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Objective

• Introduction to modeling
– An example
– Strain, Equilibrium
– Solution
– An easier solution

• Solution Methods
– Finite Difference
– Weighted Residual
– Finite Element
– Others
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Objective

• The reality of FE modeling
– Using the finite element method
– Developments in modeling
– Simulations



Introduction

The modeler:

Reality is intractable.

The experimentalist:

It is what it is.
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Your Chair

Will your chair hold you?
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Your Chair

Sit Down
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Your Chair

It depends on which chapter in 
Shigley & Mischke we’re studying.
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Your Chair
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Your Chair
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Your Chair
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Your Chair
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Your Chair
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Your Chair

aK ⋅= πσ
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Your Chair
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Crystal Structure
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Crystal Structure
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Macroscopically → σ = E ε

Mesoscopically:

t

l

σσ
El �= Et

{σ} = [E] {ε}
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Modeling your Chair

• Boundary conditions
• Geometry
• Important Physics
• “Complexity”

• Normal loads
• Bending loads
• Stress concentration
• Dynamics
• Fracture
• Fatigue
• Inhomogeneous



Models

What decides the kind of model we need? → It all depends on the
results you want.
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F

σ(t) = F(t)
A

σ σ + dσ
dx

dx

dx

∂2u
∂x2 = 1

c2
∂2u
∂t2
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What goes into a model? Physical Description

• Geometry

– length of bar

– location of discrete masses

• Material description

– mass

– constitutive model, E, σy

– dissipation
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What goes into a model? Physical Description

• Loading

– P = C

– P = P(t)

• Boundary Conditions

– δ(L) = 0

– δy = 0 or; εy = νεx
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What goes into a model? The Physics

• Newtonian Mechanics

–
∑ �F = m�a

• Celestial Mechanics

– �F12 = Gm1m2
r212

�r12

• Energy Conservation

– 1st Law of Thermodynamics
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What goes into a model? The Solution

• Analytical

– the exact solution to the model

• Approximate

– ε = ∂u
∂x only good for small ε

• Numerical

– often combines both approximation and analytical models
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What goes into a model? The Complexity

• Geometry

– l = l0
• Material

– σ = Eε

• Loading

– P(t) → Fourier Series

• Boundary Conditions

– δ(L) = 0 ����������
����������
����������

�������������
�������������
�������������
�������������
�������������

F

• Physics

– Hooke’s Law is a macroscopic model of inter-molecular

forces.

• Solution

– The solution method often grows to fit the solution power.
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Split Hopkinson Pressure Bar
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Split Hopkinson Pressure Bar

x X

limx→0
X−x

x = ∂u
∂x ⇒ spatial rate of change of

displacement
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Split Hopkinson Pressure Bar

F

F
δ(x) = F

AEx

But, F
A = σ

so, δ(x) = σ
Ex = εx

∂
∂xδ(x) = F

AE = ε
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Split Hopkinson Pressure Bar

Equilibrium on a differential element

σ σ + dσ
dx

dx

dx

m = ρV = ρ dx dy dz∑
F = ma = (ρ dx dy dz) a

σ = Eε = E∂u
∂x

−σ dy dz +
(
σ + ∂σ

∂x dx
)

dy dz = (ρ dx dy dz) ∂2u
∂t2

−σ dy dz + σ dy dz + ∂σ
∂x dx dy dz = (ρ dx dy dz) ∂2u

∂t2

∂σ
∂x dx dy dz = (ρ dx dy dz) ∂2u

∂t2

∂σ
∂x = ∂

∂x

(
E∂u

∂x

)
= E∂2u

∂x2 = ρ ∂2u
∂t2

LADSS
Computational Mechanics Jobie M. Gerken



Split Hopkinson Pressure Bar

The Wave Equation:

∂2u
∂x2 = 1

c2
∂2u
∂t2

c2 = E
ρ

This is a differential equation that describes

the pointwise motion of our rod.

LADSS
Computational Mechanics Jobie M. Gerken



Split Hopkinson Pressure Bar

Solution by inspection

σ

x

σ

x

σ

x > ct σx = 0

x ≤ ct σx = σ

ε = σx
E u =

∫
ε dx
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What constitutes a solution? The governing equations are satisfied.

