditions: (a) Channel 2; (b) Channel 3; (c) 

Channel 4; and (d) Channel 5. 

 

The structural state conditions can be categorized into four main groups. The first group is the baseline 

condition. The baseline condition is the reference structural state and is labeled “State#1” in Table 4.1. 

The bumper and the suspended column are included in the baseline, but the spacing between them was 

maintained in such a way that there were no impacts during the excitation. The second group includes 

the states with simulated operational and environmental variability. In real-world structures such 

variability often manifests itself in changes in the stiffness or mass distribution of the structure. In 

order to simulate those changes, tests were performed with different mass-loading and stiffness 

conditions (State#2-9). The mass changes consisted of adding a 1.2 kg (approximately 19% of the total 

mass of each floor) to the first floor and to the base, as shown in Figure 4.3a when the mass is at the 

base. The stiffness changes were introduced by reducing the stiffness of one or more of the columns 

by 87.5%. This process was executed by replacing the corresponded column with one that had half the 

cross sectional thickness in the direction of shaking. Those changes were designed to introduce 

          State#1                      State#7                    State#10                    State#17 

 

          State#1                      State#7                    State#10                    State#17 

 

          State#1                      State#7                    State#10                    State#17 

 

          State#1                      State#7                    State#10                    State#17 
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variability in the fundamental natural frequency up to approximately 7% from the baseline condition. 

Recall that as shown in Section 2.2, for instance in the case of highway bridges, numerous 

investigations indicate that the temperature can cause modal variability in the range of 5-10%. Under 

the assumption that many “real-word” damage modes induce transitions from linear to nonlinear 

response in a system, the third group includes the damaged state conditions. Therefore, damage is 

simulated by a bumper mechanism that creates a repetitive, impact-type nonlinearity. This mechanism 

was intended to simulate, for instance, a crack that opens and closes under dynamic loads (a so-called 

‘breathing’ crack), or loose connections that rattle. As shown in Figure 4.3b, adjusting the gap 

between the bumper and the suspended column controls the level of damage. Therefore, the gap was 

varied (0.20, 0.15, 0.13, 0.10, and 0.05 mm) in order to introduce different levels of nonlinearities 

(State#10-14). The higher the gap, the smaller the level of damage. Finally, to create more realistic 

conditions, the fourth group includes state conditions with the simulated damage in addition to the 

mass changes used to simulate operational variations (State#15-17). More details about the test 

structure as well as data sets can be found in Figueiredo et al. [127]. 

 

(a) (b) 

  

Figure 4.3.   Structural details of the sources of simulated operational and environmental changes: (a) 

mass-loading added at the base; and (b) nonlinearity source. 

 

4.3 Numerical Simulation 

A linear physics-based numerical model of the test structure was developed in order to compare the 

numerical results with the measured experimental data. In general, physics-based numerical models 

can be used to define the SHM system properties, such as sensor type and location, prior to deploying 

a monitoring system on real-world structures and to validate SHM systems’ measurements. The test 

structure is modeled as a shear-building model with four lumped masses at the floors, including the 

base that slides on rails, as shown in Figure 4.4. An extra story with stiffness 
    

! 

k
1
 and damping 

    

! 

d
1
 was 

included to simulate the friction between the rails and the structure. 

Mass 
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Figure 4.4.   Shear-building model of the test structure. 

The equations of motion of the shear-building model can be written in matrix notation as follows 

, (4.1) 

where the 
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K  are the mass, damping, and stiffness matrices of the system, respectively, 
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where 

! 

m
i
 denotes the mass at the i

th
 floor and  denotes the stiffness of the i

th
 story. Note that the 

masses of the columns are redistributed through the floors and the stiffness of each column is given by 

! 

k
c

=12EI /L
3
, where E is the Young’s modulus, I is the inertial, and L is the length of the column. The 

equations of motion can be uncoupled with the modal damping assumption [132, 133], in which   
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where , , and  are the damping ratio, natural frequency, and modal mass, respectively, 

associated with the i
th

 mode. The damping ratios are estimated from the measured experimental data. 

The matrices   

! 

D  and 
    

! 

D
n
 can be related by 
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! 

D
n

="
T
D", (4.4) 

where 

! 

" is the mode shapes’ matrix. As a consequence, the matrix   

! 

D  is determined by 

! 

D ="
#T
D
n
"
#1

. (4.5) 

For the numerical model described above, Figure 4.5 shows the comparison between the numerical 

and experimental mode shapes. Notice that the first mode is a rigid-body mode and, for convenience, 

it is not illustrated here. The experimental modal parameters were estimated using the rational-fraction 

polynomial (RFP) method (as described later in Section 4.5.2). The experimental natural frequencies 

and damping ratios for the baseline condition (State#1) as well as the numerical natural frequencies 

are summarized in Table 4.2. Note that the numerical model assumes, for the aluminum, a calibrated 

Young’s modulus equal to 65 GPa and negligible friction between the rails and the structure. The 

Young’s modulus was adjusted to match the numerical and experimental frequencies. This manner, 

the modulus takes into account not quantified sources of variability like the friction at the base and 

local geometric imperfections. As shown in the Figure 4.6, the MAC values of the second, third, and 

fourth mode shapes as well as the COMAC values at each node are very close to one, indicating that 

the numerical and experimental mode shapes are highly correlated. 

 

Figure 4.5.   Numerical (NM) and experimental (Exp) mode shapes of the baseline condition: (a) 

second; (b) third; and (c) fourth mode shapes. 

Table 4.2.    Experimental along with numerical natural frequencies and damping ratios for State#1 

(baseline contidion). 

Frequency (Hz) Mode 

Number Experimental Numerical 

Damping 

Ratio (%) 

2 30.7 29.8 (-2.9 %) 6.3 

3 54.2 54.0 (-0.4 %) 2.0 

4 70.7 71.6 (+1.3 %) 0.97 
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Figure 4.7a and b show the experimental and the numerical acceleration responses at the third floor 

(Channel 5), respectively. The experimental response corresponds to a measured time series response 

of the baseline condition (State#1) due to the excitation measured at Channel 1. The numerical 

response corresponds to the acceleration at the same location due to the same experimental excitation. 

Apparently, the figure indicates that the acceleration amplitudes of both responses are consistent. 

Nonetheless, two techniques are used for quantitative comparison of both responses, namely, ACF and 

power spectral density (PSD). By overlapping the numerical and experimental ACFs, this procedure 

permits to evaluate if the numerical response reasonably characterizes the experimental data. The 

ACFs shown in Figure 4.8, in an overlap format, indicate that the experimental and numerical 

responses are correlated. 

(a) (b) 

  

Figure 4.6.   Correlation between numerical and experimental mode shapes: (a) MAC; and (b) 

COMAC values. 

 

Figure 4.7.   Responses from Channel 5 due to the measured experimental excitation at Channel 1 

(State#1): (a) experimental time series; and (b) time series derived from the numerical model. 
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Figure 4.8.   ACFs of the experimental and numerical responses. 

Another manner to compare the accuracy of the experimental and numerical responses is by means of 

overlapping the PSDs of both responses, as shown in Figure 4.9. In this case, each PSD is estimated 

by averaging small spectrum quantities of segments from the original time series. Basically, for each 

response, the associated time series (8192-point length) is divided into segments according to a 

moving window of 1024-point length. Each segment is windowed with a Hamming window. The fast 

Fourier transform is computed in each segment using a moving window with 50% overlap. Finally, the 

set of spectra is averaged to form the final PSD. In the figure, the numerical estimated PSD seems to 

fit the experimental one, even though the former has more energy content in the second and less 

energy in the third natural frequencies. Those differences are likely related to the friction at the base. 

Recall that, as an approximation, the numerical model assumes negligible friction. 

 

Figure 4.9.   PSDs obtained from experimental and numerical time responses. 

In conclusion, this section summarized the development of a four-degree-of-freedom physics-based 

numerical model to confirm that a linear model predicts reasonably the experimental data. The 

structure was modeled as a shear-building model with four lumped masses at the floors. The damping 
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matrix was obtained using the results of the experimental modal analysis. The Young’s modulus was 

adjusted so that the numerical natural frequencies agreed with the experimental ones. The numerical 

model assumed negligible friction between the rails and the structure. Additionally, some statistical 

techniques, such as MAC, COMAC, ACF, and PSD, were used to show that the numerical model is 

able to predict with high level of certainty baseline response data. Finally, note that this model was 

just used to better understand the system behavior of the test structure and it will not be used 

throughout this chapter as a tool to detect damage.  

4.4 Stationary Properties of the Data Sets 

Because no explicit mathematical equation can be written for the time series produced by a random 

excitation, such as the measured data in this study, statistical procedures must be used to define their 

properties. In statistics, the data from a random process are said to be stationary and (essentially) 

ergodic when the statistical moments and joint moments are time-invariant and do not change when 

computed over different time series [134]. In this study, some of the basic statistical properties such as 

the first four statistical moments (mean, standard deviation, skewness, and kurtosis) as well as the 

ACFs are used to describe the data. The box plots in Figure 4.10 indicate the degree of dispersion and 

symmetry in the statistical moments computed over all 10 time series from Channel 5 of each state 

condition. The bottom and top of each box are the lower and upper quartiles, respectively. (Note that 

the crossed signs correspond to outliers, i.e., values more than 1.5 times the interquartile range away 

from the bottom or top of each box.) The scatter highlighted in the mean is related to the arbitrary plot 

scale and is largely meaningless because the mean is, approximately, zero for all state conditions and 

cannot be used to scale the figure. Looking at the standard deviation, skewness, and kurtosis, one 

observes that, although there is variation in the statistics across states (between-class scatter), there is 

very little variation across the test sequence for a given state (within-class scatter). As, for each state, 

the statistics do not change significantly across the test sequence, the structural system in each state 

can be assumed stationary. As highlighted in the figure for the damaged states (State#10-17), the 

skewness and kurtosis actually prove to be features revealing the presence of nonlinearities (and hence 

the damage), as indicated by significant departures from the expected values of a Gaussian signal 

(zero for skewness and three for kurtosis). Furthermore, the skewness and kurtosis of the responses for 

Channel 1 in Figure 4.11 indicate that this channel is insensitive to the presence of damage. This result 

in itself is important because it shows that the departures from the Gaussian condition for Channel 5 

cannot be blamed on the possibility of non-Gaussian input signals – the between-class scatter on the 

skewness and kurtosis for the different states of Channel 1 is not significant. As further evidence of 

stationarity for the various states, the ACFs of the responses for each state are relatively consistent 

across the sequence of the 10 tests. For illustration purposes, the box plots in Figure 4.12 indicate the 

degree of dispersion and symmetry in the first 15 auto-correlation coefficients computed over all 10 

time series from Channel 5 of State#1 and 14. 
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Figure 4.10. Box plots of the first four statistical moments of all 10 time series from Channel 5. 

 

Figure 4.11. Box plots of the skewness and kurtosis of all 10 time series from Channel 1. 

 

Figure 4.12. Box plots of the ACFs, for the first 15 coefficients, of all time series from Channel 5: (a) 

State#1; and (b) State#14. 
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In summary, based on the observations above, it can be assumed that the random processes associated 

with all channels are at least weakly stationary and may be stationary in the wide sense. Moreover, it 

was shown that the changes in the statistical moments of the response are not the result of changing 

inputs. This assumption implies that the statistics of a single time series are representative of the entire 

time-history ensemble corresponding to a specific state condition. Based on this assumption, 

throughout the feature extraction section, only one time series from each state condition is used to 

demonstrate the feature extraction capabilities of each technique. 

4.5 Feature Extraction 

In Chapter 1, the feature extraction step was posed as the portion of the SHM-SPR paradigm 

concerned with the calculating of some signature or quantity from the structural response data that can 

be correlated with damage. In Chapter 3, several feature extraction techniques were presented. Herein, 

the main goal is to apply all the techniques described and to show that selected features are sensitive to 

the simulated damage and insensitivity to simulated operational and environmental variations. Note 

that throughout this section, the AR models are focus of special attention. 

4.5.1 Basic Statistics 

The features used herein (PDF, normal probability plot, and statistical moments) expect that the 

damage can introduce significant changes in the statistics of the acceleration time series. The sequence 

of exposition pretends to show the importance to maximize the structural information in a low-

dimensional feature vector. 

4.5.1.1 Probability Density Function 

The PDF-based features expect that changes in time series caused by damage might imply changes in 

the shape of the PDFs. Therefore, the non-parametric kernel density estimator is used herein to 

estimate the PDFs associated to the underlying processes from Channel 5 of four state conditions, 

namely State#1 (baseline), 7 (stiffness reduction in columns), 14 (gap of 0.05 mm), and 17 (gap of 0.1 

mm and 1.2 kg added on the first floor). Recall that this kernel density is useful because no 

information is given a priori regarding the shape of the distribution. 

Figure 4.13 shows individual estimates of PDFs from Channel 5 of State#1, 7, 14, and 17, based on 

the standard Gaussian kernel function given by Equation (3.44) and using a smoothing parameter h 

that is a function of the number of points in each acceleration time series. The density is estimated at 

100 equally spaced points that cover the range of acceleration amplitudes in each time series. Based on 

the plots, one can observe that there exists a significant difference between PDFs from damaged states 

(State#14 and 17) and the undamaged ones (State#1 and 7). Besides the baseline data, the figure also 

suggests that the undamaged states tend to assume an underlying normal distribution. Conversely, as 

the level of damage increases, the PDFs tend to deviate from the normal distribution. 
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Figure 4.13. PDFs estimated from acceleration time series from Channel 5 of two undamaged (State#1 

and 7) and two damaged (State#14 and 17) states using a kernel density estimator. 

 

4.5.1.2 Normal Probability Plot 

It was shown in Figure 4.13 that at least the data from the baseline condition (State#1) are normally 

distributed. Therefore, herein the normal probability plot is applied to graphically verify whether the 

measured data is from a normal distribution. It is expected that damage might change the normal 

assumption of the baseline condition. By definition, the normal probability plot is linear when data 

come from a normal distribution. Otherwise, curvatures are shown in the plot if the data are related to 

another underlying probability distribution.  

Figure 4.14 shows normal probability plots of the same states, i.e., State#1, 7, 14, and 17. The 

nonlinear scale of the vertical axis corresponds to empirical probability (between zero and one) versus 

the accelerations data points in the horizontal axis. Recall that all points should fall close to the 

diagonal dashed line if the data are normally distributed. Therefore, the plots clearly show that data 

from the baseline condition (State#1) and the state affected by simulated environmental condition 

(State#7), but without nonlinearities, are normally distributed. Note that in this case the shaker does 

not have a feedback control mechanism and, as such, it has difficulty in reproducing an accurate 

Gaussian input. This difficulty manifests itself in the tails of the distribution where slight deviations 

from the normal assumption can be seen. Nevertheless, the states with the nonlinearities (State#14 and 

17) show that an assumption of normality is not justified, as shown by the significant curvature in the 

tails of the normal probability plot. 
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Figure 4.14. Normal probability plots of four state conditions at Channel 5: (a) State#1; (b) State#7; 

(c) State#14; and (d) State#17. 

4.5.1.3 First Four Statistical Moments 

The PDFs and normal probability plots highlighted significant changes in the damaged states when 

comparing with the undamaged ones. However, the assessment was made either in a visual manner or 

at cost of high-dimensional feature vectors. Therefore, herein the first four statistical moments (mean, 

standard deviation, skewness, and kurtosis) are used to quantify those changes in a lower dimensional 

feature vector. For each state condition (State#1-17), Figure 4.15 plots the first four statistical 

moments of one time series from all accelerometers (Channel 2-5). It is shown that for every channel, 

the mean and standard deviation does not give any insight about the presence of nonlinearities 

associated with the damaged state conditions (State#10-17). However, for Channel 4 and 5, the 

skewness and kurtosis change significantly in the damaged states when compared to the undamaged 

ones (State#1-9). 

It is of interest to note that, among the damaged states, the skewness has an opposite sign for the 

sensors on either side off the impact device, implying the response from Channel 5 has more values 

above the mean and the response from Channel 4 has more values below the mean in the damaged 

state conditions. Moreover, these same damaged states in general have larger kurtosis (larger than 3.2) 

than the undamaged ones. Note that a kurtosis larger than three means most of the variance is caused 

by non-frequent extreme deviations from the mean. Actually, these results were expected because 
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damage is introduced in the form of intermittent singularities into the time series data. However, for 

both skewness and kurtosis the changes are only significant in the data from Channel 4 and 5, which 

are on the floors directly above and below the bumper location. This fact points out the challenge to 

detect and/or locate damage with a sparse array of sensors. 

 

Figure 4.15. First four statistical moments based on one acceleration time series from Channel 2-5 of 

each state condition: (a) mean; (b) standard deviation; (c) skewness; and (d) kurtosis. 

4.5.1.4 Conclusions 

The PDFs and normal probability plots showed that damage introduces deviations from the normal 

distribution. Additionally, the skewness and kurtosis were shown to be useful damage-sensitive 

features when damage introduces an asymmetry into the response data even in the presence of linear 

changes caused by simulated operational and environmental variations. However, a high density of 

sensors throughout the structure might be required to detect damage in a global basis, because the 

sensors might only be sensitive to damage when located near the source of damage. Actually, the 

statistical moments showed to be useful because of their low dimension when compared to the 

dimension of the PDFs and normal probability plots. Thus, the first four statistical moments might be 
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preferred over the other two techniques, because it permits to detect deviations from the normal 

condition with a lower dimensional feature vector. 

4.5.2 Modal Parameters 

The modal parameters estimation is done by curve fitting a parametric form of the frequency response 

function (FRF), defined in terms of the natural frequencies, modal damping ratios, and mode shapes, 

to the measured FRFs from one test corresponding to each state condition. The natural frequencies, 

damping ratios, and modes shapes were estimated using a RFP global curve fitting method [135]. The 

RFP method is a frequency domain curve fitting that operates directly on the complex FRF. This 

method performs a least squared error curve fit to all FRFs [100, 136]. Note that the curve fitting is 

applied to minimize the effects of measurement noise. As shown in Figure 4.16 for State#1, the 

specified frequency bands, over which the RFP method was applied, were determined by visualizing 

the imaginary part of the complex mode indicator function (CMIF). By looking at this plot, three 

frequencies can be clearly identified. Therefore, for all state conditions, the FRFs were curve fit in one 

window with a frequency band between 25 and 80 Hz, as shown in Figure 4.17.  

 

Figure 4.16. CMIF for one FRF from Channel 5 of State#1. 

 

Figure 4.17. Curve fitting example on the FRFs from Channel 2-5 for the selected frequency range 

between 25-80 Hz (State#1). 
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Table 4.3 summarizes the estimated natural frequencies and damping ratios corresponding to one test 

of each state condition. (For completeness, the mode shapes of the baseline condition are plotted in 

Figure 4.5.) In order to highlight the differences in the natural frequencies from the baseline condition 

(State#1), Figure 4.18 plots the natural frequencies of all state conditions and Figure 4.19 plots the 

frequency differences between the baseline condition and the other states. In general, one can observe 

that the differences decrease for the undamaged state conditions (State#2-9) and increase for the 

damaged states with no mass or stiffness changes (State#10-14). However, the challenge of this study 

is to detect damage when the structure is also affected by operational and environmental changes. 

Thus, it is clear that changes in frequencies associated with the damage introduced for State#15, 16, 

and 17 are masked by the varying mass and stiffness values associated with these state conditions. 

 

 

Table 4.3.    Experimental natural frequencies and damping ratios of all state conditions. 

Frequency (Hz) Damping Ratio (%) State  

Condition 2nd 3rd 4th 2nd 3rd 4th 

State#1 30.7 54.2 70.7 6.3 2.0 0.97 

State#2 30.4 52.9 70.3 6.4 1.5 0.76 

State#3 30.9 53.1 68.2 5.5 2.1 0.82 

State#4 30.9 51.2 69.2 7.1 2.2 0.55 

State#5 30.3 47.0 67.8 7.0 1.8 0.38 

State#6 29.7 53.9 65.8 5.3 1.7 1.2 

State#7 28.6 54.2 62.2 5.1 1.7 0.72 

State#8 30.2 51.1 69.3 5.6 2.2 0.80 

State#9 28.9 47.4 68.0 4.6 2.6 0.80 

State#10 31.1 54.4 70.9 6.6 2.1 1.0 

State#11 31.7 54.5 70.9 7.0 1.9 0.93 

State#12 31.8 54.9 71.2 6.3 1.9 1.0 

State#13 32.4 55.2 71.4 6.3 1.9 1.0 

State#14 33.5 57.6 74.2 7.1 2.2 0.97 

State#15 31.6 54.0 71.1 5.4 1.6 0.73 

State#16 31.0 53.4 68.3 5.3 2.3 0.82 

State#17 32.3 54.4 69.2 5.0 2.2 0.80 

 

 



Validation on a Laboratory Test Structure        77 

 

 

Figure 4.18. Natural frequencies estimated based on one test of each state condition. 

 

Figure 4.19. Natural frequency deviations of all state conditions from the baseline condition (State#1). 

As shown in Table 4.3, the damping ratios do not show signs of consistently increasing or decreasing 

with the damaged state conditions. Theoretically, the impacts associated with nonlinearities should 

increase the energy dissipation, which should manifest itself in higher damping. However, damping 

ratios are empirical values that must be obtained by measurements that assume a linear system. As a 

consequence, the lack of consistent changes in damping as a function of damage can be justified by 

the fact that the damping ratios are estimated through the FRF curve fitting process that fits a linear 

modal model to nonlinear system response data, and so, the damping ratios tend to represent only the 

linear portion. 

In conclusion, some limitations of using modal parameters as damage-sensitive features were 

demonstrated, specifically the natural frequencies and damping ratios. For the simulated changes, one 

could not conclude which data are from the damaged states by just examining changes in the natural 

frequencies when other sources of variability are present that influence the dynamic response 

characteristics of the structure. However, note that the effects of the temperature were partially 

simulated in this case, because if the stiffness of the columns were increased (replacing by a thicker 
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one), the natural frequencies would increase to values similar to those verified for the damaged state 

conditions (State10-14).  

4.5.3 Auto-regressive Models 

4.5.3.1 Appropriate Model Order 

The analysis performed to determine the optimal AR model order is divided into two parts. First, one 

time series from the baseline condition (State#1) of Channel 5 is used. This procedure permits one to 

apply all the estimation techniques in a more comprehensive manner. Then, a brief extension is 

performed to the other channels. The plots in Figure 4.20 are produced for Channel 5 based on the 

four techniques described in Section 3.2.3, namely AIC, PAF, RMS error, and SVD. The specific goal 

of using multiple techniques is to verify the consistency of them to find the optimal number of 

parameters needed to fit the data and to detect damage in the form of nonlinearities. Figure 4.20a, b, 

and c plot, respectively, results from the AIC, PAF, and RMS error techniques obtained by directly 

fitting AR models of increasing order p=1,2,…,60 to the measured response data. Figure 4.20d plots 

the singular values of   

! 

M in Equation (3.16). Assuming p=60, the matrix   

! 

M has a dimension of 

  

! 

