

Advanced Membranes to recover lost hydrogen and remove carbon dioxide from the dominant hydrogen production process

LAUR#: LA-UR-23-25324

TECHNOLOGY SNAPSHOT

Publication date: May 17, 2023

APPLICATION AREA

- **Climate and Energy Transition** Sector: Hydrogen Futures Area: Industry: Oil and Gas
- Market: Steam methane reform (SMR)

PARTNERSHIP OPPORTUNITIES

Los Alamos is interested in establishing partnerships with hydrogen producers for pilotscale demonstration of the technology.

- **x** Cooperative Agreement
- X License
- **Tech Assistance**
- X Start-up Opportunity

CONTACT

BDE Name: Marc Witkowski Email: witk@lanl.gov Phone: (505) 665-8315

TECHNOLOGY READINESS LEVEL: 4

Validated (functionality) in lab research

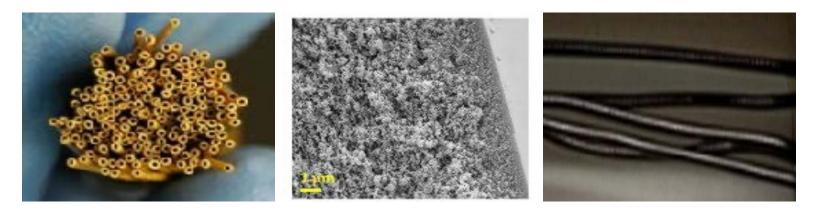
IP information

Patent Number: 10,071,345, additional patent pending (S167623)

OVERVIEW

Climate change is a significant threat to the planet. Hydrogen (H_2) as a substitute to existing energy sources is one valuable solution to combat climate change. Steam methane reform (SMR) is currently the dominant H₂ production process. However, there is an opportunity to make this process more efficient and profitable. During production, approximately 25% (2.5 MT/year) H₂ goes into the waste stream representing ~\$25B in lost annual revenue. The process also emits 95M tons of uncaptured CO₂ representing further missed revenue potential.

H₂RECO₂VERY was developed with this exact problem. This advanced membrane can recover almost all the H₂ currently lost, increasing profits for producers. It can also capture close to all of CO₂ currently emitted, which can be sequestered or to sold to meet industrial demand. In short, H₂RECO₂VERY makes H₂ manufacturing more efficient and profitable. Los Alamos has a prototype which recovers H₂ and removes CO₂ efficiently at lab scale and is seeking an industrial partner for pilot-scale demonstration


ADVANTAGES

- Recovers nearly 100% of H₂ from lost/waste H₂ stream
- Recovers close to all of CO₂ emissions
- Modular retrofit to existing SMR Process
- Significant potential to scale up <
- \square Tunable structural and physical properties allow the process to impact H2 production from Methane Pyrolysis

DISCLAIMER: THE INFORMATION PROVIDED IS FOR INFORMATIONAL PURPOSES ONLY. THE TECHNOLOGY, RESEARCH, AND INTELLECTUAL PROPERTY DESCRIBED ARE SUBJECT TO ONGOING RESEARCH AND DEVELOPMENT AT LOS ALAMOS NATIONAL LABORATORY, AS MANAGED AND OPERATED BY TRIAD NATIONAL SECURITY, LLC (TRIAD). TRIAD AND ITS MEMBERS, OFFICERS, EMPLOYEES, AND AGENTS, SPECIFICALLY DISCLAIM ANY REPRESENTATION, WARRANTY, OR GUARANTEE AS TO THE SAFETY, EFFICACY, USEFULNESS, BENEFIT, PERFORMANCE, SUCCESS, OR ANY PARTICULAR OUTCOME OF THE TECHNOLOGY, RESEARCH, OR INTELLECTUAL PROPERTY RELATING HERETO, IN WHOLE OR IN PART.

TECHNOLOGY DESCRIPTION

The advanced membrane technology developed at Los alamos is comprised of carbon molecular sieve hollow fiber membranes which feature a highly tunable structural and physical properties that can efficiently recover H_2 and CO_2 from tail (or waste) streams from the dominant hydrogen process – SMR. As H_2 and CO_2 pass through the membrane, the membrane construct allows H_2 only to pass through to be filtered on one side. CO_2 is collected on the other side. The unique carbon membranes can significantly increase H_2 production and decrease CO_2 pollution.

MARKET APPLICATIONS

This technology is ideal for energy companies currently producing hydrogen via SMR. The membranes are encased into modules and the module system is retrofit into the waste stream of existing SMR processes. The global hydrogen generation market size is expected to surpass \$219.2 billion (USD) by 2030 and the carbon capture market is projected to reach US \$35 billion by 2032.

Existing SMR plants are the initial target for H₂RECO₂VERY; however, with major government and private investment in hydrogen technologies this is just the beginning. This membrane technology can be fine-tuned to support next generation hydrogen production processes - methane pyrolysis - among other applications including biomass and waste gasification, green hydrogen geological storage, H₂ recovery plants and carbon capture at hydrogen plants.

NEXT STEPS

This technology has been evaluated in the lab under simulated process-relevant conditions. Los Alamos has an MVP which efficiently recovers H_2 and removes CO_2 at lab scale. Los Alamos is seeking commercial partners to further develop various process prototypes from pre-pilot to full pilot scale development and implementation.

SELECTED PUBLICATIONS

R.P. Singh, G.J. Dahe, K.W. Dudeck, K.A. Berchtold, Macrovoid-free high performance polybenzimidazole hollow fiber membranes for elevated temperature H2/CO2 separations, International Journal of Hydrogen Energy, 45 (2020) 27331-27345.

R.P. Singh, G.J. Dahe, K.W. Dudeck, C.F. Welch, K.A. Berchtold, High Temperature Polybenzimidazole Hollow Fiber Membranes for Hydrogen Separation and Carbon Dioxide Capture from Synthesis Gas, Energy Procedia, 63 (2014) 153-159.

DISCLAIMER: THE INFORMATION PROVIDED IS FOR INFORMATIONAL PURPOSES ONLY. THE TECHNOLOGY, RESEARCH, AND INTELLECTUAL PROPERTY DESCRIBED ARE SUBJECT TO ONGOING RESEARCH AND DEVELOPMENT AT LOS ALAMOS NATIONAL LABORATORY, AS MANAGED AND OPERATED BY TRIAD NATIONAL SECURITY, LLC (TRIAD). TRIAD AND ITS MEMBERS, OFFICERS, EMPLOYEES, AND AGENTS, SPECIFICALLY DISCLAIM ANY REPRESENTATION, WARRANTY, OR GUARANTEE AS TO THE SAFETY, EFFICACY, USEFULNESS, BENEFIT, PERFORMANCE, SUCCESS, OR ANY PARTICULAR OUTCOME OF THE TECHNOLOGY, RESEARCH, OR INTELLECTUAL PROPERTY RELATING HERETO, IN WHOLE OR IN PART.