The strain displacement relationship:

In 1-D:

limx→0
X−x

x = ∂u
∂x

In 3-D :
εij = 1

2

[
∂ui
∂xj

+
∂uj
∂xi

]
,

i = 1,2,3; j = 1,2,3

ε11 =
[
∂u1
∂x1

]
; ε22 =

[
∂u2
∂x2

]
; ε33 =

[
∂u3
∂x3

]

ε12 = ε21 = 1
2

[
∂u1
∂x2

+ ∂u2
∂x1

]

ε23 = ε32 = 1
2

[
∂u2
∂x3

+ ∂u3
∂x2

]

ε31 = ε13 = 1
2

[
∂u1
∂x3

+ ∂u3
∂x1

]

LADSS
Computational Mechanics Jobie M. Gerken



A solution

Equilibrium → equation of motion

In 1-D:

∂2u
∂x2 = 1

c2
∂2u
∂t2

∂σ
∂x = ρa

In 3-D :
∂σij
∂xj

= ρai

∂σ11
∂x1

+ ∂σ12
∂x2

+ ∂σ13
∂x3

= ρa1

∂σ21
∂x1

+ ∂σ22
∂x2

+ ∂σ23
∂x3

= ρa2

∂σ31
∂x1

+ ∂σ32
∂x2

+ ∂σ33
∂x3

= ρa3
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A solution

Constitutive behavior → Hooke’s Law

In 1-D:

εx = σx
E

εy = εz = −νεx

In 3-D :
σij = Cijklεkl
or
εij = 1+ν

E σij − ν
Eσkkδij

ε11 = 1+ν
E σ11 − ν

E (σ11 + σ22 + σ33)

ε22 = 1+ν
E σ22 − ν

E (σ11 + σ22 + σ33)

ε33 = 1+ν
E σ33 − ν

E (σ11 + σ22 + σ33)

ε12 = ε21 = 1+ν
E σ12; ε23 = ε32 = 1+ν

E σ23; ε31 = ε13 = 1+ν
E σ31
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Solve these equations for a solution:

Strain Displacement: εij = 1
2

[
∂ui
∂xj

+
∂uj
∂xi

]

Equilibrium:
∂σij
∂xj

= ρai

Constitutive Law: σij = Cijklεkl

These are the strong forms of the governing

equations → Differential equations that must be

solved pointwise in time.
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Weak form

It is sometimes easier to solve these equations in an aver-

age sense than it is to solve them pointwise. This can be

done with an integral statement of the governing equa-

tions. Then the integral over some volume of material

satisfies the governing equations.

An energy method → If we could find an equation for

the energy in a body, then minimization of this equation

would give us an equilibrium state.
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Weak form

σ
��
��
��
��
��
��

x

δ
u(x = L) = δ

u(x = 0) = 0

ε = ∂u
∂x = δ

L

σ = Eε

∂σ
∂x = ρ∂2u

∂t2

Lets perturb the solution by a small amount δu. δu sat-

isfies the boundary conditions but is otherwise arbitrary.

These virtual displacements cause the internal and body

forces to do virtual work that we’ll call δW .

δW =
∫
V

ρ
∂2u

∂t2
δu dV +

∫
V

∂σ

∂x
δu dV
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Princple of Virtual Work

δW =
∫
V

ρ
∂2u

∂t2
δu dV +

∫
V

∂σ

∂x
δu dV

• PVW is a volumetric statement of the work done on a body by a
set of virtual displacements.

• Equilibrium is a state of minimum energy, therefore, PVW must be
a minimum for an equilibrium state.

– In fact δW = 0 → δu cannot add energy to the system because
there is only 1 equilibrium state in the vicinity of u.

• PVW is a function of a single variable u, methods of solution will
yield u as a result.

• In a similar manner, we could formulate an energy function with 2
or 3 basic variables

– Two Field → u − p; u − ε

– Three Field → u − p − εv; u − ε − σ
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Solution Methods
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Solution Methods - Finite Difference

Numerical approximation to the strong form of the gov-

erning equations. Discretize the equations in space and

time → the equations are converted from pointwise dif-

ferential equations to finite difference equations.

∂2u

∂x2
= ρ

∂2u

∂t2
→ ∆(∆u)

(∆x)2
= ρ

∆(∆u)

(∆t)2

FD has been a dominant method in numerical solution

techniques. It is a natural approximation for the governing

equations and the concept is simple.
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Finite Difference

In short, FD;

• Utilizes uniformly spaced grids of nodes,

• At the nodes, the necessary differences are approximated by the

nodal value at that node and the adjacent nodes,

• This creates a system of algebraic equations,

• The system of equations is solved for the dependent variable.