8132"60. Note that the abscissa of the plot is, in some sense, related to the AR model order as 

indicated by Equation (3.18). From these plots one can point out some facts that compromise the 

definition of the optimal model order: (i) the AIC function is not minimized in the plotted window; (ii) 

in the case of the PAF technique, after convergence the coefficients do not stay within the 95% 

confidence limits; and (iii) for the other two techniques, the point of convergence is not precisely 

defined. Because of these issues, optimal model order selection still requires interpretation as stated by 

Al-Smadi [76]. Even though it is not possible to establish a unique solution, the results suggest that the 

optimal order is possibly in the range of 15 to 30. Additionally, it was confirmed that the AIC, PAF, 

and RMS error techniques suffer from the fact that all parameters of the models corresponding to 

different model orders first must be estimated in order to calculate these values. On the other hand, the 

SVD technique does not require prior estimation of the model parameters, which reduces the 

computational effort associated with this technique compared to the others. Even though the SVD 

technique gives an upper bound solution, the lower computational efforts can be an advantage for 

implementation on embedded hardware. 

Based on this analysis, three AR models, namely AR(5), AR(15), and AR(30), are used throughout 

this section in order to indicate the influence of the model order on the damage detection process 

under operational and environmental variations. These values were chosen so the first is unequivocally 

too small, while the second and third bound the plausible range of model orders suggested by these 

four techniques. 
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Figure 4.20. AR order estimation based on one time series of Channel 5 from the baseline condition 

(State#1) using four different techniques: (a) AIC; (b) PAF; (c) RMS; and (d) SVD. 

 

A further extension of the previous study is carried out to all accelerometers using only the AIC 

technique. Figure 4.21 shows the AIC functions for Channels 2-5 using time series from the baseline 

condition. Once the functions are not minimized in the adopted range, and taking the convergence 

point as reference, one can see that they suggest slightly different AR model orders for each channel. 

 

Figure 4.21. AIC functions estimated using time series from Channels 2-5. 
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4.5.3.2 AR Residual Errors 

The first approach to SHM based on the AR model uses parameters estimated from responses 

measured on the structure in its baseline condition to predict the responses from the damaged 

condition. Herein, the AR parameters are estimated by fitting an AR model to a time series from 

Channel 5 using the least-squares technique. For comparison purposes, Figure 4.22 shows a 50-point 

window of the measured and predicted acceleration time series using the three proposed models: 

AR(5), AR(15), and AR(30). From a qualitative point of view, all the models have captured the 

underlying physical structural response; however, as expected, the higher-order models predict the 

data better than the AR(5) model. (One should generally observe the usual caveat that the higher-order 

models are potentially overfitted.) 

 

Figure 4.22. Comparison of the measured and predicted time series from the baseline condition at 

Channel 5 using: (a) AR(5); (b) AR(15); and (c) AR(30) models. 

One indication that an AR model is fitting the data well is given by independent and normally 

distributed residual errors. For one time series of the baseline condition, Figure 4.23 shows histograms 

of the residual errors using 20 bins along with a superimposed Gaussian distribution based on the 

sample mean and standard deviation. Note that depending on the level of nonlinearity introduced by 

the bumper, the distribution of the residual errors may not be Gaussian when the AR model derived 

from the baseline condition is used to predict the responses of the damaged states. As expected, for the 

baseline condition, the histograms show that the higher the order of the AR model, the lower will be 

the variance of the residual errors. 

Even though the residual error sequences of the three models have, apparently, an underlying normal 

distribution, other techniques might be used to verify the data independency. In this case, the PSD 

functions of the residual errors are used to find correlations or the presence of periodic signals buried 

under noise. Figure 4.24 illustrates the PSDs of the residual errors from the three models. The plots 

show that the resulting residuals from the AR(5) model are still correlated, because it is possible to 

identify three natural frequencies of the structure at 30.7, 54.2, and 70.7 Hz. On the other hand, the 
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residual errors from the AR(15) and AR(30) models seem to be uncorrelated based on the relatively 

flat PSDs across the entire frequency range.  

 

Figure 4.23. Residual-error histograms along with the superimposed Gaussian distribution based on 

one time series from the baseline condition at Channel 5: (a) AR(5); (b) AR(15); and (c) AR(30) 

models. 

 

Figure 4.24. Log PSDs of the residual errors based on one time series from the baseline condition at 

Channel 5: (a) AR(5); (b) AR(15); and (c) AR(30) models. 

As indicated above by the model order estimation techniques, the previous analysis also suggests an 

appropriate AR model order within the interval 15 to 30, because the residual errors are independent 

and normally distributed when the baseline response is calculated with parameters from the same 

condition. The next step is to use the AR model derived from the baseline condition to predict 

response data from the remainder conditions. If anomalies are present in the system, the residual error 

variance will generally increase. Note that this approach is based on the assumption that anomalies 

will introduce either linear deviation from the baseline condition or nonlinear effects in the signal; as a 

result, the linear baseline model will no-longer accurately predict the response of the damaged 

structure. With such an indication of deviation from the baseline, the next action should be to launch a 
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full investigation to identity the cause of the anomalies. It is critical to note that in this case, anomalies 

can result from either damage or from operational or environmental effects. In order to discriminate 

the latter anomalies from those caused by damage, this approach expects that the damage can 

introduce underlying non-random patterns in the measured data that will be evident from the residual 

errors.  

The correlation analysis is one statistical technique used to find patterns within time series, such as the 

presence of periodic signals buried under noise due to damage. Figure 4.25 shows the normalized 

ACFs (for the first 200 coefficients) of the acceleration time series from Channel 5 of States#1, 7, 14 

and 17. (Coefficients are scaled so that the ACF at zero time lag equals one.) The ACFs of the original 

time series suggest the presence of strong correlation in the time series. Moreover, it is difficult to 

make any inferences about the structural condition based on these plots. 

 

Figure 4.25. ACFs of one acceleration time series at Channel 5 from: (a) State#1; (b) State#7; (c) 

State#14; and (d) State#17. 

Figure 4.26a shows the normalized ACFs of the residual errors from the AR(5) model for the four 

states mentioned above. Theoretically, if the AR model accurately represents the original time series, 

the residual errors should be nearly uncorrelated and the ACF should approximate a delta function. 

Looking at the plots, one can conclude that the residual errors from the AR(5) model are still 

correlated. However, Figure 4.26b and c indicate that increasing the AR model order, into an interval 

spanning 15 to 30, reduces the correlation among the residual errors for the undamaged conditions 

(States#1 and 7) and, at the same time, it shows correlations in the damaged conditions (States#14 and 

17) generated by the nonlinearities introduced by the bumper and that is difficult to detect visually in 

the original time series. In addition, these results indicate that residual errors associated with the 

AR(15) and AR(30) models will be able to distinguish the damaged cases from the undamaged ones 

even under operational and environmental variability. Such distinctions are not as clear with the AR(5) 

model. This fact points out the need to choose an appropriate AR model order to capture the damage-

related information buried within the response signals subjected to operational and environmental 

variability.  
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Figure 4.26. ACFs of the residual errors at Channel 5 from State#1, 7, 14, and 17 using: (a) AR(5); (b) 

AR(15); and (c) AR(30) models. 

Lag Plots 

Another manner to check the existence of patterns in the data is by means of the lag plot technique. 

Figure 4.27 plots the original acceleration time series from Channel 5 of State#1, 7, 14, and 17 for a 

lag equal to one. The damage seems to introduce slight changes into the correlation among the original 

data. However, these changes are amplified using the residual errors from the AR(5), AR(15), and 

AR(30) models, as shown in Figure 4.28, Figure 4.29, and Figure 4.30, respectively. The plots suggest 

that residuals from both undamaged states (State#1 and 7) are randomly distributed. However, the 

nonlinearities associated with damaged states (State#14 and 17) introduce some auto-correlation into 

the AR residual errors. Note that this analysis permits one to extract features that discriminate the 

undamaged and damaged states, even in the presence of operational and environmental variations. 
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In conclusion, as with the ACFs, the lag plots suggest that although the time series of each state 

condition have some auto-correlation, damage introduces strong correlation into the AR residual errors 

whereas there is no correlation in the residuals for undamaged states even in the presence of 

operational and environmental variations. This fact indicates that the AR residual errors might be used 

as damage-sensitive features, which confirms the previous studies in the literature [71]. 

 

Figure 4.27. Lag plots of the original time series from Channel 5: (a) State#1; (b) State#7; (c) 

State#14; and (d) State#17. 

 

Figure 4.28. Lag plots of the AR(5) model residual errors from Channel 5: (a) State#1; (b) State#7; (c) 

State#14; and (d) State#17. 

 

Figure 4.29. Lag plots of the AR(15) model residual errors from Channel 5: (a) State#1; (b) State#7; 

(c) State#14; and (d) State#17. 
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Figure 4.30. Lag plots of the AR(30) model residual errors from Channel 5: (a) State#1; (b) State#7; 

(c) State#14; and (d) State#17. 

 

Dimension Reduction of the Residual Errors 

In certain situations, particularly in machine learning, it might be convenient to reduce the size of the 

feature vectors composed of AR residual errors. The central limit theorem states that the distribution 

of a sum of random variables tends to be normal, even when the distributions of the individual random 

variables forming the sum are decidedly non-normal. Therefore, one can normalize the data by 

forming sums of the residual errors and examining the statistical properties of these sums. This 

process also reduces the number of residual errors per time series that need to be stored. The process 

begins by first performing a standard data normalization. For each residual error time series, the 

residual error mean of the baseline, 
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z  feature vector. Next, the normalized residual 

errors are grouped into four-point data blocks and the mean of each data block is calculated. (Note that 

the selected size of the data blocks will be discussed later in Section 4.6.2.) The mean values are the 

new damage-sensitive features. For instance, for the AR(15) model, this process permits to reduce the 

residual error from 8177 to 2044 residual values, with no significant loss of information as shown in 

Figure 4.31. The figure plots the RMS of the residuals assuming an 8177- (original) and 2044-point 

(grouped) residual error vectors for each state condition. The figure indicates different magnitudes but 

similar pattern, indicating that the 2044-point feature vector still encodes the underlying differences 

between states. 
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Figure 4.31. RMS of the residual errors using 8177- (original) and 2044-points (grouped). 

4.5.3.3 AR Parameters 

The underlying idea here is to exploit the AR parameters themselves as damage-sensitive features. 

One might expect changing amplitudes of these parameters in the presence of nonlinearities caused by 

damage even under operational and environmental variations. The underlying linear stationary 

assumption makes it possible to detect the presence of nonlinearities in the time series. The idea is that 

in a system where different dynamics are present at different times, the estimated parameters should 

change between intervals [130]. Figure 4.32 shows the parameters from the AR(5), AR(15), and 

AR(30) models estimated on one time series of each structural state condition using the least-square 

technique. For the sake of simplicity, the parameters are arranged into two groups; those states 

corresponding to the undamaged (State#1-9) and damaged (State#10-17) conditions. The figures 

suggest that increasing the number of impacts (by reducing initial gap at the impacting device) 

associated with the damaged conditions tends to decrease the AR parameter amplitudes. Furthermore, 

Figure 4.32 clearly shows that the model parameters associated with the AR(15) and AR(30) models 

obtained from the undamaged structure data are distinct from those obtained from the damaged 

structure even in the presence of simulated operational and environmental variability. However, there 

is not such a clear distinction with the corresponding parameters of the AR(5) model. To better 

indicate these changes, Figure 4.33 shows the amplitude of the third AR parameter under each state 

condition for the three models. One can clearly identify (quasi-) linear changes in the amplitude of the 

parameter as a function of the initial gap for the damaged states without any simulated operational and 

environmental variations (States#10-14). However, the parameter amplitudes for the damaged states 

with simulated operational and environmental variability (State#15-17) do not clearly indicate such 

linear changes. Furthermore, the AR(5) model cannot accurately discriminate all the damaged and 

undamaged states when simulated operational and environmental variability is present. For example, 

the AR(5) parameter amplitude corresponding to the damaged State#16 is higher than the one for the 

undamaged State#7. This result is a clear indication that the operational and environmental variations 
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can introduce changes in the structural response and mask changes in the responses related to damage 

when an inappropriate model order is used.  

As discussed for the AR residual errors, these results highlight the importance of properly establishing 

the AR model order in an effort to avoid false-negative and false-positive indications of damage. In 

the case of the AR(15) and AR(30) models, the operational and environmental variations may only 

affect the nearly linear relationship between the level of damage and model parameter amplitude.  

 

Figure 4.32. AR parameter amplitudes for all the 17 state conditions at Channel 5 using: (a) AR(5); (b) 

AR(15); and (c) AR (30) models. 

 

Figure 4.33. Amplitude of the third parameter of all the state conditions at Channel 5 from the three 

AR models. 

In a further investigation, and in order to evaluate the sensitive of the AR parameters to this type of 

damage throughout the structure, Figure 4.34 plots the AR(15) parameters for all accelerometers 

(Channel 2-5), in concatenated format, based on one test of each state condition. For better 

visualization, once again the state conditions are grouped into undamaged and damaged conditions. 

Note that AR parameters should be constant when estimated based on time series data obtained from 

time-invariant systems. However, in the presence of operational and environmental variations as well 
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as damage, the parameters are expected to change, accordantly. The figure indicates particular changes 

in the parameters’ amplitude at Channels 4 and 5 when features are from the damaged state conditions. 

(Note that these channels are closer to the source of damage.) Clearly, the AR parameters reveal high 

sensitivity to the presence of damage. This result is an indication that the AR parameters can be useful 

to address the two first levels in the hierarchy structure of damage identification, namely, damage 

detection and damage localization. However, to detect damage on a global basis, it might be necessary 

to perform sensor cross correlation or to install high density of sensors throughout the structure. 

 

Figure 4.34. AR(15) parameters, in concatenated format, from one test (Channel 2-5) of each state 

condition. 

4.5.3.4 Conclusions 

The AR models proved to be useful feature extraction techniques for civil infrastructure SHM 

applications based on three main reasons: (i) they are very sensitive to damage when it manifests in 

the form of nonlinearities or transitions between two states; (ii) the extraction of features only depend 

on response time series data; and (iii) simple and easy implementation. Note that Channel 1, the input 

force, is not used in this feature extraction technique. Additionally, it was shown that the AR models 

might be useful to address the two first levels in the hierarchy structure of damage identification, 

namely, damage detection and localization. 

4.5.4 Time-frequency Analysis 

The time-frequency representation of signals is potentially a powerful technique to detect changes in 

system’s stiffness over time. It might be particularly attractive when damage is present in the form of 

nonlinearities that can produce non-stationary response characteristics. Therefore, the STFT and WT 

are applied independently to time series from Channel 4 of State#1 (baseline), State#10 (gap = 0.20 

mm), and State#14 (gap = 0.05 mm). The goal is to verify the applicability of those techniques to 

extract damage-sensitive features when the bumper contacts the suspended column. Note that Channel 

        Channel 2                   Channel 3                    Channel 4                   Channel 5 
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4 was chosen because it is close to the source of damage and, consequently, its responses are more 

sensitive to the impacts. 

The application of the STFT can be summarized as follows. First, each 8192-point acceleration time 

series is split into 512-point time segments with 50% overlap. Second, for each segment, a Hamming 

window is applied and the discrete-time Fourier transform is computed to produce an estimate of the 

time-varying frequency content of the signal. Finally, if a time series is representative of a stationary 

system, it is expected that there will be no changes in its frequency content over time. Figure 4.35, 

Figure 4.36, and Figure 4.37 illustrate the spectrogram (representation of the spectral density of a 

signal over time) for time series from Channel 4 corresponding to State#1, 10, and 14, respectively. 

Note that in each figure the spectrogram is plotted in time-frequency-amplitude along with time-

frequency representation. Additionally, Figure 4.38 plots the concatenated format of the spectrograms, 

where the time domain 0-25.6 sec corresponds to the State#1, 25.6-51.2 sec to State#10, and 51.2-76.8 

sec to State#14. A few observations can be made based on these spectrograms: 

(i) all three states show significant energy content around the three identified natural frequency 

components, at 30.7, 54.2, and 70.7 Hz (for the baseline condition), which correspond very 

well to the results from the analytical and experimental modal analysis results; note that the 

first frequency component is below 20 Hz and it is not represented as explained in Section 4.2; 

(ii) the second natural frequency component (30.7 Hz) has lower energy content than the other 

two natural frequencies; 

(iii) the damaged State#14 seems to distribute energy content more broadly across the spectrum by 

decreasing the energy at the frequency components; 

(iv) there is no significant indication that the damaged State#10 and 14 come from a non-

stationary system; however, in the case of State#14, the damage seems to impose a steady 

increase in the natural frequencies over time when compared to the other two states. 

Even though, theoretically, the stiffness of the structure should change throughout the measurement as 

a result of the impacts between the bumper and suspended column, the spectrograms do not clearly 

indicate that result. Two reasons are presented to explain it: 

(i) for low level of damage (State#10), the impacts occur relatively infrequently in time and are 

not sufficient to change the natural frequency components for that specific length of the 

moving window; however, for high level of damage (State#14), the high number of impacts 

makes the structure stiffer, but because many impacts occur within a given time window their 

effects tend to be averaged out in the spectrum estimation process and these effects are similar 

in every window so the system still exhibits stationary characteristics; 
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(ii) the trade-off between frequency resolution and the length of the window to compute the 

Fourier transform can be a limitation to identify changes caused by high frequency 

components of short durations; the lower the length of the window in time, the poorer the 

frequency resolution; recall that shorter duration windows permit good time resolution but 

poor frequency resolution; on the other hand, longer duration windows permit good frequency 

resolution, but have poor time resolution. 

In conclusion, the STFT analysis does not show any significant changes in the natural frequency 

components for the lowest damaged state (State#10). However, some minor indications of the time 

varying nature of the signal’s frequency content can be seen for the damaged state corresponding to 

the most impacts (State#14), but it would be difficult to base a damage assessment on such subtle 

changes. Note that, within a given window, the Fourier transform represents the average properties of 

the signal. Furthermore, the impacts cause changes in the high-frequency components for short 

durations and these changes do not, in general, affect these average response properties. 

As explain early in Section 3.2.7, the WT stands as an alternative approach to the well-known STFT. 

Therefore, in order to overcome some of the well-known frequency resolution issue with the STFT, 

the CWT is applied as follows. To be consistent with the previous analysis, the wavelet analysis uses 

the same discrete-time signals as before, i.e., the same acceleration time series from Channel 4 

corresponding to State#1, 10, and 14. A complex Morlet wavelet is used to form the CWT, which 

consists of 143 scales. Figure 4.39, Figure 4.40, and Figure 4.41 plot the WT coefficients in both time-

frequency-amplitude and time-frequency representations. The color at each point is associated with the 

magnitude of the WT coefficient, which represents the energy distribution of the signal. A few 

observations can be made based on the visual inspection of the plots:  

(i) the third and fourth natural frequency components (54.2 and 70.7 Hz for the baseline 

condition) are clearly observed in these plots; 

(ii) the amplitude of the WT coefficients associated with the natural frequency components at 

54.2 and 70.7 Hz decrease for the damaged State#14, while other frequency components 

across the spectrum increase as a result of the nonlinearities associated with the impacts; 

(iii) the peaks related to the natural frequency components in Figure 4.41 for the most damaged 

condition (State#14) drift in frequency over time as indicated by the distribution in the higher 

amplitude WT coefficients at frequencies around 54.2 and 70.7 Hz; although these same bands 

can be seen at the lowest damage level (State#10), they are not as broad in frequency; this 

feature is attributed to the reduce number of impacts associated with the state condition with 

the lowest level of damage. 
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(a) 

 

 

(b) 

 

 

Figure 4.35. STFT analysis of signal from State#1, Channel 4: (a) time-frequency-amplitude 

representation; and (b) time-frequency representation. 
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(b) 

 

 

Figure 4.36. STFT analysis of signal from State#10, Channel 4: (a) time-frequency-amplitude 

representation; and (b) time-frequency representation. 
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(b) 

 

 

Figure 4.37. STFT analysis of signal from State#14, Channel 4: (a) time-frequency-amplitude 

representation; and (b) time-frequency representation. 
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(a) 

 

 

(b) 

 

 

Figure 4.38. STFT analysis; individual spectrograms in concatenated format, Channel 4: (a) time-

frequency-amplitude representation; and (b) time-frequency representation. 

State#14 

State#10 

State#1 
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(b) 

 

 

Figure 4.39. CWT of time series from State#1, Channel 4: (a) time-frequency-amplitude 

representation; and (b) time-frequency representation. 
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(b) 

 

 

Figure 4.40. CWT of time series from State#10, Channel 4: (a) time-frequency-amplitude 

representation; and (b) time-frequency representation. 
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(a) 

 

 

(b) 

 

 

Figure 4.41. CWT of time series from State#14, Channel 4: (a) time-frequency-amplitude 

representation; and (b) time-frequency representation. 
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In order to get into details of the wavelet analysis, Figure 4.42a and b show a limited frequency 

bandwidth between 45 and 80 Hz from Figure 4.39 and Figure 4.41, respectively. The figures are 

plotted with a different scale in order to highlight changes of the frequency components over time. By 

looking at the time-varying nature of the peaks, there is an indication that the damaged State#14 

(Figure 4.42b) corresponds to a non-stationary system because the impacts appear to cause the 

frequencies associated with peaks to vary in time as would be expected in a system where the stiffness 

alternates between two different states. Conversely, for the baseline condition (Figure 4.42a), these 

peaks remain relatively constant in frequency throughout the duration of the signal as would be also 

expected for a linear time-invariant system.  

The wavelet analysis can also be used to find hidden patterns or singularities in the signal that usually 

last a short period of time relative to the duration of the signal. For this purpose, State#10 is used 

because of the reduced number of impacts between the bumper and the suspended column. (Note that 

for this state and when measuring the data, it was observed that the impacts occurred randomly and 

with no more than 10 impacts in average per time series.) As a reference, Figure 4.43a shows a time 

series from Channel 4 corresponding to State#10 and Figure 4.43b shows the squared AR(15) residual 

errors associated with the time series. (Note that the squared errors are used just to amplify the 

presence of singularities.) The spikes correspond to singularities imposed by the impacts that the 

AR(15) model cannot predict. On the other hand, singularities in the time series can also be identified 

by the presence of modulus maxima of the WT coefficients at specific frequency through their 

evolution along the time axis. For comparison, Figure 4.44 corresponds to the limited frequency 

bandwidth between 45 and 80 Hz in time-frequency representation of the Figure 4.40. The impacts can 

be identified in Figure 4.44 by comparing the spikes with those in Figure 4.43b. Moreover, one can 

observe that those impacts are more correlated in time with the third natural frequency component 

(54.2 Hz for baseline condition), suggesting that the bumper’s impacts most influence the third mode. 

However, it should be pointed out that there is not a direct one-to-one correlation between peaks in the 

residual error plot and the modulus of the WT coefficients, indicating a need to validate these features 

with more information about the true number of impacts. 

In conclusion, the CWT confirmed some of the observations made with the STFT analysis about the 

non-stationary nature of the response corresponding to the most damaged condition (State#14). 