F
��
��
��
��
��
��

��
��
��
��
��
��

∂2u

∂x2
= ρ

∂2u

∂t2
→ ∆(∆u)

(∆x)2
= ρ

∆(∆u)

(∆t)2
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Finite Difference

Taylor series approximation of u(x + h):

u(x + h) = u(x) +
h

1!
u′(x) +

h2

2!
u′′(x) + . . . =

∞∑
n=0

hn

n!
un(x) = u(x) +

h

1!
u′(x) + O(h2)
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Finite Difference

h

��
��
��

u

x

Forward difference approx. of du
dx:

du

dx
≈ u(x + h) − u(x)

h
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Finite Difference

h

��
��
��

u

x

Backward difference use u(x − h):

du

dx
≈ u(x) − u(x − h)

h
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Finite Difference

h

��
��
��

u

x

Central difference:

du

dx
≈ u(x + h) − u(x − h)

2h
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Finite Difference

Approximate d2u
dx2

u(x + h) ≈ u(x) +
h

1!
u′(x) +

h2

2!
u′′(x) +

h3

3!
u′′′(x)

u(x − h) ≈ u(x) − h

1!
u′(x) +

h2

2!
u′′(x) − h3

3!
u′′′(x)

u(x + h) + u(x − h) ≈ 2u(x) + h2u′′(x)

d2u

dx2
≈ u(x + h) − 2u(x) + u(x − h)

h2
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Finite Difference

In a similar manner, du
dt

Forward difference:

du

dt
≈ u(x, t + l) − u(x, t)

l

Backward difference:

du

dt
≈ u(x, t) − u(x, t − l)

l

Central difference:

du

dt
≈ u(x, t + l) − u(x, t − l)

2l

d2u

dt2
≈ u(x, t + l) − 2u(x, t) + u(x, t − l)

l2
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Finite Difference - An Example

h
��
��

1 2 3 4 5

δ

d2u

dx2
=

1

h2

(
u(xi−1) − 2u(xi) + u(xi+1)

)
= 0

u(xi−1) − 2u(xi) + u(xi+1) = 0

u(x1) = δ; u(x5) = 0
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Finite Difference - An Example

h
��
��

1 2 3 4 5

δ

Node 2:
u(x1) − 2u(x2) + u(x3) = 0

−2u(x2) + u(x3) = −δ

Node 3:
u(x2) − 2u(x3) + u(x4) = 0

Node 4:
u(x3) − 2u(x4) + u(x5) = 0

u(x3) − 2u(x4) = 0
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Finite Difference - An Example

h
��
��

1 2 3 4 5

δ
−2u(x2) + u(x3) = −δ

u(x2) − 2u(x3) + u(x4) = 0

u(x3) − 2u(x4) = 0
 −2 1 0

1 −2 1
0 1 −2




 u(x2)

u(x3)
u(x4)


 =


 −δ

0
0





 u(x2)

u(x3)
u(x4)


 =


 −2 1 0

1 −2 1
0 1 −2



−1  −δ

0
0





 u(x2)

u(x3)
u(x4)


 =




3
4δ
1
2δ
1
4δ
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Finite Difference - Some complexities

h
��
��

1 2 3 4 5

σ

σ(x1) = σ

E
du

dx
= σ

du

dx
=

σ

E

-Neumann (natural) BCs are naturally applied → they

specify the solution variable.

-Dirichlet (essential) BCs are a little bit more difficult →
they specify a derivative of the solution variable.
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Finite Difference - Some complexities

h
��
��

1 2 3 4 5

σ

h
��
��
��

1 2 3 4 5a

du
dx

-Add node a to the mesh.
At node 1:

u(xa) − 2u(x1) + u(x2) = 0

The central difference for du
dx

du

dx
=

u(xi+1) − u(xi−1)

2h

u(x2) − u(xa)

2h
=

σ

E

u(xa) = u(x2) − 2h
σ

E

u(xa) − 2u(x1) + u(x2) = 0 → −2u(x1) + 2u(x2) = 2h
σ

E
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Finite Difference - Some complexities

Irregular spacing

��
��

1 5

σ
432

(
du

dx

)
1−2

=
u(x2) − u(x1)

h1−2


d2u

dx2



2

=
d

dx

(
du

dx

)
=

u(x3)−u(x2)
h2−3

− u(x2)−u(x1)
h1−2

h1−2 + h2−3
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Finite Difference - Some complexities

Time Dependence - The Wave Equation

∂2u

∂x2
=

1

c2
∂2u

∂t2

Explicit Method:

u(xi+1, t) − 2u(xi, t) + u(xi−1, t)

h2
=

1

c2
u(xi, t + ∆t) − 2u(xi, t) + u(xi, t − ∆t)

∆t2

c2

∆t2h2

[
u(xi+1, t) + u(xi, t) + u(xi−1, t)

]

+2u(xi, t) − u(xi, t − ∆t) = u(xi, t + ∆t)
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Finite Difference - Some complexities

Time Dependence - The Wave Equation

Implicit Method:

u(xi+1, t + ∆t) − 2u(xi, t + ∆t) + u(xi−1, t + ∆t)

h2
=

1

c2
u(xi, t + ∆t) − 2u(xi, t) + u(xi, t − ∆t)

∆t2

-The result of the above approximation is a system of

equations that can be solved for u(xi, t + ∆t).

-Explicit schemes formulate a solution at a node in terms

of explicitly known quantities.

-Implicit schemes formulate a solution at a node in terms

of quantities that are implied.

-Explicit schemes are generally limited to very small ∆t

whereas, implicit schemes are not.
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Solution Methods - Weighted Residual

Assume a general solution (e.g. u∗ to the governing equa-

tion. The difference between the expected solution and

the assumed solution is the residual.

∂2u

∂x2
− ∂2u∗

∂x2
= R

Weight R to zero in some manner so that the error be-

tween the assumed solution and the actual solution is

small over the body of interest.
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Solution Methods - Weighted Residual

The governing equation:

∂2u

∂x2
= 0

The residual:

∂2u

∂x2
− ∂2u∗

∂x2
=

∂2u∗

∂x2
= R

The trick is to try to force:

R = 0 ∀ x ∈ [Ω]

-If this is true, u∗ is an exact solution.

-This is rarely the case so we want to get close.

-In general there are two ways to approximate R = 0 in

the domain; (1)At a specific number of points, (2)In a

specific number of sub-volumes.
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Solution Methods - Collocation

δ

��
��
��
��1 2 3 4 5

1 34
1
2 14 0

u∗ = a0 + a1 x + a2 x2 + a3 x3

R =
d2u∗

dx2
= 2 a2 + 6 a3 x
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Solution Methods - Collocation

δ

��
��
��
��1 2 3 4 5

1 34
1
2 14 0

u∗ = a0 + a1 x + a2 x2 + a3 x3

R =
d2u∗

dx2
= 2 a2 + 6 a3 x

R2 = 2 a2 + 6 a3

(
3

4

)

R3 = 2 a2 + 6 a3

(
1

2

)

R4 = 2 a2 + 6 a3

(
1

4

)

u∗(1) = δ = a0 + a1 + a2 + a3

u∗(0) = 0 = a0
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Solution Methods - Collocation

δ

��
��
��
��1 2 3 4 5

1 34
1
2 14 0

2 a2 + 6 a3

(
3

4

)
= 0

2 a2 + 6 a3

(
1

2

)
= 0

2 a2 + 6 a3

(
1

4

)
= 0

a0 + a1 + a2 + a3 = δ

a0 = 0

-5 equations , 4 unknowns → over-

contrained.

-Increase order of u∗.
-Remove nodes from the domain.

-Find the best solution (e.g. least

squares)
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Solution Methods - Collocation

For simplicity, remove node 2

2 a2 + 3 a3 = 0

2 a2 +
3

2
a3 = 0

a1 + a2 + a3 = δ

→




0 2 3
0 2 3

2
1 1 1






a1
a2
a3


 =




0
0
δ




[
C−1

]
{R} = {a} →



−1

6
1
3 1

−1
2 1 0

2
3 −2

3 0






0
0
δ


 =




δ
0
0




u∗ = δx
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Solution Methods - Subdomain

Weighted Residual methods have the general form:∫
xi

W (x)R(x) dx = 0

Collocation can be viewed in the above form with

W (x) = δ(xi) =

{
1; x = xi
0; x �= xi

In the subdomain method, the problem is divided into many subdomains

and the average residual in each subdomain is forced to be zero.

W (x) =
1

∆xi

1

∆xi

∫
xi

R(x) dx = 0

LADSS
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Solution Methods - Subdomain

δ

��
��
��
��1 2 3 4 5

1 34
1
2 14 0

u∗ = a0 + a1 x + a2 x2 + a3 x3

R =
d2u∗

dx2
= 2 a2 + 6 a3 x

∫
Rdx = 2 a2 x + 3 a3 x2

LADSS
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Solution Methods - Subdomain

δ

��
��
��
��1 2 3 4 5

1 34
1
2 14 0

∫
Rdx = 2 a2 x + 3 a3 x2

D1−2 :
(
2 a2 x + 3 a3 x2

)1

3/4
= 2 a2 + 21

4 a3 = 0

D2−3 :
(
2 a2 x + 3 a3 x2

)3/4

1/2
= 2 a2 + 15

4 a3 = 0

D3−4 :
(
2 a2 x + 3 a3 x2

)1/2

1/4
= 2 a2 + 9

4 a3 = 0

D4−5 :
(
2 a2 x + 3 a3 x2

)1/4

0
= 2 a2 + 3

4 a3 = 0

LADSS
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Solution Methods - Subdomain

δ

��
��
��
��1 2 3 4 5

1 34
1
2 14 0

2 a2 +
21

4
a3 = 0

2 a2 +
15

4
a3 = 0

2 a2 +
9

4
a3 = 0

2 a2 +
3

4
a3 = 0

a0 + a1 + a2 + a3 = δ

a0 = 0

-6 equations , 4 unknowns.

-Reduce order of guess to

u∗ = a0 + a1 x.