However, even though theoretically the CWT has better time resolution at higher frequencies than the 

STFT, it does not have the resolution in time to clearly establish that the lower level of damaged state 

(State#10) corresponds to a non-stationary system. Although the results do not allow one to conclude 

that State#10 is from a non-stationary system, the CWT did reveal changes in the WT coefficients that 

can be correlated with the bumper’s impacts when compared to changes in the residual errors of an 

AR model. 
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(b) 

 

Figure 4.42. Details of the WT coefficients based on time series from Channel 4 for: (a) State#1; and 

(b) State#14. 
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Figure 4.43. Detection of singularities: (a) original entire time series from Channel 4 of State#10; and 

(b) AR(15) residual errors. 

 

 

Figure 4.44. WT of the time series from State#10, Channel 4. 

 

4.5.5 Holder Exponent 

The development of techniques to detect singularities is important to detect damage in the form of 

discontinuities in the signal. Therefore, herein the Holder exponent is used to identify discontinuities 

in the time series imposed by the bumper mechanism. Figure 4.45a plots a portion of the time series 

from Channel 4 of State#10, previously plotted in Figure 4.43a. Note that indications of impacts 
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cannot be seen in that figure. However, the Holder exponent function plotted in Figure 4.45b shows 

significant drops that might be related to impacts imposed by the bumper. Although the drops in the 

Holder exponent function are fairly apparent to the naked eye, identification of them using a linear 

threshold is difficult because of the considerable variability associated with the Holder exponent. 

Additionally, recall from Figure 4.43b that also the AR(15) residual errors might be used to identify 

discontinuities. Thus, Figure 4.45c, d, and e plot the same portion of the AR(5), AR(15), and AR(30) 

residual error data, respectively. The circles mark the significant drops in Holder exponent values and 

the corresponding spikes in the AR residual errors associated with potential impacts. 

 

 

Figure 4.45. Singularities detection at Channel 4 using on time series from State#10: (a) portion of the 

time series; (b) Holder exponent function; (c) AR(5) residual errors; (d) AR(15) residual errors; and 

(e) AR(30) residual errors. 
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In conclusion, the Holder exponent technique proved that it might be useful to extract damage-

sensitive features when damage introduces discontinuities into the measured dynamic response data. 

Moreover, considering the previous conclusions from the time-frequency analysis, the Holder 

exponent and AR residual error results showed that the impacts are better detected with a time domain 

approach as opposed to a frequency domain approach. The time-frequency domain approaches do not 

have sufficient time resolution to capture an individual impact and, as such, these effects tend to be 

treated only in an average sense with these methods. 

4.5.6 Principal Component Analysis 

The PCA have been extensively used for feature extraction and/or visualization. Herein, the PCA is 

used to discriminate, visually, the undamaged and damaged state conditions in the transformed feature 

space using, for each state condition, a feature vector composed of AR parameters estimated from one 

time series of Channel 5. Basically, the PCA performs a feature dimension reduction by mapping a 

multidimensional (original) space into a (transformed) space of fewer dimensions. Basically, the PCA 

is used to map feature vectors of dimension p into two- and three-dimensional Euclidean spaces. 

Figure 4.46 to Figure 4.48 show the projection of the AR(5), AR(15), and AR(30) parameters (scores) 

onto the first two and three principal components. Although all projections seem to identify two main 

clusters for the undamaged and damaged conditions, the AR(15) and AR(30) parameters clearly 

allows one to define a hyperplane capable of discriminating all the undamaged and damaged state 

conditions. Actually, these results confirm the previous conclusions in 4.5.3.1 carried out to define the 

optimal AR model order. 

 

(a) (b) 

  

Figure 4.46. Projection of the AR(5) parameters onto the first: (a) two; and (b) three principal 

components. 
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(a) (b) 

  

Figure 4.47. Projection of the AR(15) parameters onto the first: (a) two; and (b) three principal 

components. 

(a) (b) 

  

Figure 4.48. Projection of the AR(30) parameters onto the first: (a) two; and (b) three principal 

components. 

4.5.7 Correlation Coefficients 

For all time series from one test of the baseline condition (State#1), Figure 4.49 plots the correlation 

coefficients between Channel 1 and Channel 1-5 using Equation (3.40) along with correlation 

coefficients between Channel 5 and Channel 1-5. Clearly, for the former case, the figure shows that 

the correlation is proportional to the distance between channels, i.e., the longer the distance between 

Channel 1 and the remainder channels, the lower the correlation coefficient. On the other hand, for the 

later case, the figure highlights strong anti-correlation between Channel 5 and 4. 

After understanding how the correlation varies throughout the structure for the baseline condition, the 

next analysis verifies if the correlation between channels can be used as a reliable damage-sensitive 

feature. In order to investigate possible significant correlation changes between channels when 

damage is present, Figure 4.50 shows the correlation coefficients between Channel 5 and Channels 1-5 
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using time series from one test of each of the 17 state condition. Based on the figure, one can conclude 

that the correlation coefficients are not able to discriminate the undamaged and damaged states or to 

locate the damage among the sensors, because the coefficients follow no systematic pattern that can be 

associated with the damaged states. Indeed, this result might be justified by considering the nature of 

the impacts imposed by the bumper. Notice that the impacts manifest themselves as a local 

phenomenon in time, which it is not enough to produce trends in the time series that can be identified 

by a global damage-sensitive feature such as the correlation coefficient. 

 

Figure 4.49. Correlation coefficients between Channel 1 and Channel 1-5 (
    

! 

r
1,1:5) along with correlation 

coefficients between Channel 5 and Channel 1-5 (
    

! 

r
5,1:5 ).  

 

Figure 4.50. Correlation coefficients of pair of channels for all state conditions (State#1-17): (a) 

Channel 5 and 1; (b) Channel 5 and 2; (c) Channel 5 and 3; and (d) Channel 5 and 4. 
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4.6 Statistical Modeling for Feature Classification 

In Chapter 1 statistical modeling for feature classification was posed as the portion of the SHM-SPR 

paradigm that has received the least attention in the technical literature. It was also mentioned that this 

step of the paradigm is concerned with the implementation of algorithms that analyze the distributions 

of the extracted features in an effort to determine the structural condition. Additionally, it was outlined 

the existence of three general categories of algorithms: (i) group classification; (ii) regression analysis; 

and (iii) outlier detection. However, in this section, only the first and third categories of algorithms are 

used. Note that all the algorithms are applied in unsupervised learning mode. Actually, these 

algorithms are preferred for high capital expenditure structures, such as most civil infrastructure, 

because often only data from the undamaged condition are available. 

The cluster analysis is applied as a classical binary classification algorithm to discriminate the 

undamaged and damaged conditions. Note that even though this algorithm groups the data into two 

clusters, it is still considered an unsupervised learning algorithm because no underlying information 

regarding the state conditions is given when performing the analysis. Rather, the algorithm only 

groups the structural conditions based on the similarity of their associated feature vectors. The 

Shewhart X-bar control charts are applied to monitor deviations from the baseline condition. 

Additionally, a brief study shows how the control limits can encode the operational and environmental 

variations. Note that, herein, baseline refers to the condition without any operational and 

environmental effects. Afterwards, the performance of the novel feature extraction algorithm based on 

the state-space reconstruction is tested in the context of outlier detection, with the assumption that 

damage significantly changes the attractor of a dynamical system. In another study, the four machine 

learning algorithms outlined in Section 3.3 for data normalization are directly compared on the 

standard data sets based on the performance for outlier detection. These vibration-based algorithms are 

applied to create a global structural DI that is almost invariant under operational and environmental 

variations and sensitive to data acquired from the damaged condition. Finally, it was shown in Section 

3.3 that under certain assumptions, DIs derived from the MSD-based algorithm follow a chi-square 

distribution when feature vectors come from the undamaged condition. Thus, a study is also carried 

out to show the classification performance of this algorithm on AR parameters extracted from the 

standard data sets under the hypothesis test that the algorithm will reject the null hypothesis 

(undamaged condition) if a DI does not follow a central chi-square distribution. Additionally, while 

the algorithm is constructed assuming multi-dimensional Gaussian distributed features, this study 

addresses how underlying non-Gaussian-distributed damage-sensitive features affect the results of the 

MSD-based algorithm and it also draws a relation between the classification performance and the 

optimal AR model order given by an information criterion technique. 

Notice that in order to increase the statistical significance of the classification performance, for the 

same state conditions, in 2009 a new data set (DataSet2009) was acquired from the three-story 
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structure. However, in this case, a National Instruments (NI) PXI data acquisition system was used to 

collect and process the data. Analog output waveforms were generated using a PXI-4461 data 

acquisition module and the response signals from the five sensors were acquired using a PXI-4472B 

data acquisition module. A PCB 482A16 signal conditioner provided ICP conditioning to the five 

sensor channels. Furthermore, for each structural state condition, data were acquired from 50 separate 

tests instead of the 10 tests of the first data set (DataSet2007) collected in 2007. Therefore, all the 

algorithms present in this section make use of the data sets collected in 2009, with the exception of 

cluster analysis that was used to point out differences between those data sets. Note, however, that the 

data from 2009 shares the same underlying characteristics of the data from 2007. 

4.6.1 Cluster Analysis 

Herein the cluster analysis is used as a statistical modeling algorithm to classify the undamaged and 

damaged state conditions into two clusters. For the data collected in 2007, Figure 4.51 plots the binary 

classification for all state conditions using the AR(15) parameters extracted from times series of 

Channel 5 as damage-sensitive features. The Euclidean distance is the metric used to determine the 

similarity of the AR parameter vectors. As shown in the figure, this technique can correctly classify all 

the state conditions. Furthermore, Figure 4.52 plots the hierarchical cluster tree, where the states are 

paired into binary clusters by proximity until a hierarchical tree is formed. One can clearly observe 

that until the clustering reaches the top of the tree, the states are progressively grouped into two main 

clusters: undamaged and damaged conditions. Observe that the height of the clusters above the origin 

represents the Euclidean distance between the centroids of two clusters. This representation is also 

useful to find similarity properties among state conditions. For instance, the figure shows that State#10 

and 16 are grouped together at the first level. This result is actually expected because the gap between 

the bumper and suspended column was set to the same value. 

 

 

Figure 4.51. Binary classification (undamaged and damaged conditions) using AR(15) parameters 

from one time series of each state condition at Channel 5 (DataSet2007). 
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Figure 4.52. Cluster tree of the state conditions in Figure 4.51 (DataSet2007). 

The previous cluster analysis was performed on the data sets collected in 2007. In order to evaluate the 

performance of this algorithm on the data collected in 2009 (DataSet2009), Figure 4.53 and Figure 

4.54 plot the results of the cluster analysis. These figures clearly show that the algorithm has three 

misclassifications, namely State#10, 15, and 16. Note that those three states have in common the same 

gap (0.20 mm) between the bumper and suspended column. Indeed, it was verified the consistency of 

those results among other tests of each state condition. (This is an indication that the stationary 

property of the 2007 data described in Section 4.4 is still valid for the new data sets.) Based on these 

observations, two explanations can be pointed out: (i) the 0.20 mm gap is characterized by few 

impacts, and so, its influence is averaged out on the AR parameters estimation; (ii) the mechanism to 

set up the gap distance is not precise, and so, there is variability during the experiment that can cause 

slightly smaller or higher gaps than the selected ones. So, the number of random impacts per time 

series is the major difference between both data sets. Consequently, that difference is more relevant in 

the states with larger gaps and reduced number of impacts per time series. This fact provides a 

challenge to the damage detection process when applied to data from those states. 

 

Figure 4.53. Binary classification (undamaged and damaged conditions) using AR(15) parameters 

from one time series of each state condition at Channel 5 (DataSet2009). 

Damaged States Undamaged States 
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Figure 4.54. Cluster tree of the state conditions in Figure 4.53 (DataSet2009). 

4.6.2 Statistical Process Control 

The SPC techniques are useful ways to monitor processes and detect deviations from the baseline 

condition. In this case, the process is defined by the dynamic response characteristics of the test 

structure and it is expected that damage (the nonlinearities) will produce changes in the system’s 

responses that can be identified as abnormal points in the control charts. Actually, it is expected that 

an out-of-control process manifests itself with changes in the mean and/or variance of time series. 

However, control charts can lead to many false alarms when the observations are not independent and 

positively correlated [99]. Unfortunately, the assumption of independent and uncorrelated observations 

is not valid for the measured acceleration data, as shown in Figure 4.25a. The auto-correlation shown 

for the baseline condition (State#1) is certainly large enough to affect the efficacy of control charts. 

Therefore, the performance of the control charts can be improved when data from the observed 

process, and when in control, are normally and independently distributed.  

One approach for dealing with auto-correlated data is to first model the data using time series models, 

for instance the AR models, and then to apply the control charts to the AR residual errors between the 

predicted and measured data (the first approach described in Section 3.2.3). This approach assumes 

that the residual errors are normally and independently distributed with zero mean and standard 

deviation 

! 

" . For instance, Figure 4.24b shows that after fitting an AR(15) model to a time series from 

Channel 5 of State#1, and using that model to predict the same time series, the associated AR residual 

errors have practically no correlation as indicated by a flat PSD. However, two final remarks are made 

regarding the correlation among the residual errors. First, even though there is no correlation among 

the residual errors associated with the AR(15) model, the same is not valid for the AR(5) model, as 

highlighted in Figure 4.24a. This result is an indication that the AR(15) model should have fewer 

outliers for the undamaged states. Second, the correlation highlighted, in the ACFs and lag plots in 

Figure 4.26b and Figure 4.29, shows high degree of correlation in the residual errors from the 

damaged states. This correlation implies that the impacts introduce some kind of pattern in the 
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response that can make the process appear to be out-of-control and, consequently, it can potentially 

increase the outlier detection performance. 

To verify the performance of this statistical modeling technique for feature classification, the 

Shewhart X-bar control charts are constructed based on the residual errors of Channel 5 derived from 

an AR(15) model. The order of the model is chosen based on the assumption that the 15
th

 order is 

equal to the lower bound given by the model order estimation techniques (see Section 4.5.3.1). For 

completeness, and as outlined in Section 3.4.2, the implementation of this algorithm can be 

summarized as follows. First AR parameters are estimated by fitting an AR(15) model to an 

acceleration time series from Channel 5 of the baseline condition (State#1). For each state condition, 

an AR model with parameters from the baseline condition is used to compute the residual errors 

between the predicted and the measured time series. Then, the residual errors are reorganized into 

subgroups of four. Note that subgroups of four or five data points each are recommended [99]. Prior to 

dividing the residuals into subgroups, they are normalized by subtracting the mean and dividing by the 

standard deviation of the residuals from the baseline condition. This normalization procedure is 

applied to all residual error data sets that are analyzed. (See Dimension Reduction of the Residual 

Errors in Section 4.5.3.2 for more details.) Second, the upper and lower control chart limits are 

calculated based on the sample mean and standard deviation of the baseline condition. Third, an X-bar 

control chart is constructed for each state condition with the subgroups of residual errors as inputs. 

Note that each subgroup is represented by one data point and the centerline of the charts is zero 

because the sample mean of the associated normalized residual errors is zero, as described above. The 

upper and lower control chart limits correspond to 99.73% confidence intervals, implying that 

approximately 0.27% of the data points from the baseline condition can be expected to fall outside the 

control limits. Therefore, for 2046 data points, about six points should fall outside of those limits. 

Figure 4.55 plots the Shewhart X-bar control charts for all 17 state conditions using the grouped 

AR(15) residual errors. The figure suggests a high density of outliers among the most damaged state 

conditions. Additionally, Figure 4.56 summarizes the number of outliers falling beyond the control 

limits. Even though the limits are established based on State#1, taking as reference the horizontal 

dashed line set up based on the maximum number of outliers present among the undamaged states 

(State#1-9), which in this case is conditioned by State#5, one can conclude that this algorithm does not 

have enough sensitivity to discriminate those states with 0.20 mm gap between the suspended column 

and bumper (State#10, 15, and 16). Nevertheless, for the baseline condition (State#1), four outliers are 

counted beyond the control limits, which is close to the six points expected by the confidence interval. 

This result gives an indication that the classifier performs relatively well based on the data used to 

represent the process when it is thought to be in-control. 

Notice that the previous analysis just used one time series from the baseline condition to establish the 

control limits. The following analysis takes into account time series from all the undamaged state 
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conditions to define those limits, i.e. the control limits are defined based on the average of the standard 

deviation from each undamaged state condition. Thus, the control limits encode information from all 

the operational and environmental conditions. Actually, as shown in Figure 4.57, this procedure 

permits one to reduce the overall number of outliers among the undamaged state conditions. However, 

the average number of outliers among the undamaged conditions (13 outliers) is slightly higher than 

the expected by the confidence interval (six outliers). Moreover, taking the dash line as reference, as 

described before, the number of outliers in the State#15 is higher than the maximum observed among 

the undamaged state conditions. This result clearly represents a trade-off between true detection and 

false alarm. Therefore, these results also highlight the applicability of this algorithm to detect damage 

under operational and environmental conditions as will be discussed later in the Section 4.6.4 and 

4.6.5. 

 

Figure 4.55. The Shewhart X-Bar control charts of the mean of the grouped AR(15) residual errors; 

outliers are represented by crosses. 
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Notice that there is still the possibility of all the points falling within the control limits but the process 

is not in control. This case occurs when the points exhibit some sort of systematic behavior, i.e., data 

points assume a non-random pattern. There are several common non-random patterns that indicate the 

process is out of control as documented in the references [99].  

 

 

 

Figure 4.56. Number of outliers falling outside the control limits defined based on data from the 

baseline condition (State#1); the horizontal dashed line corresponds to the maximum number of 

outliers among the undamaged states (State#5). 

 

 

 

Figure 4.57. Number of outliers falling outside the control limits defined based on data from all 

undamaged state conditions (State#1-9); the horizontal dashed line corresponds to the maximum 

number of outliers among the undamaged states (State#5); in overlap format one can see the log-scale 

version of the figure. 
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4.6.3 Outlier Detection based on State-space Reconstruction 

In this section, the outlier detection performance of the novel algorithm based on the state-space 

reconstruction is shown [137]. Recall that the uniqueness of this approach is the use of the MAR 

model to predict the state space, where the number of outlier state vectors is an indication of damage. 

Recall that this algorithm assumes that damage introduces changes in the form of nonlinearities into 

the time series and that the operational and environmental variations introduce linear changes. 

The analysis carried out herein assumes the system is ergodic when in any one configuration for the 

undamaged condition (stationary property). This assumption permits one to simplify the analysis by 

using only, for each accelerometer, one out of 50 measured time series to reconstruct the state space of 

each of the 17 structural state conditions [138]. The following analysis is divided into two parts. First, 

the damage-detection MAR-based algorithm is tested, individually, using univariate embedding of 

time series from each accelerometer (Channel 2-5). However, for illustration purposes, the analysis is 

first centered on the responses from Channel 5, and then, brief results are shown to generalize it to the 

other accelerometers. Second, the algorithm is applied using a multivariate embedding to incorporate 

data measured at multiple accelerometers in order to reconstruct the global structure’s dynamical state. 

The embedding parameters in Equation (3.24) depend on the underlying dynamics of the structure 

contained in the measured data. Embedding a time series into a state space to extract the dynamic 

properties of the system requires suitable state-space reconstruction. A good embedding is one that 

compresses all the information about the future contained in the past into as few variables as possible. 

In this regard, the SVD technique is considered in this study to compute the suitable embedding 

dimension m. (Note that the dimension represents the number of variables.) Theoretically, the level of 

noise as well as different degrees of nonlinearities affects the dimension of the attractor. Figure 4.58 

plots singular values, estimated on time series from Channel 5, for the structural conditions 

summarized in Table 4.1 by assuming vector spaces of dimension w=20. The number of singular 

values larger than the noise floor is an estimate of the minimal embedding dimension required to 

unfold the attractor. As expected, the figure highlights that the suitable embedding dimension depends 

on the condition of the structure and that the states with nonlinearities tend to require higher 

dimensions. (This result is an indication that the embedding dimension can also be a powerful way to 

discriminate the undamaged and damaged conditions.) For the MAR-based algorithm, the embedding 

dimension is picked at the convergence point of the spectrum from State#1 - the baseline condition 

(bold curve in the figure). Therefore, it is assumed that a suitable embedding dimension is equal to 12. 

Note that noise often present in the data tends to mask the deterministic behavior, and it will be 

dominant among the small singular values. In theory, the delay time for the attractor reconstruction 

from time series of infinite length can be chosen almost arbitrary [88]. However, the experimental data 

are limited in size and resolution and, consequently, the delay time must be estimated from the data. 
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Nevertheless, in this study a unit lag based on Broomhead and King [89] is assumed, with 

appropriately-met sampling conditions.  

The MAR-based outlier detection algorithm applied to data sets from Channel 5 can be summarized as 

follows. First, one time series from each structural state condition is embedded into a state space using 

the time delay embedding in Equation (3.24) and assuming an underestimated embedding dimension 

m=3 and a lag   

! 

" = 1, yielding trajectory reconstructions with 8190 state vectors. Notice that an 

underestimated embedding dimension is assumed for the purpose of graphical representation. (Later, a 

parametric study is carried out to explain the influence of the embedding dimension on the outlier 

detection process.) In this manner, there are 17 different dynamical systems where State#1 is the 

baseline or the reference system. 

 

 

Figure 4.58. Singular values obtained from the state-space reconstructions of the undamaged and 

damaged structural state conditions at Channel 5, where the bold line represents the baseline condition 

(State#1). 

 

The appropriate MAR model order is initially unknown. In order to establish the MAR model order, 

analysis of the AIC values for increasing order p=1,2,…,25 were performed with the time series from 

the baseline condition and using Equation (3.28). The AIC function in Figure 4.59 is minimized at 

p=15 which is subsequently used as the appropriate model order. Second, the generated trajectories 

are used to predict the baseline trajectory using the MAR(15) model of Equation (3.26) whose 

parameters were estimated from the baseline condition using the multivariate least-squares technique. 

(Recall that a hypothesis test is established that the MAR model will fail to predict future response if 

damage is present in the test condition even with operational and environmental effects.) Third, the 

Mahalanobis metric in Equation (3.55), with parameters estimated from the baseline, is used to detect 
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outliers in the predicted trajectories of the dynamical systems, with the threshold being defined based 

on the baseline state condition. 

 

 

Figure 4.59. AIC function of the MAR model for increasing order p=1,2,…,25 (Channel 5). 

 

The trajectory in the state space represents all the states that the system can assume for a specific 

input, and its shape can easily elucidate qualities of the system that might not be obvious otherwise. 

For illustration purposes, Figure 4.60 shows the predicted trajectory (or more specific the attractor) of 

the baseline condition (State#1) and the trajectories of three other conditions, namely State#7, 10, and 

14 along with the baseline one in overlap format. The assumption of linear deterministic system 

implies that the existence of other forms of attractors indicates damage. The attractor (ellipsoid) of the 

baseline condition looks “noisy” and random. (Recall that it was estimated using an underestimated 

embedding dimension.) Even in a badly under-embedded state space, for the damaged conditions 

(State#10 and 17) the figure highlights state space distortions indicative of the nonlinearities induced 

when the suspended column hits the bumper. Furthermore, the distortions are indications that the 

representation seems to unfold the dynamics of the attractor even using an underestimated embedding 

dimension.  