Then,

a1 = δ
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Solution Methods - Galerkin’s Method

-We have been using u∗ = a0 + a1 x + a2 x2 + a3 x3 to approximate the

solution throughout the body.

-Another method is to approximate the solution in each domain:

u∗ =
n∑

i=1

Niai

Where n is the number of nodes in each domains, Ni are interpolation

functions, and ai are unknown node parameters (e.g. nodal displace-

ments).

-With this method, the dependent variable is determined at each node

and interpolated between nodes with the functions Ni.

-The solution is thus approximated in each domain and not throughout

the body.

-We could have used this method for the collocation and subdomain

methods, and avoided the overconstraint problems.
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Solution Methods - Galerkin’s Method

δ

��
��
��
��1 2 3 4 5

1 34
1
2 14 0

a a

2 3

2 3

For the local coordinate system

x2 = 0, x3 = ∆x:

u
x3
x2 =

(
1 − x

∆x

)
a2 +

(
x

∆x

)
a3

2∑
i=1

Niai =
[
1 − x

∆x
x

∆x

] [ a1
a2

]

Then for our 2 node element,

N1 = 1 − x

∆x
; N2 =

x

∆x
Note the properties of Ni

N1(x1) = 1; N1(x2) = 0

N2(x1) = 0; N2(x2) = 1
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Solution Methods - Galerkin’s Method

In Galerkin’s method, the weights on the residual are the interpolation

functions Ni ∫
xi

W (x)R(x) dx = 0

R(x) =
d2u∗

dx2
=

d2

dx2

∑
Niai

∫
xi

W (x)R(x) dx =
∫
xi

Nj(x)
d2

dx2

∑
Niai dx
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Solution Methods - Galerkin’s Method

Ni is linear in x, hence the second derivative vanishes. Through inte-

gration by parts:

∫
xi

Nj
d2

dx2

∑
Niai dx =

∫
xi

d

dx
Ni

d

dx

∑
Niai dx = 0

Aside:
∫

u dv = uv −
∫

v du

dv =
d2

dx2

∑
Niai u = Ni

v =
d

dx

∑
Niai du =

d

dx
Ni

And u · v vanishes by virtue of the properties of Ni
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Solution Methods - Galerkin’s Method

We can rewrite the following equation in a shortened notation∫
xi

d

dx
Ni

d

dx

∑
Ni ai dx = 0

Using the following definitions

[K] =
∫
xi

d

dx
Ni

d

dx

∑
Nidx =

∫
xi


 1

∆x − 1
∆x

− 1
∆x

1
∆x


 dx

{u} = ai =

{
a1
a2

}

Then,

[K] {u} = {0}
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Solution Methods - Galerkin’s Method

Element 1 → nodes 1,2:

∫
x1




1
∆x1

− 1
∆x1

− 1
∆x1

1
∆x1


 dx

{
a1
a2

}
=

{
0
0

}

=

[
1 −1
−1 1

]{
a1
a2

}
=

{
0
0

}

Element 2 → nodes 2,3:

∫
x2




1
∆x2

− 1
∆x2

− 1
∆x2

1
∆x2


 dx

{
a2
a3

}
=

{
0
0

}

And so on . . .
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Solution Methods - Galerkin’s Method

The global system of equations is then


1 −1 0 0 0
−1 1 + 1 −1 0 0
0 −1 1 + 1 −1 0
0 0 −1 1 + 1 −1
0 0 0 −1 1







a1
a2
a3
a4
a5




=




0
0
0
0
0




Boundary conditions: a1 = δ, a5 = 0 → remove rows 1 and 5, then rows

2 and 4 become:
2 a2 − a3 = δ; −a3 + 2 a4 = 0

The matrix equation is then
 2 −1 0
−1 2 −1
0 −1 2






a2
a3
a4


 =




δ
0
0
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Solution Methods - Finite Elements

-The basic philosophy of the finite element method (FEM) is to divide

the body into (somewhat) arbitrary and convenient subdomains (i.e.

finite elements).

-The weak form of the governing equations is then enforced over each

of these elements.

-The global solution is determined by assembling the numerical approx-

imation of each element into a global system of linear equations and

then solving the resulting matrix equation.

[K] {u} = {F}

-The Galerkin method is one way to derive the FEM equations.

-The Direct Method formulates equations based on F(δ).

-The variational approach manipulates the weak form of the governing

equations.
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Solution Methods - Direct Finite Elements

u1 u2

F1 F21 2

δ =
FL

AE
→ F =

AE

L
δ

F1 =
A1E1

L1
δ1−2 =

A1E1

L1
(u1 − u2)

F2 =
A1E1

L1
δ2−1 =

A1E1

L1
(−u1 + u2)

A1E1

L1

[
1 −1
−1 1

]{
u1
u2

}
=

{
F1
F2

}

u1 u2

1 2 3

u3

Element 2:

A2E2

L2

[
1 −1
−1 1

]{
u2
u3

}
=

{
F2
F3

}
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Solution Methods - Direct Finite Elements

-The equations are assembled in the usual manner (this is left to the

interested student).