The MSD, or  in Equation (3.55), is now used as metric to quantify the number of predicted state 

vectors as outliers when they belong to a class of data different from the baseline condition (State#1). 

First, the covariance and mean vector are computed from the baseline vector space set in order to 

quantify the underlying statistics of the baseline condition. Then, all potential state vectors are 

classified as outliers when they do not follow the baseline multi-dimensional distribution and are 

above of a given threshold (equals to the highest  over the baseline condition). Figure 4.61a shows, 

in concatenated format, the 

! 

d
i

2
 of each state vector i=1,2,…,8190 of each structural condition. On the 

p=15 
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other hand, Figure 4.61b plots the number of outliers for each structural condition along with the 

average sum-of-square MAR(15) errors (

! 

" ). Clearly, the figure shows significant number of outliers in 

the damaged conditions (State#10-17) even when damage is present along with simulated operational 

and environmental variations (State#15-17). For the damaged conditions without those variations 

(State#10-14), one can see a monotonic relationship between the level of damage and the number of 

outliers. Thus, the smaller the gap between the suspended column and bumper, the higher the number 

of outlier state vectors. Additionally, one can observe that the residual errors are correlated with the 

number of outliers, which gives an indication that the average sum-of-square error of the prediction 

can also be used as damage-sensitive feature. Note that the number of outliers as well as the residual 

errors can have slight differences from one test to another, because the performance of this approach 

depends highly on the number and intensity of random impacts that occur in each time series. These 

differences can be specially relevant for the low level of damage, such as State#10, 15, and 16 due to 

reduce number of impacts expected in each test. 

 

 

Figure 4.60. Predicted trajectory of the baseline condition (black dots) along with the predicted 

trajectories from test conditions (gray dots) at Channel 5 for m=3: (a) State#1; (b) State#1 and 7; (c) 

State#1 and 10; and (d) State#1 and 14. 
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Figure 4.61. Feature extraction at Channel 5 for m=3: (a) plot of 

! 

d
2
 from all state vectors from the 

undamaged (State#1-9) and damaged state conditions (State#10-17), in concatenated format, along 

with one-sided threshold (horizontal dashed line); and (b) number of outliers, or 

! 

d
2
 values beyond the 

threshold, along with the average sum-of-square MAR errors (

! 

" ). 

 

Figure 4.62 presents the results of a parametric study carried out to expose the influence of the 

embedding dimension, m, on the proper state-space reconstruction for outlier detection. In that regard, 

the data sets were, previously, divided into two main groups: undamaged (State#1-9) and damaged 

(State#10-17) conditions. The first measure is the relative distance between the mean of both   

! 

d
2
 

values distributions – Dm. The second measure is the relative distance between the minimum number 

of outliers among the damaged conditions and maximum number of outliers among the undamaged 

conditions – Dout. Intuitively, the higher the distances, the better the classification performance. The 

figure shows Dm as a linear function of the embedding dimension, i.e., the higher the embedding 

dimension, the higher the distance between means of both conditions. On the other hand, the Dout 

reveals the optimal classification at m=20. As the complexity of the model increases, the number of 

outliers among the undamaged conditions increases, and the classification performance of the 

classifier decreases. Furthermore, the distance Dout shows that for m>30 there are more outliers at 

least in one state condition among the undamaged ones than in at least one damaged state condition. 

For the type of damage studied in this case, this result is an indication that the increase of 

dimensionality induces undesirable complexity into the models. Consequently, classifiers in high-

dimensional state spaces might average out the effects of damage and, therefore, decrease their 

classification performance and, potentially, mask the low-level of damage, such as State#10, 15, and 

16. This result permits one to conclude that the embedding dimension must be chosen carefully and 

kept as low as possible to avoid overfitting that occurs when the model describes random error instead 

of the underlying dynamical changes due to damage. 
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Figure 4.62. Relative distances between the undamaged and damaged conditions as a function of the 

embedding dimension m; Dm is the distance between the mean of both d
2
 distributions; Dout is the 

distance between the minimum number of outliers among the damaged state conditions and the 

maximum number of outliers among the undamaged state conditions. 

 

In order to extend the univariate embedding to the remainder accelerometers, Figure 4.63 shows the 

classification performance of the algorithm for all accelerometers individually (Channel 2-5), 

assuming the suitable embedding dimension m=12 for the baseline condition, as shown in Figure 4.58. 

The thresholds are defined again to be equal to the highest 
    

! 

d
i

2
 among the baseline condition. 

Additionally, the average sum-of-square MAR(15) errors of the prediction is also plotted for each 

structural condition. Qualitatively, for Channel 4 and 5 one can observe an increasing of the number of 

outliers and errors among the damaged conditions as highlighted for m=3. On the other hand, one can 

observe a non-systematic discrimination trend for Channel 2 and 3. The insensitivity to detect damage 

using the responses from those sensors are related to the geometrical distance between the source of 

damage and output response of the structure, which implies that localization may be possible with this 

approach. Note that the simulated damage is a local phenomenon characterized by singular bursts in 

the signal and, consequently, its detection and location relies on the existence of a dense array of 

sensors in the structure. 
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Figure 4.63. Outlier detection and feature extraction per structural condition in the four accelerometers 

(Channel 2-5) for m=12; number of outliers along with the average sum-of-square MAR errors (

! 

") in 

log scale. 

Finally, Figure 4.64 shows the results of the state-space reconstruction in the form of a multivariate 

embedding presented in Equation (3.30), based on time series from multiple locations. Two 

multivariate embeddings are carried out to show their performance in the presence of local damage in 

the form of random singularities in the signal. Figure 4.64 shows for each structural condition the 

number of outliers along with the average sum-of-square MAR errors for a global embedding 

(Channel 2-5, M=12, and p=7) and a semi-global embedding (Channel 4-5 and M=12, and p=8). As 

in the univariate case, each embedding dimension M was estimated by performing the SVD on the 

multivariate trajectory matrix and assuming, for simplification, equal embedding dimension m per 

sensor. The AIC values were also used to estimate the appropriate MAR(p) order of each embedding. 

Clearly, for the global embedding in Figure 4.64a, both the outlier detection and residuals show that 

the reconstruction of the global dynamical attractor is not statistically reliable to detect the existence of 

damage in the structure. On the other hand, Figure 4.64b shows that the multivariate embedding with 

time series from Channel 4 and 5 can be used to classify the damaged conditions, even though it 

shows significant number of outliers in State#8 and 9 that can lead to undesirable false-positive 

indications of damage. These results indicate that the multivariate embedding amplifies the linear 

changes due to varying mass and stiffness and, consequently, average out the effects of local damage 
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in the form of singularities in the signal. Therefore, for these data sets, this algorithm is more 

appropriate to detect local damage rather than to detect the existence of damage in a global basis. 

 

Figure 4.64. Number of outliers along with the average sum-of-square MAR(p) errors (

! 

" ) in log scale 

per structural state condition: (a) based on a global embedding (Channel 2-5, M=12 and p=7); and (b) 

based on a semi-global embedding (Channel 4-5, M=12, and p=8). 

4.6.4 Outlier Detection based on Machine Learning Algorithms 

In Chapter 1 was stated that in real-world structures, the separation of changes in sensor readings 

caused by damage from those caused by changing operational and environmental conditions is one of 

the biggest challenges for transitioning SHM technology from research to practice. As such, this 

section applies and directly compares on the standard data sets, four machine learning algorithms for 

data normalization and outlier detection. These vibration-based algorithms are applied to create a 

global structural DI that is almost invariant under those variations and potentially sensitive to data 

acquired from the damaged condition. Recall that such algorithms are categorized as unsupervised 

learning approaches to SHM as they are used to identify deviations from the normal condition. In the 

hierarchical structure of damage identification, this section presents a comparative study that addresses 

the need for robust low-level damage detection under operational and environmental variations. 

Hence, this study is concerned only with identifying the existence of structural damage in a global 

basis. 

Even though any kind of damage-sensitive feature could be used, in this case the AR parameters are 

used as damage-sensitive features, because, as shown in Section 4.5.3, the AR models are very 

sensitive to damage when it manifests in the form of nonlinearities or transitions between two states 

and the extraction of features only depend on response time series data. Notice that in order to increase 

the statistical significance of this study, each original 8192-point time series is split into two 4096-

point segments. It turns out that for each state condition there are 100 tests. 



120        Chapter 4 

 

For each test of each state condition, the AR parameters are estimated using the least-squares 

technique applied to time series from all four accelerometers (Channel 2-5) and stored into a feature 

vector as shown in Section 4.5.3. (Note that Channel 1, the input force, is not used in the analysis.) 

The appropriate order of the AR models is initially unknown. A higher order model may better match 

the data, but may not generalize to other data sets. In order to establish a common optimal order, 

analyses of the AIC values in Equation (3.28) were carried out for four individual AR(p) models of 

increasing order p (p=1,2…,25). Figure 4.65 shows the average AIC function resulted from analyses 

performed on the 100 individual tests from the baseline time series data (State#1). (Note that for each 

test the number of estimated parameters is 
    

! 

p " 4 and 

! 

"  is the sum of the average sum-of-square errors 

of Channels 2-5.) The function is not minimized in the selected range, but the linear AR models 

achieve enough small AIC value around p=10. Based on that assessment, for each test, four individual 

AR(10) models are used to fit the corresponding time series from the four accelerometers and their 

parameters are used as damage-sensitive features in concatenated format, yielding 40-dimensional 

feature vectors. Note that AR parameters should be constant when estimated based on time series data 

obtained from time-invariant systems. However, in the presence of operational and environmental 

variations as well as damage, the parameters are expected to change accordantly, as shown in Figure 

4.34. 

 

 

Figure 4.65. Average AIC function for four independent AR(p) models of increasing order p using 

baseline-based time series (State#1) from the four accelerometers (Channel 2-5). 

 

The extraction of damage sensitive-features is the third part of the SHM process. The next step is to 

carry out statistical modeling for feature classification. In that regard, the AANN-, FA-, MSD-, and 

SVD-based algorithms outlined in Section 3.3 are implemented in an unsupervised learning mode by 

first taking into account features from all the undamaged state conditions. For generalization purposes, 

the feature vectors were split into two groups: the training and test matrices. The training matrix   

! 

X  

p=10 
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permits each algorithm to learn the underlying distribution and dependency of all the undamaged state 

conditions on the simulated operational and environmental variability. Thus, this matrix is composed 

of AR parameters from 50 out of 100 tests of each undamaged state condition (State#1-9), and so it 

has a dimension of 40x450. This procedure allows one to increase redundancy and to reduce the effect 

of noise on the data classification process. The test matrix   

! 

Z (40x1250) is composed of AR 

parameters from the remaining 50 tests of each undamaged state condition together with AR 

parameters from all the 100 tests of each damaged state condition (State#10-17). This procedure 

permits one to assess the generalization performance of the machine learning algorithms in an 

exclusive manner, because time series used for testing are not included in the training phase. During 

the test phase, the algorithms are expected to detect deviations from the normal condition when 

features come from damaged ones even with the presence of operational and environmental 

variability. Note that Equation (3.62) is used to compute the DIs from the residuals of the AANN-, 

FA-, and SVD-based algorithms. For every algorithm, the DIs are then stored into a 1250-length 

vector. 

The AANN-based algorithm is built up with a feed-forward neural network to perform the mapping 

and de-mapping, where the network outputs are simply the reproduction of the network inputs. The 

network, according to Kramer’s recommendations [111], has 10 nodes in each mapping and de-

mapping layer and two nodes in the bottleneck layer. The nodes in the bottleneck layer intend to 

represent the two underlying unobserved variables driving the changes in the features: the changes in 

mass and stiffness. A Levenberg-Marquardt back-propagation algorithm was used to train the 

network. Several trainings with different initial conditions were performed with the given architecture 

to increase the probability that the global minimum was achieved. The FA-based algorithm assumes 

also two factors to represent the same number of underlying unobserved variables affecting the 

measured features. The  matrix was determined from the normal condition using the maximum 

likelihood estimation. Because the undamaged and damaged state conditions are known a priori, the 

MSD-based algorithm is developed in an exclusive manner by using only data from the training matrix 

when forming the estimates of the mean vector (40x1) and covariance matrix (40x40). In the case of 

the SVD-based algorithm, the state matrix 

! 

M  for each potential damaged feature vector has a 

dimension of 40x451. As a consequence, the number of singular values computed upon each matrix is 

equal to 40. 

The ROC curves provide a comprehensive means of summarizing the performance of classifiers. 

Recall that the ROC curves focus on the trade-off between true detection and false alarm. Each point 

on the ROC curve corresponds to a specific threshold, although the values of thresholds are not 

evident from the plot. Figure 4.66a plots the ROC curves for all the algorithms in overlap format. The 

number of points to define the ROC curves is a function of the range between the maximum and 

minimum DI for each set of data. In this case, approximately, 800 points were used to define each 
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curve. Recall that the point at the left-upper corner of the plot (0,1) is called a perfect classification. To 

better visualize the differences in the curves, Figure 4.66b plots the ROC curves in log scale. 

Qualitatively, looking at the plots, one can conclude that none of the algorithms can have a perfect 

classification with a linear threshold because none of the curves go through the left-upper corner. 

Furthermore, in the whole false-alarm range and for a given threshold, it also can be seen that the 

AANN- and MSD-based algorithms have better true detection performance than SVD- and FA-based 

algorithms. Besides, for low and high probability of false alarm, the MSD-based algorithm has the 

best true detection performance. 

(a) (b) 

  

Figure 4.66. ROC curves: (a) linear scale; and (b) log scale to highlight the differences between 

curves. 

In order to quantify the performance of the classifiers for a given threshold, Figure 4.67 plots the DI of 

each feature vector of the entire test data along with thresholds defined based on the 95% cut-off value 

over the training data. All the algorithms show a monotonic relationship between the level of damage 

and the amplitude of the DI, even when operational and environmental variability is present. The Type 

I (false-positive indication of damage) and Type II (false-negative indication of damage) errors is one 

common way of reporting the performance of a binary classification. This technique recognizes that a 

false-positive classification may have different consequences than false-negative ones. Table 4.4 

summarizes the number of Type I and Type II errors for each algorithm. In an overall analysis, the 

table shows a clear trade-off between Type I and Type II errors, with the AANN- and MSD-based 

algorithms having better performance to detect damage (1.3 and 1.0%) and the FA- and SVD-based 

algorithms having better performance to avoid false indications of damage (2.2 and 6.2%). Actually, 

this result just confirms the previous observations based on the ROC curves. Nevertheless, all the 

algorithms perform well when compared on these standard data sets with the percentage of total 

misclassifications (both Type I and Type II errors) ranging between 4.0% and 4.6% of the number of 

tests, which can be considered a good result because it was initially assumed a level of significance 

equals to 5%. Note that the percentage of Type II error is related to the low level of damage states 
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(states with 0.20 mm gap). Therefore, for these specific data sets, one can conclude that the FA- and 

SVD-based algorithms are more appropriate when one wants to minimize false-positive indications of 

damage, with economic and reliability issues driving the SHM. On the other hand, the AANN- and 

MSD-based algorithms are preferred when one wants to minimize false–negative indications of 

damage and when life-safety issues are the primary motive for deploying the SHM system. 

The classification performance of the AANN- and FA-based algorithms can potentially be improved 

by adjusting the number of unobserved variables, i.e., the number of factors. Note that in the previous 

analysis were used two unobserved factors (changes in mass and stiffness). This is actually a 

drawback in real-world applications, because often the number of independent operational and 

environmental factors driving changes in the structural responses is unknown. To highlight the 

influence of the number of factors assumed on both algorithms, Figure 4.68 shows the distance 

between the mean of the DIs from the undamaged and damaged conditions along with the number of 

Type II errors as a function of the number of factors. Based on the distance between means and the 

number of errors, the appropriate number of factors is two and three for the AANN- and FA-based 

algorithms, respectively. This result gives an indication that the number of factors assumed in the 

previous analysis is nearly the optimal solution. Note that the difference in number of factors can be 

related to the fact that the AANN-based algorithm is able to learn nonlinear relationships between the 

features. Furthermore, the number of errors also indicates that assuming higher than suitable number 

of factors increases the algorithm complexity and, consequently, reduces the generalization 

performance of the classifier. In fact, these results are of extreme importance, because they permit one 

to validate those algorithms for real-world applications, where the number of factors is often 

unknown. Note that, with the cost of more complexity, in the case of the AANN-based algorithm, the 

performance can also be improved by increasing the number of nodes in the mapping layers. 

For general applications, one final comparison is made in terms of computational efforts. First, it was 

observed that the computational efforts of the algorithms might be divided in two phases: the training 

and test. At the training phase, it was observed that the AANN-based algorithm requires significantly 

more computational efforts than the other three ones in order to guarantee that the global minimum is 

achieved. Moreover, it is well known that the neural networks suffer from local minima phenomenon 

[105]. On the other hand, at the test phase, the SVD-based algorithm revealed significantly higher 

efforts than the others, because this algorithm requires an eigen-decomposition for each new test. 

In terms of overall performance throughout this study, regardless of the fact that the AANN-based 

algorithm has some advantages in terms of finding nonlinear correlations among the features, the 

MSD-based algorithm is considered to be the best data normalization procedure in terms of 

classification performance, reduced computational efforts, and the fact that no assumptions are 

required to set its architecture. These facts, along with simplicity, make the MSD-based algorithm also 

a better choice for implementation on current embedded hardware. 
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Figure 4.67. DIs calculated based on feature vectors from the undamaged (black) and damaged (gray) 

state conditions along with thresholds defined by the 95% cut-off value over the training data: (a) 

AANN-; (b) FA-; (c) MSD-; and (d) SVD-based algorithms. 

 

 

Table 4.4.    Number and percentage of Type I and Type II errors for each algorithm. 

Error 
Algorithm 

Type I Type II Total 

AANN 44 (9.8 %) 10 (1.3 %)  54 (4.3 %) 

FA 10 (2.2 %) 43 (5.4 %) 53 (4.2 %) 

MSD 42 (9.3 %) 8 (1.0 %) 50 (4.0 %) 

SVD 29 (6.2 %) 29 (3.6 %) 58 (4.6 %) 
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(a) (b) 

  

Figure 4.68. Distance between the mean of the DI distributions of the undamaged and damaged state 

conditions along with the number of Type II errors as a function of the number of factors: (a) AANN-; 

and (b) FA-based algorithms. 

4.6.5 Outlier Detection based on Central Chi-square Hypothesis 

In the previous section, the classification performance of the MSD-based algorithm was compared 

with other three machine learning algorithms, assuming a confidence interval over the DIs from the 

training matrix. However, as exposed in Section 3.4.3, under certain assumptions, DIs from the 

undamaged condition follow a parametric central chi-square distribution. This fact is relevant in SHM, 

because it permits to generalize the classification with confidence intervals based on a parametric 

distribution. This manner, the goal of this section is to classify the undamaged and damaged state 

conditions, individually on each accelerometer, using the MSD-based algorithm on feature vectors 

composed of AR(p) parameters, based on the assumption that the DIs from the undamaged condition 

follow a parametric central chi-square distribution, 

! 

"
m

2

, with the number of degrees of freedom equal 

to the number of parameters p used in the AR models. Note that for each feature vector, a hypothesis 

test is established such that the algorithm will reject the null hypothesis (undamaged condition) if DI 

does not follow a chi-square distribution. Once this algorithm assumes multi-dimensional Gaussian 

feature vectors as inputs, the analysis also attempts to study (i) how non-Gaussian-distributed features 

and (ii) how the AR model order affect the distribution of the DIs from the undamaged condition as 

well as the classification performance. Additionally, an attempt is made to correlate the optimal AR 

model order with the classification performance by using the CIC technique. 

The analysis is performed on the standard data sets from all four accelerometers (Channel 2-5) 

mounted on the three-story structure. The original data sets are composed of 50 tests from each of the 

17 structural state conditions, where each of the 50 acceleration time series from each channel is 

composed of 8192 data points. However, in order to increase the number of time series per state 

condition, each time series is split into two segments, yielding time series of 4096 data points. Thus, 
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for each channel there are 900 and 800 acceleration time series with 4096 points from the undamaged 

and damaged conditions, respectively. Then, the AR parameters are estimated on each time series 

using the least-squares technique and stored into a feature vector, whose length is equal to the AR 

model order. Therefore, for each channel the data sets are composed of 1700 tests. 

The dimension of the feature vector and, consequently, the appropriate AR model order is initially 

unknown. In Section 4.5.3.1, analysis was carried out to determine the appropriate AR model order 

based on the AIC. However, the AIC has been reported to be too strict in model order estimation. 

Therefore, in order to establish an appropriate AR(p) model order for each accelerometer, 

independently, the CIC values in Equation (3.10) were computed as a function of the model order p 

(p=1,2,…,50). For the undamaged condition, Figure 4.69a plots for each channel the averaged CIC 

values, where the x-axis denotes the number of parameters in the AR model and the y-axis is the 900-

average CIC value. The behavior of CIC as a function of model order from Channel 4 and 5 still 

shows a very flat minimum after convergence (note the same result was observed in Figure 4.21), 

which challenges the determination of the optimal model order. Clearly, in these cases, it might not be 

sufficient to compute CIC(p+1) > CIC(p) to determine the actual absolute minimum of the CIC. As 

suggested by Ciftcioglu et al. [81], this might be the case when a large number of samples Nt are 

involved and the first term in the right-hand side of Equation (3.10) dominates. Additionally, the CIC 

from Channels 2 and 3 show more complexity in the time series without a clear indication of the AR 

model order. (This complexity might be associated to the friction between the rails and the structure.) 

In order to relief some emphasis on the first term and assuming stationarity in the system, Figure 4.69b 

shows the CIC as a function of the model order using time series of 1024-length. This procedure 

intends to remove redundancy in the model order determined by CIC and, consequently, yielding more 

accurate results in the model order estimation. Actually, it turns out that for Channels 4 and 5 the 

minima are much more pronounced (located between 10 and 20). However, for Channels 2 and 3, the 

CIC shows an oscillatory behavior that creates several local minima, roughly, at 20 and 35 and at 15 

and 30, respectively. Therefore, when using smaller time series, the results seem to be conclusive only 

regarding Channels 4 and 5. However, these results must be seen just as a good start and further 

analysis is required to define the optimal number of parameters in order to discriminate, accurately, 

feature vectors from undamaged and damaged conditions. For this purpose, in the following analysis, 

a range of model orders between 1 and 50 is chosen, such that the lower bound is unequivocally too 

small, while the upper bound is a plausible model order. 

In order to validate Equation (3.60), the original features from the undamaged condition must be 

nearly multi-dimensional Gaussian distributed. For illustration purposes, Figure 4.70 shows the 

estimated PDF from each AR(15) parameter (or variable) of the entire undamaged data sets from 

Channel 5. Each PDF was estimated using the kernel smoothing density based on a standard Gaussian 

function on the 900 tests. As it is evident from the figure, some of the parameters do not follow a well-
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defined Gaussian distribution. However, recall that the features are extracted from different structural 

state conditions whose mass and stiffness changes are made in a discrete manner, which produces 

multi-modal distributions that might impose distortions to the underlying distribution of the DIs from 

the undamaged condition.  

(a) (b) 

  

Figure 4.69. Comparison of the behavior of the CIC as a function of model order using: (a) 4096-

point; and (b) 1024-point time series. 

 

Figure 4.70. Estimated PDF for each variable, or AR(15) parameter, of the original undamaged feature 

vectors from Channel 5. 

For each accelerometer, Figure 4.71 shows estimated PDFs along with theoretical central chi-square 

distributions, 
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, with m degrees of freedom for four AR(p) models of varying order p=m=5, 15, 30, 

and 50. In this case, 50% of the entire undamaged data sets are used to set the mean vector and 

covariance matrix of the MSD-based algorithm and the same data set is used to estimate the 

underlying distributions. The figure indicates that the DIs seem to have an underlying chi-square 

distribution even with slight visual changes. In order to better evaluate the approximation, Figure 4.72 

depicts the correlation coefficients between the theoretical and estimated PDFs for AR models of 
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increasing order p=1,2,…,50. The results indicate close correlation in all accelerometers for p between 

15 and 20, roughly. Therefore, while each individual AR parameter may not follow a Gaussian 

distribution, given a sufficient number of parameters, the DIs are still approximately chi-square 

distributed. 

 

Figure 4.71. Four theoretical chi-square distributions, 
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m

2
, along with PDFs of the DIs from 

undamaged condition and assuming AR(p) models of increasing order p=m=5, 15, 30, and 50. 

 

Figure 4.72. Correlation coefficients between the theoretical chi-square distributions, 
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2
, and PDFs 

of the DIs from the undamaged condition for increasing AR(p) model order p=m=1,2,…,50. 

 m=15    

 

m=30 

 m=50 

   m=5 
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In order to evaluate the influence of the AR model order on the classification performance, the ROC 

curves along with the Type I and Type II errors are used. The ROC curves provide a comprehensive 

means of summarizing the performance of classifiers for varying threshold, by means of the trade-off 

between true detection and false alarm. As discussed in Section 3.4.5, each point on a ROC curve 

corresponds to a specific threshold, although the values of thresholds are not evident from the plot. On 

the other hand, the Type I/II errors provide a quantitative measure of the classification performance 

for a given threshold. Note that the Type I and false-alarm rate are directly correlated. On the other 

hand, the Type II and true-detection rate are inversely correlated. 

Figure 4.73 plots, in overlap format, ROC curves of five-increment AR model order p (p=5,10,…,50). 

The number of points to define a ROC curve is a function of the range between the maximum and 

minimum DIs for each set of data. In this case, approximately, 2500 points were used to define each 

curve. Qualitatively, looking at the plots, one can conclude that in all accelerometers, the classification 

performance is a function of the AR model order. From the figures of each channel, one can visualize 

a convergence for given model order p. It is also possible to visualize that the AR(5) model order is 

clearly a common inadequate model order to discriminate the structural conditions. Note that the (0,1) 

point is called a perfect classification. 

 

 

Figure 4.73. ROC curves for AR(p) models of varying order p=5,10,…,50 at: (a) Channel 2; (b) 

Channel 3; (c) Channel 4; and (d) Channel 5. 
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In order to better visualize that convergence, Figure 4.74 plots the true-detection rate, for fixed false-

alarm rate of 0.1, as a function of the AR model order p. The figure shows no detection gains beyond, 

approximately, AR model orders of 10 (Channel 4), 15 (Channel 3 and 5), and 20 (Channel 2), 

confirming the previous indications given by the ROC curves in Figure 4.73. Moreover, the figure also 

highlights that Channels 2 and 3 are less sensitive to detect damage, because the true-detection rate 

cannot go beyond, roughly, 0.5 and 0.7, respectively. Actually, and when comparing with the previous 

results from the CIC analysis in Figure 4.69b, one can infer a close relationship between the optimal 

model order given by the information criterion technique and the true-detection rate in each channel. 

Note that due to reduce complexity, this relationship is more evident in Channels 4 and 5 than in 

Channels 2 and 3. 

 

Figure 4.74. True-detection rate for fixed false-alarm rate equals to 0.1 at Channels 2-5. 

Additionally, the Type I and Type II errors are computed to statistically quantify the classification 

performance between undamaged and damaged conditions for varying AR model order. This manner, 

for a given threshold, one can visualize how the AR model order influences the discrimination. Figure 

4.75 plots for each accelerometer the trade-off between Type I and Type II errors for varying 

p=m=1,2,…,50. The threshold was found for a level of significance !=10%, i.e., a 90% confidence 

interval of the upper-tail chi-square distribution, 
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2
. Clearly, the results show the trade-off between 

fitting accuracy by increasing the order of the model and the number of misclassifications. For all 

channels, even those less sensitive to detect local damage, in general the higher the AR model order, 

the higher the number of Type I errors and the lower the number of Type II errors. Additionally, for 

Channel 4 and 5 one can figure out deviations from the 10% of Type I errors at p=15, roughly. Note 

that this technique recognizes that a false-positive classification may have different consequences than 

false-negative one, and that the optimal trade-off is application-specific. A system that is expensive to 

inspect typically requires a relatively low SHM false-positive rate, while systems with severe 

economic or life-safety risks associated with failure need to favor a low SHM false-negative rate. 

These considerations are essential to the proper design and thresholding of any SHM system [139]. 
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Figure 4.75. Percentage of Type I and Type II errors for varying AR model order p=1,2,…,50 

assuming a level of significance equals to 10%; (a) Channel 2; (b) Channel 3; (c) Channel 4; and (d) 

Channel 5. 

Finally, based on the previous analysis, the classification of the structural state conditions is carried 

out on data from each accelerometer assuming an AR(15) model, based on the assumption for 

simplification that the 15
th

 order is a common AR model order. The parameters of the MSD-based 

algorithm are estimated based on feature vectors from the training matrix 

! 

X  composed of 50% of the 

entire undamaged data. On the other hand, the test matrix 

! 

Z  is composed of feature vectors from all 

the undamaged and damaged conditions, including the ones used in the training matrix. Therefore, for 

each channel, the test matrix is composed of 1700 feature vectors (or tests). The upper-bound 

threshold is found from the false alarm constraint (undamaged condition) for a level of significance 

!=10% of a chi-square distribution with 15 degrees of freedom, 
  

! 

"
15

2
. Thus, for each accelerometer, 

Figure 4.76 plots the estimated PDFs based on the DIs of all tests along with the associated threshold. 

As expected from Figure 4.72, the figure shows that the DIs derived from the undamaged condition 

follow a chi-square distribution. It is also highlighted that the mean of both distributions diverge 

significantly for Channels 4 and 5, indicating better classification performance for those channels 

located near the source of damage. In order to quantify the classification performance in terms of 

false-positive and false-negative indications of damage, the number of Type I and Type II errors are 

summarized in Table 4.5, respectively. Clearly, the total number of errors increases for Channels 2 and 
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3 located far from the source of damage when compared to Channels 4 and 5. The percentage of Type 

I errors for all channels (8.3, 7.9, 10, and 9.0%) is around the 10% level of significance assumed to 

define the thresholds. This is a key indication that the algorithm is able to “learn” the variability due to 

operational and environmental conditions. Furthermore, it also indicates that the central chi-square 

distribution models well the underlying distribution of the DIs from the undamaged condition, and that 

it can be used in the proper selection of classification thresholds, despite the original feature vectors 

having an underlying multi-dimensional non-Gaussian distribution. Note that by changing the 

threshold, as shown in Figure 4.73, one might trade-off probability of false alarm and probability of 

true detection. Note that this algorithm has also shown to be a reliable way to identify local damage 

throughout the structure, as demonstrated from the low level of total misclassifications (Table 4.5) at 

Channel 4 and 5. However, it gives high number of Type II errors for those sensors far from the source 

of damage, giving an indication that real-world structures may require high density of sensors to detect 

damage throughout the structures. 

 

 

Figure 4.76. PDFs based on the DIs of all tests from undamaged and damaged conditions along with a 

threshold (vertical dashed line) defined by the 90% confidence interval of the 
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15

2
 distribution when 

using AR(15) parameters as damage-sensitive features and 50% of the entire undamaged data sets to 

establish the normal condition. 
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Table 4.5.    Number of Type I and Type II errors. 

Errors 
Channel 

Type I Type II Total 

2 75 (8.3 %) 552 (69 %) 627 (37 %) 

3 71 (7.9 %) 300 (38 %) 371 (22 %) 

4 90 (10 %) 7 (0.9 %) 97 (5.7 %) 

5 81 (9.0 %) 62 (7.8 %) 143 (8.4 %) 

 

4.7 Summary and Conclusions 

Before applying SHM procedures to the standard data sets from the three-story base-excited frame 

structure, a linear physics-based numerical model of the test structure was developed in order to 

compare the numerical results with the measured experimental data. The structure was modeled as a 

shear-building model with four lumped masses at the floors. The damping matrix was obtained using 

the results of the experimental modal analysis. The Young’s modulus was adjusted so that the 

numerical natural frequencies agreed with the experimental ones. The numerical model assumed 

negligible friction between the rails and the structure. Additionally, some statistical techniques, such 

as MAC, COMAC, ACF, and PSD, were used to show that the numerical model is able to predict 

baseline response data with high level of certainty. Finally, note that this model was just used to better 

understand the behavior of the test structure, rather than a damage detection tool. 

In the feature extraction section, the AR models were subject to special attention. The estimated 

parameters as well as residual errors were tested as damage-sensitive features. The AR parameters’ 

amplitude were shown to decrease, accordantly, for smaller gaps between the bumper and suspended 

column, i.e., the smaller the gap, the smaller the amplitude of the AR parameters. On the other hand, 

the residual errors were shown to increase significantly for those states with damage. In 

complementary analysis, four techniques based on AIC, PAF, RMS error, and SVD were presented for 

AR model order estimation. It was observed for one channel that the techniques do not give a unique 

solution for the AR model order when they are applied to baseline condition data. Nonetheless, the 

results suggest that the optimal order is in the range of 15 to 30. It was also shown that the AIC, PAF, 

and RMS error techniques suffer from the fact that, for each order, all model parameters must be 

estimated in order to calculate those values. Conversely, the SVD technique does not require prior 

estimation of the model parameters, which requires reduced computational efforts compared to the 

other three techniques. Even though the SVD technique gives the upper bound solution, the lower 

computational effort can be an advantage for implementation on embedded hardware. Additionally, 

one study was carried out to highlight the influence of the AR model order on the damage detection 

process. The analysis performed on the data sets showed that the lowest bound of the range of AR 
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model orders defined by the four techniques is capable of discriminating the undamaged and damaged 

state conditions, when using either the AR residual errors or parameters as damage-sensitive features, 

even in the presence of simulated operational and environmental variability. The analysis also showed 

that using an AR model of order less than that suggested by the four techniques does not allow 

discrimination of all the undamaged and damaged state conditions when the operational and 

environmental variability was included in the experiments. Finally, the results reported herein indicate 

that AR modeling might be an effective feature extraction technique when the damage introduces 

nonlinearities and the operational and environmental variations manifest themselves as linear system 

changes. In summary, the AR model was shown to be useful feature extraction technique for civil 

infrastructure SHM applications based on the three main reasons highlighted in Chapter 3: (i) they are 

sensitive to damage when it manifests in the form of nonlinearities or transitions between two states; 

(ii) the extraction of features only depends on response time series data; and (iii) simple and easy 

implementation. Additionally, it was shown that the AR models might be useful to address the two 

first levels in the hierarchy structure of damage identification, namely, damage detection and 

localization. 

Other feature extraction techniques were tested, such as basic statistics (mean, standard deviation, 

skewness, kurtosis, normal probability plot, PDF), modal parameters, STFT, WT, Holder exponent, 

PCA, and correlation coefficients. Actually, the skewness, kurtosis, normal probability plot, and PDF 

were shown to be useful damage-sensitive features when damage introduces an asymmetry into 

acceleration response data. However, a high density of sensors throughout the structure or sensor’s 

data fusion might be required to detect damage on a global basis, because the sensors might only be 

sensitive when they are located near the source of damage. Some of the limitations of using modal 

parameters as damage-sensitive features, specifically the natural frequencies, were demonstrated in 

this chapter. One could not conclude which data are from the damaged states by just examining 

changes in the natural frequencies when other sources of variability are present that influence the 

dynamic response characteristics of the structure. The Holder exponent technique proved that it might 

be used to extract damage-sensitive features when damage introduces discontinuities into the 

measured dynamic response data. Furthermore, the Holder exponent as well as AR residual errors 

were shown that the impacts are better detected with a time domain approach as opposed to a time-

frequency domain approach (STFT and WT). The time-frequency domain approach was shown not 

have sufficient time resolution to capture individual impacts and, as such, these effects tend to be 

treated only in an average sense with these methods. On the other hand, the PCA confirmed the 

previous conclusions in the literature and proved to be a useful technique for feature dimension 

reduction by mapping a multidimensional space into a space of fewer dimensions when an appropriate 

feature extraction technique is used. Finally, the correlation coefficients on acceleration time series 

were not able to discriminate the undamaged and damaged states or to locate the damage among the 
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sensors, because the coefficients follow no systematic pattern that can be associated with the damaged 

states. Indeed, it was found that the impacts imposed by the bumper are a local phenomenon in time, 

which it is not enough to produce trends in the time series that can be identified by a global damage-

sensitive feature such as the correlation coefficient. 

In the statistical modeling for feature classification, the AR parameters were used as damage-sensitive 

features. The cluster analysis permitted one to conclude the existence of slight differences between the 

data from 2007 and 2009, in particular among the lowest level of damaged states (State#10, 15, and 

16). Two explanations were pointed out: (i) the states with the lowest level of damage are 

characterized by few impacts between the bumper and suspended column, and so, they are averaged 

out on the AR parameters estimation; and (ii) the mechanism to set up the gap distance is not precise, 

and so, there is variability during the experiment that can cause slightly smaller or higher gaps than the 

theoretical ones. 

The Shewhart X-bar control charts were employed in order to monitor the mean of the residual-error 

time series from all state conditions. Note that the mean is sensitive to the presence of outliers, so 

small blocks (four-length in this case) might be used for this type of damage. It was shown that the 

proper definition of the control limits is crucial to increase the classification performance. Results 

from the baseline limits showed that, in general, the number of outliers beyond the control limits 

increase for the damaged states even when they are affected by the operational and environmental 

variations. However, it was noted that this algorithm was not enough sensitive to discriminate those 

states with the lowest level of damage (State#10, 15, and 16). Recall that damage is introduced by the 

bumper mechanism in the form of singularities into the signals. Additionally, it was shown that the 

results might be improved by trading off true detection and false alarm when all the undamaged states 

with the operational and environmental variability are used to set up the control limits.  

Nevertheless, in general, the control charts showed that SPC techniques might be used to detect the 

existence of anomalies in the acceleration responses, when a considerable number of data points fall 

outside the control limits. With such indications of damage, a next step might be to launch a full 

investigation, for example through visual inspections or local off-line NDT evaluation, to identify the 

cause of such anomalies. A problem that has often confronted the researchers using control charts is 

when to consider re-computing the control limits. Initially, the control limits need to be established 

assuming that both the structure and the SHM system are undamaged. However, because of normal 

aging of the structures, one should evaluate the need to re-calculate the control limits every time a 

statistically significant sign of instability is detected or when new operational and environmental 

conditions are encountered. 

The performance of a novel algorithm, to extract damage-sensitive features under operational and 

environmental variability, was verified in the context of outlier detection. This algorithm uses a state-
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space reconstruction to infer the geometrical and topological information about a deterministic 

dynamical system from observed scalar time series of the measured system response. Basically, it was 

proposed a MAR model of the baseline health condition to predict the state space, assuming that the 

model encodes the embedded vectors rather than observed time series. A hypothesis test is established 

that the MAR model will fail to predict future response if damage is present in the test condition and 

this hypothesis was investigated in the context of operational and environmental variability (non 

damage-related events). The applicability of this algorithm was demonstrated using univariate time 

delay embedding to reconstruct the structure’s attractor at the individual accelerometers. An extension 

to a multivariate time delay embedding was performed to demonstrate the applicability of a global 

structure’s dynamical attractor to detect damage. 

For the univariate time delay embedding of time series from the accelerometers close to the source of 

damage, the results showed that the simulated damage, introduced in the form of nonlinearities, 

increase the complexity of the system as reflected by higher dimensions among the damaged structural 

state conditions. Actually, the author believes this increase in complexity is a common trait of almost 

all kinds of damage. Analysis in the predicted state spaces showed that the structural state conditions 

with damage assume statistically significant distortions in the trajectories compared to the baseline 

state condition. Furthermore, the operational and environmental effects, simulated with linear changes, 

do not significantly affect the underlying system’s dynamical properties and, consequently, the 

trajectory of the system in the state space. However, a parametric study showed that embedding 

dimensions higher than optimum suggested by the SVD of the trajectory matrix could decrease the 

performance of the classifier. It is important to note that this algorithm was capable to classify the 

low-damaged state conditions even in an under-embedding state space. For these data sets, this fact 

highlights better performance than, for instance, the cluster analysis and SPC technique. On the other 

hand, the multivariate time delay embedding to reconstruct a global attractor was revealed to have 

limitations to detect nonlinearities (the damage) in a global basis in the presence of linear changes 

caused by operational and environmental variations. For this type of damage, this is an indication that 

the multivariate embedding amplifies the linear changes due to varying mass and stiffness and, 

consequently, averages out the effects of local damage in the form of singularities in the signal. 

Therefore, for these data sets, this algorithm is more appropriate to detect local damage rather than to 

detect the existence of damage in a global basis. 

Some limitations of the state-space approach include reliance upon stationary (in a statistical sense) 

inputs and the need for training this algorithm with known baseline conditions (although training 

requirements for such algorithms have been shown to be very reasonable [110], unlike some neural 

network approaches). It is further noted that if a situation develops whereby the linear change effects 

due to operational/environmental variability completely overwhelm the nonlinear dynamic changes, 

then the sensitivity of this approach will be compromised; in that case, a supervised technique that 
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employs the MAR parameters themselves may be useful in better classification [140]. Overall, 

however, the generality of the MAR approach would suggest it could be quite useful for a number of 

time series-based predictive modeling SHM applications where networked time series comprise the 

fundamental raw data set and physical modeling is either too computationally burdensome or the 

physics are not well-known (and could have high uncertainty, such as in bolted joint connections). 

In conclusion, for systems that operate in a linear manner during normal operation, the applicability of 

this novel nonlinear feature extractor and damage-detection approach, based on the prediction of the 

state space using a MAR model, has been demonstrated with experimental data and it has been shown 

to be a reliable way to detect local damage when it induces transitions from linear to nonlinear 

response, even in the presence of operational and environmental variability. 

The performance of the machine learning algorithms for data normalization was also demonstrated. A 

study was carried out addressing the implementation and comparison of those algorithms for outlier 

detection that establish the normal condition as a function of the operational and environmental 

variability. Although several procedures for data normalization have been reported in the literature, 

there is no study that has compared these algorithms on a common set of data to assess their relative 

performance. Therefore, the study reported herein intends to provide such a comparison. It is 

important to note that none of these algorithms requires a direct measure of the sources of variability. 

Instead, the algorithms rely only on measured response acceleration time series data acquired under 

the varying operational and environmental conditions. The AANN-, FA-, MSD-, and SVD-based 

algorithms were all shown to be reliable ways to create a global DI that can separate damaged from 

undamaged cases, even when simulated operational and environmental variability is present in both 

the undamaged and damaged condition data. Furthermore, the ROC curves, along with classification 

performance on the basis of Type I/Type II errors, showed that FA- and SVD-based algorithms are 

more appropriate when one wants to minimize false-positive indications of damage with economic 

issues driving the SHM. On the other hand, the MSD- and AANN-based algorithms are preferred 

when one wants to minimize false–negative indications of damage, with life-safety issues being the 

primary motive for deploying the SHM system. In terms of overall performance, regardless of the 

AANN-based algorithm has some advantages in terms of finding nonlinear correlations among the 

features, the MSD-based algorithm was shown to be the best in terms of the classification 

performance, reduced computational efforts (during both training and test phases), and the fact that no 

assumptions are required regarding its architecture. Note that those facts along with the simplicity 

make the MSD-based algorithm also a better choice for implementation on current embedded 

hardware. Additionally, a parametric study carried out, to establish the relationship between the 

classification performance and the number of factors in the AANN- and FA-based algorithms, 

permitted one to conclude that those algorithms maximize the classification performance when the 

number of modeled factors is, approximately, equal to the number of simulated changes (mass and 
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stiffness) affecting the sensors readings. In fact, these results are of extreme importance, because they 

permit one to validate those algorithms for real-world applications, whose number of factors is often 

unknown. 

Finally, a study was carried out to verify the applicability of the MSD-based algorithm to create a DI 

that takes into account the operational and environmental variations and that follow a chi-square 

distribution for the undamaged condition. For multi-dimensional Gaussian distributed feature vectors, 

a hypothesis test was established that the algorithm would reject the null hypothesis (undamaged 

condition) if DI does not follow a chi-square distribution. Based on the fact that data measured from 

real-world structures are often limited in size and the fact that it is difficult to ensure multi-

dimensional Gaussian distributed feature vectors, it was shown that the underlying non-Gaussian-

distributed damage-sensitive features affect the distribution of the DIs from the undamaged condition 

for varying AR model order. However, it was shown that the distribution of those DIs approximates a 

theoretical chi-square distribution and the classification is optimized when the appropriate AR model 

order given by the CIC is adopted. On the basis of ROC curves and Type I/II errors, with respect to 

the false-alarm rate, the algorithm performs within the tolerance given by the confidence interval in all 

accelerometers, i.e., the observed false-alarm rate is close to the chosen level of significance. For the 

true-detection rate, this algorithm proved to be very sensitive to the location of the damage relative to 

the sensors, with those sensors closer to the source of damage providing a higher true-detection 

performance. Once again, this fact highlighted that real-world structures may require high density of 

sensors to detect and/or locate damage throughout the structure. 

4.8 Contributions 

The main contributions of this chapter are: (i) the demonstration of the applicability of the MAR 

model to predict the state space of a dynamical system and to extract features sensitive to damage and 

relatively insensitive to operational and environmental variations; (ii) the applicability and comparison 

of several machine learning algorithms to remove the operational and environmental variations from 

the features and to detect damage; and (iii) the study that makes a correlation between the optimal AR 

model order given by an information criterion technique and the classification performance of the 

MSD-based algorithm. 



 

5. ALAMOSA CANYON BRIDGE 

5.1 Introduction and Overview 

In 1996 and 1997 several dynamic tests were performed on the Alamosa Canyon Bridge, New 

Mexico, to quantify the variability in identified modal parameters caused by operational and 

environmental effects. Furthermore, several vibration-based damage detection methods were applied 

to the experimental modal analysis results. In the subsequent report [54], the authors highlighted two 

main contributions. First, an in-situ quantification of variability in measured modal parameters. 