Look at the case for {F} = 0. Then for element 1,

1

L1

[
1 −1
−1 1

]{
u1
u2

}
=

{
0
0

}

-This is the same equation as the Galerkin method.
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Solution Methods - Variational Finite Elements

The coolest thing since sliced bread.

Recall the principle of virtual work;∫
x

dσ

dx
δu dx = δW = 0

Look at
d

dx
(σδu) =

dσ

dx
δu +

dδu

dx
σ

dσ

dx
δu =

d

dx
(σδu) −

dδu

dx
σ

Then PVW becomes ∫
x

d

dx
(σδu) −

dδu

dx
σ dx = 0
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Solution Methods - Variational Finite Elements

Look at;

dδu

dx
= δ

du

dx
= δε

PVW becomes ∫
x

d

dx
(σδu) − δε σ dx = 0

Recall the divergence theorem;∫
V

d

dx
F dV =

∫
S

F · n dS

PVW becomes ∫
s
σ · nδuds −

∫
x

δε σ dx = 0
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Solution Methods - Variational Finite Elements

Recall our Galerkin displacement interpolation;

u∗ =
n∑

i=1

Niai

Then;

δu =
∑

Ni δai

ε =
∑ dNi

dx
ai → δε =

∑ dNi

dx
δai

Also recall the constitutive relation;

σ = Eε → σ ≈ E
∑ dNj

dx
aj

PVW becomes∫
s
σ · n

∑
Niδaids =

∫
x

∑ dNi

dx
δai E

∑ dNj

dx
aj dx
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Solution Methods - Variational Finite Elements

PVW now ∫
s

∑
[σ · nNi] δaids =

∫
x

∑[
dNi

dx
E
∑ dNj

dx
aj

]
δai dx

-In the development of the PVW we developed a state-

ment of the work for a small arbitrary variation (δu) in

the actual solution.

-Since the variation in the actual solution is arbitrary, then

the variation in the approximation (δa)is arbitrary.

-We can then make δa anything,lets make it independent

of space and make δaLHS = δaRHS

∫
s
σ · n Ni ds =

∫
x

dNi

dx
E
∑ dNj

dx
aj dx
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Solution Methods - Variational Finite Elements

PVW now ∫
s
σ · n Ni ds =

∫
x

dNi

dx
E
∑ dNj

dx
aj dx

Rewriting the above in shortened matrix notation

[K] {u} = {F}

Where

[K] =
∫
x

dNi

dx
E

dNj

dx
dx

{u} = aj

{F} =
∫
s
σ · n Ni ds
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Solution Methods - Variational Finite Elements

-We have thus derived the standard finite element equations,

[K] {u} = {F}

which, if we took our 5 node 4 element example problem:
δ

��
��
��
��1 2 3 4 5

1 34
1
2 14 0

would look amazingly similar to the finite difference and Galerkin matrix

equations.

-While this coincidence is only true for special cases, the methods are

intimately connected in that they provide an approximation to the gov-

erning equation.

∂2u

∂x2
=

1

c2
∂2u

∂t2
→ ∂2u

∂x2
= 0
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What about Dynamics?

-We could have used a similar procedure to derive a matrix equation of

the form,

[M ] {ü} + [C] {u̇} + [K] {u} = {F}

where,

[K] =
∫
x

dNi

dx
E

dNj

dx
dx

[M ] =
∫
x

ρ
dNi

dx

dNj

dx
dx

[C] =
∫
x

κ
dNi

dx

dNj

dx
dx

This equation looks very similar to the generalized MDOF

equation except now we have a representation of the con-

tinuous mass, damping and stiffness.
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How do we solve these equations?

-In our previous examples we formed [K] {u} = {F}.
-It is a simple concept to find {u} = [K]−1 {F}.
-This is often effective and efficient given the symmetric

and sparse nature of [K].

-What about [M ] {ü} + [C] {u̇} + [K] {u} = {F}?
-Similar to spacial discretization, let’s try to find solutions

at specific times.