Second, the extension of a strain-energy-based damage detection method to structures that exhibit 

plate-like bending or bending in two directions. In fact, the author believes that separating changes in 

sensor readings caused by damage from those caused by changing operational and environmental 

conditions is one of the biggest challenges for transitioning SHM from the research to practice. With 

this in mind, in 2008 were performed new dynamical tests to estimate the dynamic characteristics by 

comparing the modal parameters to the previous ones, which could be used to find out indications of 

possible structural degradation. 

The main contribution of this chapter is the applicability of some techniques described in Chapter 3, 

and applied in Chapter 4, to extract damage-sensitive features and to remove the operational and 

environmental variability from the extracted features on data from a bridge, in order to pave the way 

to data-based methods to detect damage in real-world civil infrastructure. Therefore, in the feature 

extraction step, the modal analysis and AR models are the focus of special attention. The former 

because modal parameters are the features that have been most studied by the community along with 

the fact that they were studied in previous reports. The latter because its application in SHM has 

increased, significantly, in the last decade. In the statistical modeling for feature classification step, the 

application of the data normalization algorithms for outlier detection will be focus of special attention 

to evaluate their capacity to “learn” the normal condition under different types of features. It is 

important to note that these algorithms do not require a direct measure of the sources of variability. 

Instead, the algorithms rely only on response time series data acquired under varying operational and 

environmental conditions. Note that even though the visual inspection in 2008 showed some signs of 

degradation, with most of them already evident in the previous tests, these changes are not significant 

enough to establish that the bridge is “structurally deficient” and/or it has degraded since 1996. Thus, 
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this chapter applies the SHM-SPR paradigm to real-world data from one span of the bridge measured 

in three distinct periods with the assumption that no damage present in the structure. 

The layout of this chapter is as follows. Section 5.2 provides a brief description on the test structure, 

experimental procedure, and collected data sets in the last 12 years. In Section 5.3 the modal 

parameters (natural frequencies, damping ratios, and mode shapes) as well as the AR parameters and 

residual errors are demonstrated as damage-sensitive features and their sensitivity to the differential 

temperature is also shown. In Section 5.4, four machine learning algorithms are applied to remove the 

operational and environmental variability from the measured data. Then, each feature vector is 

reduced into a DI for outlier detection. Finally, Section 5.5 concludes with a general discussion 

regarding the effectiveness of the four algorithms to normalize the data acquired under operational and 

environmental variations, and Section 5.6 summarizes the main contributions. 

5.2 Operational Evaluation and Data Acquisition 

The Alamosa Canyon Bridge is located adjacent to highway I-25 approximately 16 km (10 miles) 

north of Truth or Consequences, New Mexico, USA. This two-line bridge has seven simply supported 

spans with a common pier between successive spans and two abutments at both ends. Each span 

consists of a concrete deck supported by six steel girders and it is approximately 7.3 m (24 ft) wide 

and 15.2 m (50 ft) long. Figure 5.1 depicts the longitudinal side and identifies the first span of the 

bridge where the vibration tests were performed. 

 

Figure 5.1.   Alamosa Canyon Bridge near to Truth or Consequences, New Mexico, USA, in 2008. 

The bridge was constructed around 1937 and was replaced by a new one when the Interstate Highway 

System was constructed in the early 1960s. Currently, the bridge is owned by the New Mexico 

Department of Transportation and is closed for normal traffic. It has been used as a test bed structure 

for several years. Under this operational state, researchers from the Engineering Institute at Los 

1
st
 span 
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Alamos National Laboratory have performed several dynamical tests on the bridge, namely in 1996, 

1997, and 2008, to examine the variability of the deck modal parameters. 

In all the three distinct periods of time, the same instrumentation architecture, namely one data 

acquisition system, 31 uniaxial accelerometers (including one at the driving point), and one impact 

hammer were used in the measurement process. Figure 5.2 shows a schematic representation of the 

array of sensors along with the basic structural dimensions. All sensors and the hammer were 

connected to the data acquisition system using coaxial wires. Even though Farrar et al. [54] have 

shown that in the reality the spans have some degree of structural continuity, for simplification, in this 

study the first span is treated as simply supported structure. 

 

Figure 5.2.   Schematic representation of the accelerometers and driving point (DP) locations. 

Two different data acquisition systems were used during the tests. In 1996 and 1997 the data 

acquisition system consisted of a Toshiba TECRA 700 laptop computer, four Hewlett Packard (HP) 

35652A input modules with 14-bit resolution and 80 dB dynamical range that provide power to the 

accelerometers and perform analog to digital conversion of the accelerometer signals, an HP 35651A 

signal processing module that performs the fast Fourier transform calculations, and a commercial data 

acquisition/signal analysis software package produced by HP. On the other hand, in 2008, the data 

acquisition system consisted of a NI PXI-1042Q with six modules NI PXI-4462. Each module has 24-

bit resolution ADCs with 118 dB dynamic range and four analog input channels. The system was set 

up to be consistent with the parameters of the previous tests performed on the bridge, namely to yield 

time series and FRFs, respectively, with the same time and frequency resolution of the previous 

measurements. Other instrumentation was common in the three tests. 

PCB model 336C piezoelectric accelerometers were used to measure the dynamic response at fixed 30 

locations on the steel girders, as shown in Figure 5.2. These accelerometers have a nominal sensitivity 



142        Chapter 5 

 

of 1000 mV/g, a specified frequency range of 1-2000 Hz, and an amplitude range of 4 g. The 

accelerometers were attached to the bottom flange of the steel girders using PCB model 080A27 

magnetic mounts, as shown in Figure 5.3a. 

A Wilcoxon Research model 736T accelerometer was used to measure the dynamic response at the 

driving point located on the concrete deck. This accelerometer has a nominal sensitivity of 100 mV/g, 

a frequency range of 5-15000 Hz, and an amplitude range of 50 g. The accelerometer was attached 

to the deck surface using aluminum mounting blocks, as shown in Figure 5.3b. 

A PCB model 086B50 impact hammer with a load cell attached to its head was used to excite the 

deck. The load cell has a nominal sensitivity of 164.1 mV/kN (0.73 mV/lb) and a peak amplitude 

range of 22.24 kN (5000 lbs). A soft hammer tip was used to better excite the low frequency response 

of the bridge. 

Five indoor-outdoor digital-readout thermometers were located across the center of the span. More 

details on the thermometers as well as the data acquisition system can be found in the reference [54]. 

 (a) (b) 

  

Figure 5.3.   Attachment of the accelerometers to the bridge: (a) on the bottom of the steel girders; and 

(b) on the deck surface. 

Notice that during the 2008 tests, incompatibilities were detected in one module of the data acquisition 

system. As a result, it was decided to keep the same architecture by turning off several accelerometers 

(2, 5, 8, 11, 14, 17, 20, 23, 26, and 29). Figure 5.4 shows an impact being applied at the driving point 

and Figure 5.5 shows the area underneath the first span of the bridge, where one can see the data 

acquisition system and computers as well as sensors attached to the bottom flange of the girders. 

Notice that throughout this chapter, the sensors attached to the steel girders are also referred to nodes. 

The 24-hour tests performed from July 29 to August 3, 1996 and from July 21 to 23, 1997 are 

summarized in Table 5.1 and Table 5.2, respectively. More details about these data sets can be found 

in reference [54]. On the other hand, Table 5.3 summarizes the tests performed from September 4 to 5, 

2008. The data acquisition system was set up to measure acceleration and force time series as well as 

to compute the power spectra, FRFs, and coherence functions of the measurements. The sampling 
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parameters were specified to calculate FRFs from a 16-sec time window discretized with 2048 

observations. The FRFs were calculated for a frequency range of 0 to 50 Hz at a frequency resolution 

of 0.0625 Hz. A force window was applied to the force time series and an exponential window was 

applied to the acceleration time series. AC coupling was specified to minimize DC offsets. For 

illustration purposes, one measured force at the hammer’s tip and one measured acceleration time 

series at node 15 are shown in Figure 5.6. Additionally, Figure 5.7 shows the FRFs for time08_3. 

 

 

Figure 5.4.   An impact being applied adjacent to the driving point (in 2008). 

 

 

Figure 5.5.   Picture of the area underneath the first span with the data acquisition system (in 2008). 

Driving Point 
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Table 5.1.    Summary description of the data sets from the 24-hour test in July/August, 1996. 

Test 

Label 
Date Time 

Number 

of Channels 

Number of  

Impacts 

sp1_hm07 09:15 

sp1_hm08 11:30  

sp1_hm09 13:12 

sp1_hm10 15:13 

sp1_hm11 17:52 

sp1_hm12 20:09 

sp1_hm13 21:20 

sp1_hm14 

1996/07/31 

23:29 

sp1_hm15 01:21 

sp1_hm16 03:19 

sp1_hm17 05:19 

sp1_hm18 07:03 

sp1_hm19 

1996/08/01 

09:22 

32 1 

 

 

Table 5.2.    Summary description of the data sets from the 24-hour test in July, 1997. 

Test 

Label 
Date Time 

Number 

of Channels 

Number of  

Impacts 

time97_1 04:00 

time97_2 06:00 

time97_3 08:00 

time97_4 10:00 

time97_5 12:00 

time97_6 14:00 

time97_7 16:00 

time97_8 18:00 

time97_9 20:00 

time97_10 22:00 

time97_11 

1997/07/21-23 

24:00 

32 5 
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Table 5.3.    Summary description of the data sets measured in September, 2008. 

Test 

Label 
Date 

Time Number 

of Channels 

Number 

of Impacts 

time08_1 15:12 

time08_2 
2008/09/04 

15:17 
22 5 

time08_3 10:00 

time08_4 
2008/09/05 

17:20 
22 10 

 

 

 

Figure 5.6.   Response caused by a hammer impact (time08_3): (a) force; and (b) acceleration time 

series at node 15. 

 

 

Figure 5.7.   FRFs in overlaid format (time08_3). 
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Once the bridge is closed to traffic, it will only be possible to identify sources of operational and 

environmental variability from the data acquisition systems, inconsistencies in the excitation 

(hammer), temperature variations, and adverse weather conditions. However, the unique source of 

variability measured was the difference temperature across the deck in 1996 and 1997 tests. 

Nevertheless, for completeness, Table 5.4 summarizes the daily average air temperature and humidity 

at Truth or Consequences for one day of each period of tests [141]. The higher percentage of humidity 

(64%) in 1997 might be associated to rain observed on the days before the tests. This table permits one 

to conclude that the percentage of humidity of the tests in 2008 is closer to the tests in 1996 than in 

1997. However, in terms of temperature variation, the tests in 1997 are closer to 1996 than 2008 to 

1996. Nevertheless, note that the differences in the air temperature do not imply that the difference 

temperature across the deck is different. 

Table 5.4.    Daily average temperature and humidity records at Truth or Consequences, New Mexico. 

Temperature ºC (ºF) 
Year 

Mean Maximum Minimum 

Humidity 

% 

1996/08/01 27 (80) 31 (88) 18 (65) 44 

1997/07/22 24 (76) 32 (90) 18 (65) 64 

2008/09/04 22 (72) 30 (86) 16 (60) 41 

 

Finally, during the tests performed in 2008, some indications of structural degradation were observed, 

mainly the joints were filled with debris and the pavement showed some signs of transverse surface 

cracking, as show in Figure 5.8. However, similar observations had been made in 1996 and 1997. 

Therefore, the 2008 visual inspection of the bridge was not conclusive regarding the existence of 

accumulated structural degradation when compared to the previous tests. 

 

Figure 5.8.   Transverse cracking on the surface of the deck pavement (in 2008). 

e.g. of Cracking 
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5.3  Feature Extraction 

The goal of this section is to use the modal analysis and AR models to extract damage-sensitive 

features from time series, namely the modal parameters (i.e. natural frequencies, damping ratios, and 

mode shapes) as well as AR parameters and residual errors. A study is conducted to show the 

sensitivity of those features on the temperature using the data from the 24-hour tests performed in 

1996 and 1997. Additionally, the dimension of a dynamical system is tested as damage-sensitive 

feature. 

5.3.1 Modal Parameters 

The current way to better understand the dynamics characteristics of the structures is to define the 

modal parameters. Some SHM procedures rely on the modes to detect damage, because it is expected 

that changes in either material properties or boundary conditions might change the modes. However, 

as shown in Section 2.2, the operational and environmental variability can impose changes in the 

dynamical properties of a system and mask changes in the modal parameters related to damage. 

Therefore, the modal parameters will be extracted for two reasons (i) to highlight the variability on the 

modal parameters caused by thermal effects using the 24-hour tests performed in 1996 and 1997 and 

(ii) to verify the existence of changes in the modal parameters estimated in 2008 by comparing with 

the modal parameters estimated in 1996 and 1997. 

The modal parameters were estimated by curve fitting the FRFs from each test, i.e., the natural 

frequencies, damping ratios, and mode shapes of the deck were estimated using a RFP global curve-

fitting algorithm [100, 136]. The RFP is a frequency domain curve-fitting algorithm that operates 

directly on the complex FRF and it performs a least square error curve fit to all FRFs. The first six 

modes are concentrated in two distinct frequency ranges. Therefore, in order to improve the results, 

the FRFs were curve fitted in two frequency bands (6.00-14.0 Hz and 19.0-28.0 Hz). The bands for the 

RFP algorithm were determined by examining the CMIF using the imaginary part of the FRFs. Notice 

that the fit function outside the band assumes zero value. 

In order to show the dependency of the modal parameters on the temperature, Figure 5.9a and b plot, 

respectively, the variability of the first natural frequency and damping ratio along with the differential 

temperature across the deck for the 24-hour test performed in 1996. The figures suggest that the 

variability of the natural frequency is proportional to the differential temperature across the deck. 

Furthermore, the corresponding damping ratios seem to be inversely proportional to the temperature 

(and so to the first natural frequency). The same trend is valid in the 24-hour test performed in 1997 as 

shown in Figure 5.10. 
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(a) (b) 

  

Figure 5.9.   Variability in the modal parameters along with the differential temperature across the 

deck during the 24-hour test in 1996: (a) first natural frequency; and (b) first damping ratio. 

 

(a) (b) 

  

Figure 5.10. Variability in the modal parameters along with the differential temperature across the 

deck during the 24-hour test in 1997: (a) first natural frequency; and (b) first damping ratio. 

 

Table 5.5 summarizes the maximum values obtain in the first natural frequency and damping ratio 

during the 24-hour tests in 1996 and 1997 as well as the estimated values in 2008 for time08_3 (10:00) 

and time08_4 (17:20). Taking the difference between the extreme values and dividing by the 

maximum value, in 1996 one can observe variations of -3.8% and -46%, respectively, in the first 

natural frequency and damping ratio. In 1997, approximately the same magnitude of variability was 

observed, respectively, -4.3% and -26%. The comparison between 1996-1997 and 2008 dynamical 

tests permits one to conclude that the variability in the first natural frequency is of the same magnitude 

(-4.3%) and the variation in the damping ratio (-17%) confirms the previous indications. Although the 
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differential temperature was not measure in 2008, based on the close correlation (especially the natural 

frequencies) with previous results, where the differential temperature was measured, the differences 

between time08_3 and time08_4 are most likely related to the differential temperature across the deck. 

Additionally, Table 5.6 summarizes the first natural frequency and damping ratio for the three periods 

of tests at 10:00 (morning) and 17:20 (afternoon). Note that the interpolation is used when no 

measurement is available at the specific time. The simple comparison of the natural frequency’s 

amplitude does not permit one to draw any conclusions on the presence of damage. Actually, in the 

afternoon one can observe frequency variations of less than 1%. Furthermore, and assuming that the 

structure is undamaged, the damping ratios show high variability along the day (over 30% in 1997). 

 

Table 5.5.    Maximum and minimum values of the first natural frequency and damping ratio observed 

in 1996, 1997, and 2008. 

Maximum Minimum 

Year Frequency  

(Hz) 

Damping Ratio  

(%) 

Frequency 

(Hz) 

Damping Ratio  

(%) 

1996 7.58 2.5 7.29 (-3.8%) 1.4 (-46%) 

1997 7.62 2.0 7.29 (-4.3%) 1.5 (-26%) 

2008 7.75 1.5 7.41 (-4.3%) 1.3 (-17%) 

* Percent change between maximum and minimum is shown in parentheses 

 

Table 5.6.    Values of the first natural frequency and damping ratio observed in 1996, 1997, and 2008 

at 10:00 (morning) and 17:20 (afternoon). 

10:00 17:20 

Year Frequency  

(Hz) 

Damping Ratio  

(%) 

Frequency 

(Hz) 

Damping Ratio  

(%) 

1996 7.56 (-2.5%) 1.8 (20%) 7.35 (-0.8%) 1.4 (7.7%) 

1997 7.62 (-1.7%) 1.5 (0.0%) 7.42 (0.1%) 1.7 (31%) 

2008 7.75 1.5 7.41 1.3 

* Percent change between 2008 and 1996/1997 is shown in parentheses 

 

To summarize, the first six natural frequencies and modal damping ratios from the 24-hour tests of 

1996 and 1997, along with the ones from the time08_3 and time08_4 in 2008, are plotted in Figure 

5.11. Even though the relative variation between natural frequencies could have changed, the figure 

shows that all the natural frequencies from 2008 are within the variation measure in 1996 and 1997 

over a 24-hour period. However, the same conclusion is not valid for the damping ratios. Indeed, one 
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out of two damping ratios of the sixth mode shape are significantly far from the 1996-1997 mean. 

Therefore, assuming that the structure is undamaged and taking into account the variability observed 

in the damping ratio estimates for varying number of extra terms in the RFP method along with the 

variability found in the three periods, one can conclude that this is a further indication of the challenge 

to use this feature for damage detection. 

 

(a) (b) 

 

Figure 5.11. Modal parameters of all tests in 1996, 1997, and 2008: (a) natural frequencies; and (b) 

damping ratios. 

 

Figure 5.12 plots the first mode shape for two independent tests during the 24-hour vibration tests 

performed in 1996, 1997, and 2008, corresponding to the modal parameters summarized in Table 5.5. 

The first mode shape is related to plate-like bending. Although the structure is symmetric about its 

longitudinal centerline axis, an asymmetrical variation in the first mode shape that changes throughout 

the day is evident from the plots. This asymmetry along the longitudinal axis is correlated with the 

time of day and associated to solar heating. The thermal effects are more pronounced because of the 

north-south orientation of the bridge. Therefore, if not properly accounted in the damage detection 

process, such changes in the dynamics response characteristics can potentially result in false 

indications of damage. For instance, in Figure 5.12a if the mode at 11:30 was considered to be the 

baseline condition, a classification algorithm would identify the mode at 21:20 as some form of an 

outlier. This outlier could inappropriately be labeled as damaged if the environmental variability 

associated with this feature was not taken into account in the damage detection process.  

In conclusion, throughout this section, it was shown that variations in the modal parameters exist and 

these variations are primarily attributed to thermal effects. Indeed, this fact reinforces the need to use 

data normalization algorithms that are capable of removing the effects of the operational and 

environmental variations from the measurements, as will be discussed later in Section 5.4. 
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(a) 

11:30 21:20 

 

(b) 

10:00 18:00 

 

(c) 

10:00 17:20 

 

 

Figure 5.12. First mode shape for the maximum and minimum natural frequencies observed in: (a) 

1996; (b) 1997; and (c) 2008. 
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5.3.2 Auto-regressive Models 

In the last chapter, the applicability of the AR parameters and residual errors to detect damage under 

simulated operational and environmental variability was demonstrated. Herein, this section intends to 

evaluate the applicability of those damage-sensitive features to real-world data. Note that for 

illustration purposes the following analysis is focused only on data sets from the mid-span node 15. 

5.3.2.1 Linear Assumption 

The AR models have been used for modeling the response of the structure to random inputs. However, 

in this case and as shown in Figure 5.6, the input is in the form of a impulse force and the sensor 

response is in the form of a decaying transient response that oscillates until finally approaching zero 

after a certain time. A brief explanation using a linear system is given below to justify the applicability 

of the AR models to predict transient responses. 

The simplest vibration system can be represented by a single mass m connected to a spring with 

stiffness k, damping mechanism with viscous damping d, and an external excitation source     

! 

f (t). The 

mass is allowed to move only along the spring elongation direction. This system is currently called 

single-degree-of-freedom (SDOF) system and it is shown in Figure 5.13. Mathematically, the input-

response relationship can be described as 

. (5.1) 

 

Figure 5.13. SDOF system. 

As derived in Worden and Tomlinson [142], the output of this system can be described at a sequence 

of regularly space times 
  

! 

t
i
. Using the backward finite difference method and after some 

rearrangement, a discrete-time representation of Equation (5.1) can be given by 

  

! 

si ="
1
si#1 +"

2
si#2 + $

1
fi#1, (5.2) 

where 

! 

"
1
, 

! 

"
2
, and 

! 

"
1
 are constant parameters. Assuming an impulse response, the force term   

! 

fi"1 in 

Equation (5.2) is zero and, consequently, the response turns out to be a regression in the form of the 

AR model in Equation (3.5). 
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In order to illustrate the applicability of the AR model to fit transient time series responses in a simple 

example, two different impact forces are applied on the SDOF system, namely 
  

! 

I
1

=100"10
3
N  and 

  

! 

I
2

= I
1
"2. The system is assumed to have the following properties: 

    

! 

m = 300 kg ,     

! 

d =1095 N " s / m , 

and     

! 

k = 400"10
3
 N / m . Figure 5.14 plots both three-sec free vibration responses in overlap format. 

Figure 5.15a plots the AR(5) parameters estimated based from both time series responses and Figure 

5.15b shows the predicted responses, along with the AR residual errors, using an AR model with 

parameters estimated from the response caused by 
  

! 

I
1
. As one can visualize, the AR parameters from 

both responses overlap and the residual errors are negligible. Therefore, for linear systems, one can 

clearly verify the applicability of the AR models to estimate transient response data. 

 

 

Figure 5.14. Free vibration responses caused by two impulse forces (
  

! 

I
1
 and 

  

! 

I
2

= I
1
"2). 

 

(a) (b) 

  

Figure 5.15. AR model analysis: (a) estimated parameters based on responses caused by 
  

! 

I
1
 and 

  

! 

I
2
; 

and (b) responses estimated using parameters from the response caused by 
  

! 

I
1
. 
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5.3.2.2 Appropriate Model Order 

As shown in Chapter 4, the proper definition of the AR model order is a key step to detect damage. In 

order to identify the appropriate order at node 15, the four techniques described in Section 3.2.3 are 

applied to data sets from 1996, 1997, and 2008. Figure 5.16, Figure 5.17, and Figure 5.18 plot the 

normalized average values as a function of the model order p (p=1,2,…,100), using the four proposed 

techniques, namely, AIC, RMS, SVD, and PAF. Note that the plotted curves are the average of curves 

estimated on 13, 11, and 20 time series from the three periods, respectively. From a global perspective, 

some observations can be pointed out: (i) the AIC function is not minimized in the selected range; (ii) 

all four techniques do not give a unique solution when looking at the convergence point of each curve; 

and (iii) the converge order for RMS and SVD techniques is around 25. Therefore, in order to keep the 

AR model order as low as possible and using the same procedure as in Chapter 4, throughout this 

chapter, an AR(25) model will be used as the basis to extract damage-sensitive features. 

 

Figure 5.16. Normalized 13-average AIC, RMS, SVD, and PAF functions during the 24-hour test in 

1996 (node 15). 

 

Figure 5.17. Normalized 11-average AIC, RMS, SVD, and PAF functions during the 24-hour test in 

1997 (node 15). 
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Figure 5.18. Normalized 20-average AIC, RMS, SVD, and PAF of the tests performed in 2008 (node 

15). 

5.3.2.3 AR Parameters 

When measuring data from real-world structures, the researcher frequently faces challenges in the 

parameter estimation caused by the operational and environmental effects. Note that besides the 

temperature, traffic, and humidity, another sources of variability need to be addressed. As highlighted 

in Section 2.2, it is also well known that the modal testing procedures might produce variable results, 

because of inevitable noise caused by electrical disturbance, operator errors, and variable testing 

environment. In order to produce estimators that are not affected by the presence of outliers, the 

concept of robust statistics [143] is considered to obtain averaged AR parameters. The procedure can 

be described in the following steps. First, AR parameters (or variables) are estimated on time series 

from each data set using the least-squares technique. Second, the mean and standard deviation of each 

parameter is computed. Afterwards, assuming a normal distribution function for each variable, the 

parameters beyond two standard deviations of the mean (i.e. 95% confidence) are considered outliers 

and discarded from the data sets. Finally, a new outlier-free mean of each parameter is computed. 

Obviously, the new mean represents a better estimation of the population mean, because it does not 

take into account the deviations caused by non-frequent parameters. This procedure can then be 

illustrated using the so-called error bars. 

For node 15, Figure 5.19, Figure 5.20, and Figure 5.21 depict the error bars related to the AR(25) 

parameters estimated on time series from 1996, 1997, and 2008, respectively. For each parameter, the 

plots show the range with the mean (cross sign), and the upper and lower limits (dash) corresponding 

to two standard deviations from the original mean. Additionally, one can observe the new outlier-free 

mean of the parameters (dot). Note that outliers correspond to parameters falling beyond the upper and 

lower limits. 
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Figure 5.19. Error bar (two standard deviations) with AR(25) parameters estimated at node 15 during 

the 24-hour test in 1996 along with the outlier-free means (dots). 

 

Figure 5.20. Error bar (two standard deviations) with AR(25) parameters estimated at node 15 during 

the 24-hour test in 1997 along with the outlier-free means (dots). 

 

Figure 5.21. Error bar (two standard deviations) with AR(25) parameters estimated at node 15 during 

the tests in 2008 along with the outlier-free means (dots). 
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In order to compare the AR parameters from the three periods, Figure 5.22 plots the outlier-free means 

of the AR parameters for the three periods. Even though one can detect slight local changes in the 

parameters from 1996 and 1997, they appear to have a similar global pattern. Table 5.7 summarizes 

the correlation coefficients of the AR parameter curves from 1996, 1997, and 2008. The correlation 

analysis indicates that all three curves are highly positive correlated. However, clearly one can 

conclude that the AR parameters from 1996 are better correlated with 1997 (r = 0.82) rather than 2008 

(r = 0.78). 

Note that even though there exists differences in the AR parameters from 1996 to 2008, it is not clear 

that those changes might be associated to the existence of damage in the structure. Rather, this is just 

an indication that the system generating the time series shows some statistical differences. Note that 

these changes might be associated to the fact that the comparison was carried out in a discrete manner, 

using measurements from three different days. 

 

Figure 5.22. Outlier-free means of the AR parameters estimated in 1996, 1997, and 2008. 

 

Table 5.7.    Correlation coefficients of the AR parameter curves in Figure 5.22. 

Year 1996 1997 2008 

1996 1.00 0.82 0.78 

1997 0.82 1.00 0.83 

2008 0.78 0.83 1.00 

Linearity Check of the AR Parameters  

In real-world structures, the excitation (i.e. the hammer impacts in this case) might be one source of 

variability encountered among the AR parameters. Even though for linear systems the AR parameters 

should be constant over varying impact intensity, the operational and environmental effects along with 

structure’s inertia in certain ranges, especially at low force level, can input variability into the AR 
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parameters. In order to check the linearity of the structural response and the consistency of the AR 

parameter estimation, in 2008 two tests were performed (time08_1 and time08_2) for two different 

levels of hammer-impact forces. As shown in Figure 5.23, the low-level impact force has 2669 N (600 

lbs) peak and the high-level one has 5340 N (1200 lbs). Figure 5.24 depicts the average of the AR 

parameters estimated on five time series of each test. In an average-sense, the plot highlights an 

overall similar pattern with some local differences. Therefore, as suggested by the SDOF system in 

Figure 5.15a, this is an important indication that the structure responds in a (quasi-) linear manner and 

that the AR parameter estimation does not depend on the intensity of the impacts. 

                  (a)                                 (b) 

 

Figure 5.23. Force time series for linearity check using tests performed in 2008: (a) low force level, 

time08_1; and (b) high force level, time08_2. 

 

Figure 5.24. Average of the AR(25) parameters for linearity check using time08_1 and time08_2 tests 

performed in 2008 at node 15. 

5.3.2.4 AR Residual Errors 

Along with the AR parameters, the AR residual errors are also currently used in SHM as damage-

sensitive features. In order to show, qualitatively, the performance of the AR(25) model, with outlier-
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free 24-hour-average parameters of 1996, to predict  the measured response time series, Figure 5.25 to 

Figure 5.27 plot the measured and predicted acceleration time series at 17:52, 18:00, and 17:20, for 

1996, 1997, and 2008, respectively. Based on a global observation, one can conclude that the average 

of the AR(25) parameters from the 24-hour test in 1996 seems to encode the structural dynamics, even 

when using this AR model to predict time series from 1997 and 2008. Nonetheless, in order to 

quantify those differences, Figure 5.28 plots the RMS of AR residual errors of the prediction for 34 

(13+11+5+5) time series. If the structure’s properties have not changed since 1996, it is expected that 

the residuals will have the same magnitude. However, the figure highlights increasing residuals since 

1996 as an indication that the responses from 1997 and 2008 have some statistical differences. Notice 

that the RMS errors of the tests from 1996 follow a nearly straight line because the 24-hour-average 

parameters at same year were used to define the AR model. 

 

 

Figure 5.25. Measured and predicted acceleration time series at 17:52 (1996) using an AR(25) model 

with the 24-hour-average parameters of 1996: (a) full time series; and (b) windowed time series. 

 

Figure 5.26. Measured and predicted acceleration time series at 18:00 (1997) using an AR(25) model 

with the 24-hour-average parameters of 1996: (a) full time series; and (b) windowed time series. 
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Figure 5.27. Measured and predicted acceleration time series at 17:20 (2008) using an AR(25) model 

with the 24-hour-average parameters of 1996: (a) full time series; and (b) windowed time series. 

 

 

Figure 5.28. RMS of the AR(25) residual errors from the tests performed in 1996, 1997, and 2008. 

 

As an extension of the results depicted in Figure 5.28, the two-step AR-ARX prediction model 

proposed in [71] is applied on the data from 1996, 1997, and 2008. Note that this model is similar to 

the one described in Section 3.2.4, where the input time series corresponds to the residual errors from 

the AR model. Basically, the two-step model can be summarized as follows. First, AR(p=25) models 

are constructed for all time series. Second, the ARX(a=15, b=10) model is constructed to predict each 

output time series using the residual errors estimated from the previous AR model as the input. As 

discussed in [85], it is suggested to keep the sum of a and b smaller than p (  

! 

a + b " p ). The parameters 

used in the ARX model correspond to the outlier-free 24-hour-average parameters of 1996. Finally, 

for the same raw data of the previous analysis, the RMS of the AR-ARX residuals are computed and 

plotted in Figure 5.29. However, the figure does not show significant relative improvements over 

Figure 5.28. 
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Figure 5.29. RMS of the AR(25)-ARX(15,10) residual errors from the tests performed in 1996, 1997, 

and 2008. 

 

Look-up Table Approach 

Throughout this section, the AR residuals were obtained using the 24-hour-average parameters from 

1996. However, in order to better identify the source of variability that is influencing the process, a 

look-up table approach is formed. Basically, each time series is predicted using an AR model with 

parameters from 1996 assigned based on the closest differential temperature between 1996 and the one 

being predicted. In theory, this procedure permits one to take into account the variability, in particular 

that caused by differential temperature, because the time series from 1996 that originate AR 

parameters share some similarity with the time series being tested. Figure 5.30 and Figure 5.31 plot 

the RMS of the AR(25) and AR(25)-ARX(15,10) residuals using the described approach. The 

thresholds correspond to the highest RMS error among the observations of 1997. Once the temperature 

was not measured in 2008, the observations of the 2008 tests correspond to the minimum RMS 

obtained for each set of parameters, i.e., the assumption is that the RMS error is minimized for the 

parameters extracted from time series of 1996 in similar temperature conditions of the 2008 data. The 

results show that using the look-up table approach, the data from 2008 is relatively similar to the data 

from 1997 using either the AR or AR-ARX models. 
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Figure 5.30. RMS of the AR(25) residual errors from the tests performed in 1996, 1997, and 2008; 

horizontal dashed line corresponds to the maximum value of 1997. 

 

Figure 5.31. RMS of the AR(25)-ARX(15,10) residual errors from the tests performed in 1996, 1997, 

and 2008; horizontal dashed line corresponds to the maximum value of 1997. 

Influence of the Differential Temperature on the AR Residual Errors 

It was already shown in Section 5.3.1 the influence of the differential temperature across the deck on 

the modal parameters. Furthermore, it was shown that the responses from 1997 and 2008 have some 

statistical differences from the ones of 1996. Additionally, the look-up table approach suggested that 

the differential temperature might have considerable influence on the prediction. The next study 

intends to highlight the influence of the temperature on AR parameters and residual errors throughout 

the day. Following the procedure adopted to the modal parameters, for the 24-hour tests in 1996 and 

1997, the influence of the temperature is checked at node 15 by computing the RMS error of the 

prediction based on an AR model set up with parameters from a particular time of day. For the 24-

hour test in 1996, Figure 5.32 plots the RMS error of each test obtained based on an AR(25) model 

with parameters estimated at 21:20 along with the differential temperature across the deck. In the same 
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manner, for the 24-hour test performed in 1997, Figure 5.33 plots the RMS error for each test obtained 

based on an AR(25) model with parameters estimated at 22:00. Clearly, both figures highlight positive 

correlation between the residuals and the differential temperature throughout the day. 

 

Figure 5.32. Differential temperature across the deck along with the RMS of the AR(25) residuals, 

with parameters estimated at 21:10, for each test at node 15 during the 24-hour test in 1996. 

 

Figure 5.33. Differential temperature across the deck along with the RMS of the AR(25) residual 

errors, with parameters estimated at 22:00, for the 24-hour tests in 1997 at node 15. 

5.3.3 Dimension of a Dynamical System 

As shown in Section 4.6.3 on state-space reconstruction, the dimension of a system, borrowed from 

the dynamical systems field, under special conditions, can be a powerful manner to discriminate time 

series from different structural conditions, because damage might affect the dimension of the attractor. 

Even though it is not known a priori the existence of a specific type of damage, Figure 5.34 shows 

three averaged singular spectra of vector spaces of dimension w=60, composed of time series from 

node 15. The number of singular values larger than the noise floor is an estimate of the minimal 

embedding dimension required to unfold the attractor. The figure is not conclusive about significant 

changes in the system’s dimension since 1996. Note that often when structures age and even with 
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visual degradation, the system can still exhibit linear behavior. Moreover, as shown in Figure 4.58, 

linear changes do not introduce sufficient complexity to increase, significantly, the dimension of a 

dynamical system. Thus, it is the author’s speculation that those slight differences observed in the plot 

might be associated with the operational and environmental variability. 

 

Figure 5.34. Averaged singular spectra at node 15 in 1996, 1997, and 2008. 

5.4 Statistical Modeling for Feature Classification 

In the last feature-extraction section, the modal analysis as well as the AR models were studied to 

extract features and to highlight their sensitivity to operational and environmental variations, 

especially the differential temperature across the deck. The following analysis intends to perform 

outlier detection using feature vectors composed of the first six natural frequencies and the AR(25) 

parameters from node 15. Additionally, the four machine learning algorithms for data normalization 

described in Section 3.3, namely, the AANN-, FA-, SVD-, and MSD-based algorithms, are applied in 

order to remove the effects of the operational and environmental variations on the features. The 

normal condition of the structure is established using the data from the 24-hour tests in 1996 and 1997. 

Then, the concept of DI is used to reduce each feature vector into a unique value. Thus, the AANN-, 

FA-, and SVD-based algorithms use the methodology described in Section 3.4.4 to reduce each 

residual feature vector into a score. On the other hand, for each feature vector, the DI derived from the 

MSD-based algorithm is equal to the   

! 

d
2
 in Equation (3.55). 

Basically, the analysis in this section intends to verify: (i) the performance of the machine learning 

algorithms to remove the operational and environmental variability from the features in the context of 

outlier detection; (ii) if feature vectors from 2008 are classified as inliers or outliers; and (iii) the 

importance of the number of unobserved variables (or factors) modeled in the AANN- and FA-based 

algorithms.  

Note that a feature vector will be considered a multi-dimensional inlier when its features share 

similarities with the ones used to establish the normal condition. Furthermore, as discussed in Section 
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5.2, there is not a clear indication that the structure has suffered significant structural degradation from 

1996 to 2008. Therefore, the author does not speculate that an outlier is derived from the damage 

condition, rather the author poses outliers as derived from tests that have underlying statistical 

differences from the ones used to set the normal condition. These outliers might be associated with 

operational and environmental variations not included in the training data. 

5.4.1 Modal Parameters 

The modal parameters have been used as damage-sensitive features since the first studies on SHM. 

However, as described in Section 2.2 and as shown in Section 5.3.1, the temperature normally plays 

the major role on the modal parameters variation. In order to account to those variations, statistical 

modeling is often required. In this case, only the natural frequencies are used as damage-sensitive 

features, because as shown in Section 5.3.1, the damping ratios show relatively large variability when 

compared to the natural frequencies, and so they are discarded from this analysis. Note that for each 

time of the day, the natural frequencies are estimated from the average of the FRFs. 

The normal condition of the structure is established using the estimated natural frequencies of the 24-

hour tests from 1996 and 1997. Therefore, the training matrix,     

! 

X" #6$24
, corresponds to 24 feature 

vectors, composed of the first six natural frequencies. The test matrix,     

! 

Z" #6$26
, is composed of the 

entire training data plus two feature vectors from the tests performed in 2008 at 10:00 and 17:20.  

The AANN-based algorithm is built up with a feed-forward neural network. According with Kramer’s 

recommendations [111], the network has three nodes in each mapping and de-mapping layers. A 

Levenberg-Marquardt back-propagation algorithm was used to train the network. Several trainings 

with different initial conditions were performed with the given architecture to increase the probability 

that the global minimum was achieved. The number of nodes at the bottleneck layer for the AANN-

based and the number of factors in the FA-based algorithm were varied to study their relevance on the 

classification performance. The threshold for the MSD-based algorithm is based on 99% confidence 

interval of a chi-square distribution with six degrees of freedom, 

! 

"
6

2
. On the other hand, the thresholds 

for the SVD-, AANN-, and FA-based algorithms are based on 99% cut-off value over the training 

data. 

Figure 5.35 to Figure 5.38 plot the DIs derived from all four machine learning algorithms for outlier 

detection. In terms of overall analysis, all the algorithms seem to normalize the data from the normal 

condition. However, the algorithms do not output consistent results regarding the classification of the 

two feature vectors from 2008. (Note that data from 2008 were not used in the training phase.) With 

exception of the FA-based algorithm with one modeled factor, all the algorithms classify at least one 

of the feature vectors as an outlier. 
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As discussed in Section 4.6.4, the classification performance of the AANN- and FA-based algorithms 

depends on the number of unobserved variables, i.e., the number of modeled factors. As shown in 

Figure 5.37, the AANN-based algorithm classifies the tests from 2008 as outliers using both one and 

two nodes. However, as shown in Figure 5.38, the FA-based algorithm outputs distinct results using 

one or two factors. Actually, as indicated in Section 4.6.4, this inconsistency might be a drawback in 

real-world applications, because often the number of operational and environmental factors driving 

changes in the structural responses is unknown. Therefore, assuming one factor to encode the 

temperature variation, for instance, the algorithm classifies both feature vectors from 2008 as inliers, 

i.e., they are representative of the normal condition. However, if one assumes two factors (e.g. 

temperature and humidity variations), the same algorithm classifies the feature vector from 17:20 as an 

outlier. This result is an indication that for real-world SHM applications, the performance of these 

algorithms requires an insight on the number of operational and environmental factors driving changes 

in the structural responses. 

 

Figure 5.35. Outlier detection of feature vectors composed of natural frequencies using the MSD-

based algorithm; threshold defined based on 99% confidence interval of a 

! 

"
6

2
. 

 

Figure 5.36. Outlier detection of feature vectors composed of natural frequencies using the SVD-based 

algorithm; threshold equals to 99% cut-off value over the DIs from the training data. 
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Figure 5.37. Outlier detection of feature vectors composed of natural frequencies using the AANN-

based algorithm; threshold equals to 99% cut-off value over the DIs from the training data assuming: 

(a) one factor; and (b) two factors. 

 

  

Figure 5.38. Outlier detection of feature vectors composed of natural frequencies using the FA-based 

algorithm; threshold equals to 99% cut-off value over the DIs from the training data assuming: (a) one 

factor; and (b) two factors. 

 

 

5.4.2 AR Parameters 

Herein, the four machine learning algorithms are used to normalize the normal condition data, i.e., to 

remove the effects of the operational and environmental variations on the AR(25) parameters from 

node 15. Afterwards, the transformed features are reduced to a DI for outlier detection. In this case, all 

the 13 tests from 1996 and 44 tests from 1997 are used to establish the normal condition. The test data 
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is composed of the entire training data plus the remainder 11 tests from 1997 and all 20 tests from 

2008. Notice that the tests from 1997, used in the test phase and not included in the training phase, 

intends to evaluate the robustness of each algorithm to normalize the data from the normal condition. 

To summarize, the data is split into the training matrix, 

! 

X" #25$57
, and the test matrix, 

! 

Z" #25$88
. 

The AANN-based algorithm is built up with a feed-forward neural network. After several runs based 

on the error minimization, it was observed that three nodes is the optimal number of nodes in each 

mapping and de-mapping layer. A Levenberg-Marquardt back-propagation algorithm was used to train 

the network. Several trainings with different initial conditions were performed with the given 

architecture to increase the probability that the global minimum was achieved. The threshold for the 

MSD-based algorithm is based on 99% confidence interval of a chi-square distribution with 25 

degrees of freedom, 

! 

"
25

2
. On the other hand, the thresholds for the SVD-, AANN-, and FA-based 

algorithms are also based on 99% cut-off value over the DIs from the training data. 

Figure 5.39 to Figure 5.42 plot the DIs, in concatenated format, from all four machine learning 

algorithms. In a general observation, all the algorithms seem to normalize well the data from the 

normal condition, even when data from the normal condition is not used in the training phase. 

Therefore, it is an indication that the algorithms encode the normal condition and correctly classify 

new feature vectors when they share similarities with the data used in the training. However, some 

discrepancies are observed for the 2008 tests. While the MSD-based algorithm clearly classifies all 

feature vectors from 2008 as outliers, in a broad sense the other three algorithms classify those feature 

vectors as inliers. The results from the MSD-based algorithm suggest more sensitivity of this 

algorithm to classify data from the undamaged condition when they are not represented in the training 

phase. Actually, this sensitivity might be a limitation in real-world applications, because it is unlikely 

to obtain the same responses twice under similar operational and environmental conditions due to the 

uncertainty of several unmeasured factors present in the structures. 

In order to evaluate the importance of the modeled factors in the AANN- and FA-based algorithms, 

Figure 5.41 and Figure 5.42 plot the DIs for one and two factors. Both algorithms generally tend to 

classify the tests from 2008 in the same manner when using one or two factors, giving an indication 

that the temperature might be the major source of variability in the structural response at node 15. 

Finally, for better understanding on the MSD-based algorithm performance, Figure 5.43 plots the 

estimated PDF based on the training data and theoretical chi-square distribution for 25 degrees of 

freedom, 
  

! 

"
25

2
. The smoothed PDF was obtained using the kernel density estimator based on a standard 

Gaussian function. Even though the distributions do not overlap, the author poses those differences 

due to chance. Recall that temporal discrete and reduced amount of data from 1996 and 1997 were 

used to set the normal condition. Note that the “bump” on the right-hand side results from the data 

collected in 1996. 
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Figure 5.39. Outlier detection of feature vectors composed of AR(25) parameters using the MSD-

based algorithm; threshold defined based on 99% confidence interval of a 

! 

"
25

2
. 

 

Figure 5.40. Outlier detection of feature vectors composed of AR(25) parameters using the SVD-based 

algorithm; threshold equals to 99% cut-off value over the DIs from the training data. 

  

Figure 5.41. Outlier detection of feature vectors composed of AR(25) parameters using the AANN-

based algorithm; threshold equals to 99% cut-off value over the DIs from the training data assuming: 

(a) one factor; and (b) two factors. 
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Figure 5.42. Outlier detection of feature vectors composed of AR(25) parameters using the FA-based 

algorithm; threshold equals to 99% cut-off value over the DIs from the training data assuming: (a) one 

factor; and (b) two factors. 

 

Figure 5.43. Estimated PDF of the DIs from the training data along with the theoretical 
  

! 

"
25

2
, when 

using the MSD-based algorithm. 

5.5 Summary and Conclusions 

In an attempt to transiting SHM technology from research to practice, the analysis presented in this 

chapter applied the SHM-SPR paradigm to data from a real-world structure, namely, the Alamosa 

Canyon Bridge. Basically, the analysis was centered on the feature extraction and statistical modeling 

for feature classification steps of the paradigm. Special emphasis was given to the modal analysis and 

AR models to extract damage-sensitive features as well as to the four machine learning algorithms to 

separate changes caused by operational and environmental conditions from changes caused by 

damage. The analysis made use of the 24-hour test data collected in 1996 and 1997 (to characterize the 

normal condition) along with data acquired in 2008. 