-Two principle methods → explicit and implicit integra-

tion.
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Explicit integration in brief

Central difference approximation to ü and u̇

ü ≈ 1

∆t2
(u(t − ∆t) − 2u(t) + u(t + ∆t)

u̇ ≈ 1

2∆t
(u(t + ∆t) − u(t − ∆t)

Substituting in to [M ] {ü} + [C] {u̇} + [K] {u} = {F}:[
1

∆t2
[M ] +

1

2∆t
[C]

]
{U(t + ∆t)} =

{F (t)} −
[
[K] −

2

∆t2
[M ]

]
{U(t)} −

[
1

∆t2
[M ]−

1

2∆t
[C]

]
{U(t − ∆t)}

This is a matrix equation that can be solved for

{U(t + ∆t)}. This method is conditionally stable → the

stable time step, ∆t, must be less than the time it takes a

wave to traverse one element. For steel, the wave speed

200,000in/s. For a 1 in. element ∆t < 5 × 10−6 s.
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Explicit integration in brief

[
1

∆t2
[M ] +

1

2∆t
[C]

]
{U(t + ∆t)} =

{F (t)} −
[
[K] −

2

∆t2
[M ]

]
{U(t)} −

[
1

∆t2
[M ]−

1

2∆t
[C]

]
{U(t − ∆t)}

-Lump the mass matrix.

-Ignore damping.

-Note that [K] {U} = {F}.

[
1

∆t2
[M ]

]
{U(t + ∆t)} = {R}

Where {R} is a vector of all forces acting on a node.

This looks very much like
∑

F = ma

applied to each node
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Implicit integration - Newmark Beta

-Assuming [M ], [C], and [K] are constant over ∆t, an incremental form

of the governing equation can be written as:

[M ]
{
üt+∆t − üt

}
+ [C]

{
u̇t+∆t − u̇t

}
+ [K]

{
ut+∆t − ut

}
=
{
Ft+∆t − Ft

}

-Grouping things we don’t know on the LHS and things we do know on

the RHS:

[M ]
{
üt+∆t

}
+ [C]

{
u̇t+∆t

}
+ [K] {∆u} = [M ] {üt} + [C] {u̇t} + {∆F}

-We would like to formulate the problem in terms of a

single unknown ∆u. Let’s see what we can do with the

ü − u̇ − u relationship and see if we can get üt+∆t and

u̇t+∆t in terms of ∆u and known values.
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Implicit integration - Newmark Beta

t tt +   t∆

..
ut

..
ut+  t∆

..
u

t tt +   t∆

t

t+  t∆

.
u

.
u

.
u

Using the trapezoidal rule:

u̇t+∆t = u̇t +
1

2

(
üt+∆t + üt

)
∆t

ut+∆t = ut+∆t +
1

2

(
u̇t+∆t + u̇t

)
∆t

⇓

∆u =
1

2

(
u̇t+∆t + u̇t

)
∆t
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Implicit integration - Newmark Beta

∆u =
1

2

(
u̇t+∆t + u̇t

)
∆t → u̇t+∆t =

2

∆t
∆u − u̇t

u̇t+∆t = u̇t +
1

2

(
üt+∆t + üt

)
∆t =

2

∆t
∆u − u̇t

⇓

üt+∆t =
4

∆t2
∆u − 4

∆t
u̇t − üt
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Implicit integration - Newmark Beta

[M ]
{

4

∆t2
∆u − 4

∆t
u̇t − üt

}
+ [C]

{
2

∆t
∆u − u̇t

}
+ [K] {∆u} =

[M ] {üt} + [C] {u̇t} + {∆F}

⇓
[

4

∆t2
[M ] +

2

∆t
[C] + [K]

]
{∆u} =

2 [M ] {üt} +
[

4

∆t
[M ] + 2 [C]

]
{u̇t} + {∆F}

⇓
[K] {∆u} = {F}

LADSS
Computational Mechanics Jobie M. Gerken



Other methods - Boundary Integral

- Boundary integral - often called boundary element method (BEM).

- The development starts with the weak form.

- Recall we used the divergence theorem to transform part of PVM from

a volume integral to a surface integral.

- We can do something similar to transform PVW completely into a

surface integral.

- Then the EOM for the entire body is solved by an integration per-

formed on the surface of the body.

- This can significantly reduce the size of the matrix problem.

- One drawback is the matrix is fully dense.
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Other methods - Meshless methods

- Meshless methods can be thought of as the finite element method.

- The difference is that the nodes that define an element are found

during the simulation.

- In other words, the are meshless (or element free), in the sense that

the user doesn’t have to define the element.

- One of the primary benefits of this type of formulation is that mesh

evolution is natural.

- One drawback is that they are slower than molasses in January.

- This is a current hot research topic and advances could make them

competitive with finite elements.
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This all sounds so simple - then why is it so hard?

- The major problem in numerical simulation of anything is the question

of how well does the model represent the reality.
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Current Research - Speed by Parallelization
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Current Research - Parallelization
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Current Research - Multi-Scale Physics/Code Coupling
• VIPAR

•Parachute performance code, vortex method with transient dynamics
• PRONTO

•Transient dynamics
•Lagrangian solid mechanics

• JAS
•Quasistatic solid mechanics

• COYOTE
•Thermal mechanics with chemistry

• GOMA
•Incompressible fluid mechanics with free surfaces

• PEGASUS
•Neutron Tube Physics

• FUEGO
•Fire simulation

• SALINAS
•Linear structural dynamics

• SACCARA
•Compressible fluid mechanics

• ITS
•Radiation transport
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Current Research - Material Models
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Current Research - Material Models
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Material Modeling
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Read Material
Data Cards

all
Materials?