In the feature extraction step, it was shown that the modal parameters as well as AR parameters and 

residuals are very sensitive to the differential temperature across the bridge deck. In the case of the 
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modal parameters, it was shown that the first natural frequency is proportional to the differential 

temperature. A maximum of 4.3% change in the fundamental natural frequency was observed 

throughout the day. Moreover, the first modal damping ratio is inversely proportional to the 

differential temperature (and also to the natural frequency), particularly, during the 1996 and 1997 

tests. It was verified that those changes might reach 46% in one day. However, it was noted that the 

computation of the damping ratios is very sensitive to the estimation method used and so their 

application for damage detection might be limited. Additionally, the extraction of the mode shapes 

showed an asymmetrical variation in the first mode that changes throughout the day. This asymmetry, 

along the longitudinal axis, was correlated with the time of day and solar heating. The thermal effects 

were more pronounced because of the north-south orientation of the bridge. Therefore, this is an 

indication that if not properly accounted for in the damage detection process, such changes in the 

dynamics response characteristics can potentially result in false indications of damage. 

Regarding the applicability of the AR models as feature extraction approach, four techniques were 

used to determine the appropriate model order. All techniques did not give an unique solution when 

looking at the convergence point of each curve; however, by taking the SVD and PAF as reference, it 

was shown that the data measured in 2008 seem to require slightly higher AR model orders than the 

data from 1996 and 1997; nevertheless, for simplification an AR(25) model was adopted as the basis 

to extract damage-sensitive features. Then, analysis was carried out to understand the variability in the 

estimation of the AR parameters. Significant variability in the AR parameters was observed 

throughout the day. However, by discarding the outliers and taking the average of the parameters, it 

was shown that the 24-hour-average parameters of 1996 and 1997 are similar with a correlation 

coefficient r=0.82. Additionally, even though the average of 2008 data only corresponds to tests 

perform in the morning and in the afternoon, it was possible to show that the parameter average is also 

correlated with the 24-hour-average of 1996 (r=0.78). Along with the AR parameters, the AR residual 

errors were also tested as damage-sensitive features. An AR(25) model, with 24-hour-average 

parameters of 1996, was used to predict time series from 1996, 1997, and 2008. It was observed a 

reasonable prediction as an indication that the 24-hour-average parameters of 1996 encode the 

structural dynamics. However, the RMS of the residuals indicates increasing magnitude since 1996 as 

an indication that the responses from 1997 and 2008 have some statistical differences. Additionally, 

for the 24-hour tests of 1996 and 1997, it was shown that the RMS of the AR residuals also have 

significance dependence on the differential temperature. 

In the statistical modeling for feature classification step of the SHM-SPR paradigm, the machine 

learning algorithms for data normalization, namely, the MSD-, SVD-, AANN-, and FA-based were 

used to test their applicability on real-world data. Note that it was observed some signs of structural 

degradation in 2008, mainly the joints were filled with debris and the pavement showed some signs of 

surface cracking. Nonetheless, the data from 1996 and 1997 were considered to represent normal 
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condition of the structure and the machine learning algorithms were used to verify (i) if the algorithms 

are able to remove the changes of the operational and environmental conditions from the features and 

(ii) if the tests from 2008 are statistically different to be considered outliers. To achieve that, the 

natural frequencies and AR parameters were tested as damage-sensitive features, because the former is 

still the most used one and the latter have been proposed as an alternative to detect damage in civil 

infrastructure. The main conclusions of this study can be summarized as follows. In terms of an 

overall observation, the analysis showed that the algorithms are able to normalize the normal condition 

data, even when data from 2007 are not included in the training phase. However, in terms of 

classification performance of the 2008 data, the results were not consistent within each type of feature 

and algorithm used. Nevertheless, it was observed a tendency among the algorithms to classify the 

2008 data as outliers when using the natural frequencies and inliers when using the AR parameters. 

Assuming that the structure is undamaged, for the AR parameters, those results are an indication that 

the algorithms are able to remove the variability caused by the operational and environmental 

variability from the extracted features. However, the results from the MSD-based algorithm suggest 

more sensitivity of this algorithm to give false-positive indications of damage when data from the 

undamaged condition are not represented in the training phase. Actually, this sensitivity might be a 

limitation in real-world applications, because it is unlikely to obtain the same responses twice under 

similar operational and environmental conditions due to the uncertainty of several unmeasured factors 

present in the structures. Additionally, a study carried out to evaluate the performance of the AANN- 

and FA-based algorithms, for varying number of modeled factors, showed that the AANN-based 

algorithm performed consistently when using one or two nodes in the bottleneck layer to ideally 

represent the temperature or temperature and humidity. However, the FA-based algorithm (using 

natural frequencies) outputted different results when using one or two nodes, raising challenges of 

setting the appropriate number of factors for real world applications.  

This study intended to highlight the applicability of the feature extraction techniques and machine 

learning algorithms on real-world data rather than to be used as a comparative study. Note that the 

damage-sensitive features might not be directly compared, because the natural frequencies are a global 

damage-sensitive feature that were estimated using response time series at several locations. 

Conversely, the AR parameters are local damage-sensitive features that characterize the response at 

one node. Recall that, and as suggested by this chapter, these algorithms have potential problems if the 

training data are only representative of a limited range of operational and environmental variability. 

Thus, one should note that with these algorithms there is no guarantee that they will work effectively 

when new data corresponds to operational and environmental conditions not used in the training 

phase. Regardless of the classification carried out in this chapter, one should be aware that the data 

used in the training and test phases were not sufficient to establish with high confidence that the 

statistical changes in the data from 2008 are correlated with damage. Moreover, the main purpose of 
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this application was to show the limitations and challenges of the machine learning algorithms applied 

to real-world data, rather than effectively classify the data from 2008 as damaged. 

Finally, based on the experience gained in Chapter 4 and 5, the author herein outlines a possible 

procedure to design the training process in future data normalization processes: 

(i) measurement of response data (e.g. accelerations and strains) at several locations in the 

structure; 

(ii) measurement of operational and environmental factors (e.g. temperature and humidity) at 

several locations; this procedure is important to better take into account the variability that 

influences the process; it can potentially be used to form look-up tables and/or to quantify 

the number of independent factors affecting the structural responses; 

(iii) the measurements should be representative of several cycles; at least two cycles are 

recommended, which one might be used to establish the normal condition (training phase) 

and another to verify the existence of damage or structural degradation (test phase); note 

that, the data should be collected when the structure is thought to be undamaged; when 

possible, it is recommended that data should be collected in the early times of operation; 

this step is extremely important to establish the normal condition of the structure; recall that 

the damage detection implicit in the SHM-SPR paradigm is based on comparison between 

two states; 

(iv) the definition of thresholds is of extreme importance for reliable classification; a problem 

that often confronts the researchers is when to consider re-computing the thresholds; 

initially, the thresholds need to be established assuming that both the structure and the SHM 

system are undamaged; however, because of normal aging of the structures and systems, 

one should evaluate the need to re-calculate the thresholds every time a statistically 

significant sign of instability is detected; however, this decision needs to be backed with 

exhaustive visual inspections and/or appropriate NDT. 

5.6 Contributions 

The main contribution of this chapter is the extension of the SHM-SPR paradigm to real-world data 

collected when the structure is thought to be undamaged, namely (i) applicability of the AR model to 

extract damage-sensitive features; and (ii) applicability of the machine learning algorithms to remove 

the effects of the operational and environment variations from the sensors readings without direct 

measurement of those variations. 

 





 

6. CONCLUSIONS, CONTRIBUTIONS, AND FUTURE RESEARCH 

6.1 Conclusions and Contributions 

In any real-world structure, the separation of changes in sensor readings caused by damage from those 

caused by changing operational and environmental conditions is one of the biggest challenges for 

transitioning SHM technology from research to practice. To address that issue, herein the SHM 

process was posed in the context of the SPR paradigm. In the hierarchical structure of damage 

identification, this dissertation was motivated by the need for robust incipient vibration-based damage 

detection methods. Therefore, it is mainly concerned with detection of damage in the structures. 

Recognizing the applicability of the SHM-SPR paradigm for civil infrastructure, this dissertation 

presented statistical methods adopted from the machine learning field and tested their applicability to 

data measured on civil structures. Even though this procedure might be applied to structures of 

arbitrary complexity, the procedures are especially posed for SHM bridge applications. The AR model 

was the focus of special attention. The machine learning algorithms for data normalization (based on 

AANN, FA, MSD, and SVD) were also the focus of special attention because they permit one to 

separate changes in the structural responses caused by the operational and environmental variations 

from changes caused by damage, without the need to measure the operational and environmental 

variations such as temperature and humidity. At the same time, a new algorithm was proposed for 

feature extraction that uses the state-space reconstruction from response time series. Basically, this 

algorithm compares predicted attractors using a MAR model whose parameters encode the baseline 

condition of the structure. 

The applicability of the SHM-SPR paradigm for damage detection was first tested on standard data 

sets from a laboratory base-excited three-story frame structure. Essentially, this analysis was important 

to bridge the gap between laboratory-based applications to data from real-world structures. The 

analysis on data from both conditions (undamaged and damaged) confirmed the usefulness of the AR 

models to extract damage-sensitive features and the machine learning algorithms to remove the effects 

of the operational and environmental variations from the extracted features. The AR model was shown 

to be useful feature extraction technique for civil infrastructure SHM applications based on three main 

reasons: (i) they are sensitive to damage when it manifests in the form of nonlinearities or transitions 
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between two states; (ii) the extraction of features only depend on response time series data; and (iii) 

simple and easy implementation. Additionally, it was shown that the AR models might be useful to 

address the first two levels in the hierarchy structure of damage identification, namely, damage 

detection and localization. The comparison of the machine learning algorithms in the context of outlier 

detection highlighted the MSD-based algorithm as the best in terms of the classification performance, 

reduced computational efforts (during both training and test phases), and the fact that no assumptions 

are required regarding its architecture. Note that those facts, along with the simplicity, make the MSD-

based algorithm also a better choice for implementation on current embedded hardware. Additionally, 

a study carried out permitted to draw a direct correlation between the optimal AR model order given 

by an information criterion technique and the classification performance of the MSD-based algorithm, 

even when using non-Gaussian multi-dimensional feature vectors to set the normal condition. The 

analysis on the standard data sets also validated the applicability of the MAR model to predict the state 

space of a dynamical system and to extract damage-sensitive features using a local embedding. The 

performance of this algorithm was also tested in the context of outlier detection. Actually, when using 

these features for outlier detection, they were shown to be more sensitive to damage than other well-

known methods. Finally, note that this analysis on standard data sets highlighted that real-world 

structures might require a high density of sensors to detect and/or locate damage throughout the 

structure. 

To the extent possible, all SHM research should be validated using data from real-world structures. 

Therefore, the applicability of the SHM-SPR paradigm on a real-world structure was demonstrated on 

data from one span of the Alamosa Canyon Bridge assuming that the structure was in its undamaged 

condition, nonetheless in the presence of operational and environmental variability. The differential 

temperature across the deck was shown to be one of the factors driving changes in the structural 

properties. In this case, the modal analysis and the AR model were used to extract damage-sensitive 

features. The applicability of the AR models on impulse responses was successfully demonstrated. 

The machine learning algorithms were also applied to remove the effects of the temperature on the 

extracted features. The results were shown to be a function of the type of the damage-sensitive feature 

used. Actually, the classification performance for a given level of significance showed the tests from 

2008 as outliers when using the natural frequencies. However, in the case of the AR parameters, 

although the parameters from 2008 highlighted some statistical changes compared with 1996 and 

1997, after normalization, a tendency to classify the tests from 2008 as inliers was observed. However, 

the results from the MSD-based algorithm suggest more sensitivity of this algorithm to give false-

positive indications of damage when data from the undamaged condition are not represented in the 

training phase. Actually, this sensitivity might be a limitation in real-world applications, because it is 

unlikely to obtain the same responses twice under similar operational and environmental conditions 

due to the uncertainty of several unmeasured factors present in the structures. Furthermore, in terms of 
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a global observation for both features, all the machine learning algorithms were shown to have a good 

performance to normalize the data from the normal condition. This result shows the applicability of 

these machine learning algorithms for real-world applications when the training data is representative 

of the operational and environmental variability present in the structures. 

6.2 Future Research 

The challenges posed by the Silver Bridge collapse are not dissimilar to the issues facing present day 

bridge owners. In the case of the USA, how should the owners manage an aging Interstate system, 

when roughly 30% of its bridge inventory is rated as “structural deficient”? In the case of Portugal, 

should the owners invest in monitoring systems to avoid fatalities like in the Hintze Ribeiro Bridge 

collapse in 2001? How should future research on SHM be used to address the inevitable degradation 

of existing bridges around the world? 

The current practise of visual inspection has been identified as a shortcoming in bridge asset 

management. At the 50
th

 anniversary of the Interstate Highway System, Walther and Chase [8] stated 

that despite the advances in BMS modeling, the condition assessment activities associated with NBIS 

and BMS still rely heavily on visual inspections, which inherently produces widely variable results. 

The same authors stressed that the challenge would be to develop better assessment methodologies 

that can generate better prediction models to support the owners’ decisions regarding bridge safety 

assessment and maintenance. Moreover, research findings from a comprehensive study conducted by 

the FHWA, on the reliability of the visual inspection method of highway bridges, found significant 

variability of the condition rating assignments. For instance, the condition rating system requires that 

inspectors assign a rating from zero to nine, with zero representing a failed condition and nine 

representing excellent condition. The study concluded that 95% of the primary element condition 

ratings for individual bridges would vary within two rating points of the average. Moreover, the 

inspectors normally hesitate to assign “low” or “high” condition ratings and, consequently, the rating 

tend to be grouped around the middle of the scale [144]. Visual inspections also cannot detect hidden 

deterioration or damage. For instance, it is difficult to simply look at the bridge and say that one pier 

has settled unless the damage is severe. Additionally, frequently the inspections are restricted to some 

parts of the bridges due to access constraints. Therefore, how can new SHM research introduce 

quantitative data for bridge management? 

Improvements in damage detection and quantitative measures are needed to optimize BMS [8]. It is 

the author’s belief that any proposal for bridge safety and maintenance, and therefore asset 

management, should be based on results from long-term monitoring as well as visual inspections along 

with NDT. This approach will contribute to a much more reliable asset management. Notice that the 

subjective knowledge of practicing engineers will be always present at two levels: visual inspection 
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and data analysis. However, the engineers and/or owners will be proveded with more quantitative 

information to support their decisions. 

Over the last decade, the research conducted in the SHM and asset management fields has been 

conducted separately. Therefore, it is the author’s belief that both fields should be joined together to 

develop a more reliable bridge safety and maintenance process. As a future research topic, the SHM 

results should be incorporated into the sufficiency rating (SR) given by the BMS.  

In the USA, states annually submit to the FHWA all the required information for each bridge based on 

the visual inspections results. Then, the FHWA uses those results to calculate the SR and determine 

which bridge may need repair or replacement. Basically, the SR formula described in [145] takes into 

account four separate factors to obtain a score, indicative of bridge sufficiency to remain in service, 

which ranges between 0% (entirely insufficient or deficient bridge) and 100% (entirely sufficient 

bridge) 

    

! 

SR = S
1
+ S

2
+ S

3
" S

4
, (6.1) 

where S1 is the Structural Adequacy and Safety (0-55%), S2 is the Serviceability and Functional 

Obsolescence (0-30%), S3 is the Essentiality for Public Use (0-15%), and S4 corresponds to Special 

Reductions (0-13%, only when S1+S2+S3 "50%).  

In order to incorporate the quantitative information from SHM systems, a correction factor 

! 

"  can be 

introduced into Equation (6.1) to increase the reliability of S1 and when the bridge safety is the main 

concern for deploying a SHM system. Thus, a new health sufficiency rating (HSR) formula can be 

derived in the form of 
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Note that the correction factor might be tailored to better gather damage-related information or to 

address the specific reasons for deploying SHM systems. For instance, another correlation factor 

might be used to correct S2, when the goal of the SHM system is to preserve the serviceability of the 

bridge. Based on the experience gained in statistical modeling for feature classification, an approach 

for the correction factor might be based on the machine learning algorithms described in Section 3.3. 

For the MSD-based algorithm, the factor might be given by 

    

! 

" = f (DI , pvalue) . (6.3) 

The weight of this correction, or the maximum reduction rate, would depend on the reliability of the 

SHM system and on the type of structure. 
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In addition to the coupling of SHM-BMS described above, it is the author’s belief that, in order to 

transpose SHM process from research to practice, it is crucial to address specifically the following 

issues: 

• create an international task force on a project to develop a full-scale test-bed structure to 

validate current SHM technology and their ability to address data storage, maintenance, and 

bridge-type damage; for instace, it can potentially be performed on bridges about to be 

demolished; 

• design should promote a holistic approach to SHM that includes optimal sensor placement and 

sensor validation [15, 146], implying an all-inclusive design perspective where the structure 

and sensors must be seen as a whole; 

• promote multi-disciplinary teams to truly integrate hardware and software SHM solutions; few 

research programs have addressed both the hardware and software components of the SHM 

process; additionally, the sensing systems have not been developed addressing issues related 

to SHM, rather the community usually adapts commercial off-the-shelf sensing systems; so, 

hardware and embedding software must be developed in an integrated manner; 

• integrate NDT technology (sensors and/or actuators) to detect growing damage;  

• address the lifespan of the bridges and SHM systems; a current lifespan of a bridge is over 100 

years; the lifespan of a data acquisition system might be 1/10 of the bridge structure; 

additionally, often the first signs of structure degradation might only be visualized 20 years 

after construction; thus, sensors for long-term SHM must be of high durability to cover at least 

one rehabilitation cycle; 

• need of densely distributed sensor networks to better cover a relatively large area of the 

structure; traditionally, the SHM process is performed in a global basis with a reduce number 

of sensors distributed over a relatively large area of the structures; however, many studies 

have reported that in civil engineering infrastructure such a strategy does not detect local 

damage at an early stage; this early damage detection is crucial to avoid damage 

accumulation; at the same time smaller and more cost competitive sensors need to be 

developed; 

• establish the baseline of each new bridge to assess the structural integrity over time; it is a rule 

of thumb that the baseline condition must be established based on monitoring from at least one 

year to capture seasonal variability [62]; 

• assume a probabilistic approach over a deterministic one, because there are many uncertainties 

in current procedures at both software and hardware; 
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• and finally, combine different machine learning algorithms to detect damage in the structures; 

furthermore, cross-diagnosis using multiple algorithms is important to increase the likelihood 

to detect damage in the structures. 
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APPENDIX A 

SHMTools Software 

 

A.1.   Introduction and Overview 

SHMTools is a Matlab package to support the SHM process. The package provides a set of 

functions organized into modules according to the three primary steps of the SHM statistical 

pattern recognition paradigm: data acquisition, feature extraction, and statistical modeling for 

feature classification (or damage detection). A modular function design and a set of 

standardized parameter formats make it easy to assemble and test customized SHM process. 

SHMTools is made available for free by the Engineering Institute at Los Alamos National 

Laboratory in collaboration with University of California in San Diego. It is the beginning of a 

larger effort to collect and archive proven approaches to SHM for re-use by the research 

community. Therefore, the package includes various statistical techniques and algorithms with 

source codes, along with structural data sets to serve as benchmarks for the evaluation of 

algorithms. 

The software package can be downloaded from http://institute.lanl.gov/ei. The package includes 

function library, documentation, and standard data sets as shown in Figure A.1.  

 

Figure A.1 Organizational chart of the SHMTools package. 



A.2.   Function Library 

All SHM functions are under the Functions directory at the root level. These functions are 

divided into three groups as follows. 

A.2.1 Data Acquisition 

These functions provide basic services for common SHM related data acquisition tasks. These 

functions are divided into three categories: 

• Optimal Sensor Placement – functions for designing modal analysis-based sensing 

networks; 

• Hardware Interfacing – functions for interfacing with and acquiring data from common 

data acquisition hardware; 

• Sensor Diagnostics – functions for assessing sensor conditions through impedance-

based methods. 

A.2.2 Feature Extraction 

The functions in this group take the data (generally in the form of time series) and extract 

features that can be used in the detection phase. The feature extraction algorithms are divided 

into three groups:  

• Active Sensing – a set of functions for managing, visualizing, and extracting features 

for ultrasonic wave propagation-based active sensing; 

• Modal Analysis – these functions take in either a matrix of time series, or frequency 

response functions, and return modal properties such as mode shapes, natural 

frequencies, and damping ratios; 

• Time Series – these functions take in a matrix of time series, and return a matrix of 

feature vectors.  

A.2.3 Statistical Modeling for Feature Classification 

The damage detection algorithms work in two phases. The training phase takes feature vectors 

from the normal condition (state conditions under operational and environmental effects when 

the structure is undamaged), and builds a model of the undamaged condition. This model is 

subsequently used in the detection phase to classify future feature vectors as normal/undamaged 

or abnormal/damaged conditions. The detection algorithms are organized in three groups: 



• Nonparametric – no distributional assumption is made about the phenomena generating 

the undamaged data; 

• Semiparametric – here the data space is partitioned into multiple cells (group of feature 

vectors) using any of many possible procedures, and a parametric model (e.g. a 

Gaussian) is learned for each cell; 

• Parametric – the algorithms are built with an underlying assumption about the 

phenomena generating the data. 

The algorithms from each group come in pairs of “learn” and “score” functions. For instance, in 

the parametric group, the learnMahalanobis_shm function learns the parameters of a 

Mahalanobis distance function from the training data provided; then, the 

scoreMahalanobis_shm function uses those parameters to evaluate the similarity of future 

feature vectors with the original training data.  

As a convention, the scores returned by a “score” function are interpreted as follows: the higher 

the score of a sample, the closer the sample is to the normal condition. This way detection 

simply consists of thresholding the score values, i.e. every score under a certain threshold is 

indicative of damage. (However, throughout this dissertation the higher the scores are indicative 

of abnormal condition.) 

The detection routines are customizable in that the user could pick from various sub-routines to 

implement a detection algorithm. For instance a semiparametric routine can be assembled by 

picking from a choice of partitioning functions, a choice of parametric models (such as a 

Gaussian) to obtain a detector that consists of first partitioning the data space, then learning the 

particular parametric model on each cell of the partition.  

By default mechanism, the user calls assembleOutlierDetector_shm which will navigate the 

various options available and produce a training routine called trainOutlierDetector < ... > (with 

appended time stamp). This training routine will take in the training data and learn a model of 

the normal conditions according to the various choices made during assembly, and also 

produces a threshold for future detections. The learned model and threshold are subsequently 

used by detectOutlier_shm to classify future feature vectors as undamaged or damaged. A 

training routine (trainOutlierDetector_shm) is also available by default, which implements a 

semiparametric detector consisting of fitting a Gaussian mixture model to the training data after 

partitioning with the kmeans_shm function. 

 



A.3.   Documentation 

All documentation can be found in the Documentation directory at the root directory level. The 

three main documents are: 

• Parameter Standards – this document provides general parameter standards to facilitate 

communication between functions; 

• Function Help – it provides full details about all the available functions; 

• Example Usages – extensive documentation that drives the user through various ways 

to assemble functions using standard data sets (Figure A.2). 

 

 

 

 

 

 

 

 

   

Figure A.2 Encyclopedia of documented example usages. 

 

A.4.   Standard Data Sets 

The software is prepared to have as many as desirable standard data sets. However, the data sets 

from the base-excited three-story frame structure are the default available ones. 

 

 