Read

Read Nodes
and Elements

Decompose Mesh of
Flagged Materials

Proceed
With

Solution

Read Interface
Behavior DataMaterial

Comment?

Flag in Yes

Yes

No

No

Fracture Modeling

• Decompose Mesh
– Add Nodes
– Store Interface Data
– Apply BC’s
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Fracture Modeling

Add Forces
to Nodes

Average Nodal
Forces - Apply to
Each Node in Set

Find Coincident
Node Sets from
Adjacent Pairs

Yes

No

No

Yes

Interface
Separations?

New

Interface
Behavior?

Any

DYNA3D FEM
Solution

Modify Adjacent
Node Pairs

• Evaluate Fracture
– Function of local variables

• Nodal - acc., vel., disp., etc.
• Element - ε, σ, material 

parameters, etc.
• Time
• Interface state variables

• Discontinuous Interface
– Traction - Nodal force added 

to FEM solution
– No Traction -

(Semi)Independent surface 
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Fracture Modeling

Add Forces
to Nodes

Average Nodal
Forces - Apply to
Each Node in Set

Find Coincident
Node Sets from
Adjacent Pairs

Yes

No

No

Yes

Interface
Separations?

New

Interface
Behavior?

Any

DYNA3D FEM
Solution

Modify Adjacent
Node Pairs

• Ensure Continuity

∑=
i

ifF
v

where,
v

MFa /
vv

=

ii maf /
v

=
v

∑=
i

imM
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Ceramic Ball
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Cantilever Impact
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Cantilever Impact
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Cantilever Impact



Gas Gun Design & Operation



Gas Gun & Sabot Stripper



Gas Gun, Boom Box, & Anvil Setup

The boom box was certified 
for handling 45 grams of HE



Taylor Cylinder Impact of Mock 900-21 at 38.9 m/sec (1)



Taylor Cylinder Impact of Mock 900-21 at 38.9 m/sec (2)
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Taylor Cylinder impact
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Taylor Impact of PBX 9501
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Mechanically Coupled Cook off
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Mechanically Coupled Cook off

1
2

1 2

3 4



LADSS
July 2,3,5, 2002 Jobie M. Gerken

Mechanically Coupled Cook off

Using randomized failure
criteria, the simulations
show qualitative agreement
with experimental results
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Crystal Structure
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Earth Penetrating Weapons
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Some cool stuff I found on the web
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Some cool stuff I found on the web

•SNL - Comet impact



The reality of Finite Element modeling
• The steps to modeling

– Get a mesh of your system

– Define the properties

∗ Loading

∗ Boundary conditions

∗ Material Behavior

∗ Body interaction

– Solve the model

– View the results

– Decide they are wrong and start over
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Get a mesh

- Canned packages

LADSS
Computational Mechanics Jobie M. Gerken



Solve the model

- Integrated solution environments
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Solve the model

• Specilaized FE codes

– DOE

∗ LLNL - DYNA3D, NIKE3D, TOPAZ

∗ SNL - PRONTO3D, JAS, SALINAS, COYOTE

– Other government codes

– Research developed codes
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View the results

- Integrated solution environments
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View the results

• Many codes (integrated environments or not) have post-processors.

• Stand alone post-processors are available. (e.g. Ensight)

• Sometimes simply looking at the results is not enough.
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Meshing

• Matching the relevant geometry

• Good element shape

• Automatic meshing
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Elements

u∗ =
n∑

i=1

Niai

• linear

• quadratic

• cubic, . . .

ε =
∂u

∂x

γ

LADSS
Computational Mechanics Jobie M. Gerken



Elements

• Shape

– 3D, Brick, Tetrahedral

– 2D, Quadrilateral, Triangular

• Integration

– Fully integrated

– Reduced integration

– Pressure integration

• Distortion
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Material

E = 200 x 10
6

E  = 1
T

x 10
6

σ  = 220y x 10
3

ρ = 7.8x 10
2

ν = 0.29
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Material/timing

cl =
√

E
ρ =

√
200×106

7.8×102 = 500

cl(steel) ≈ 5000

lmin ≈ 2 × 10−3

∆tmin ≈ 2×10−3

500 = 4 × 10−6

∆tactual = 2.5 × 10−6

tsim = 2 × 10−2

inc = 2×10−2

2.5×10−6 = 8000
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Simulation

8000 elements

8682 nodes → 26046 DOF

SGI IRIX 195 MHz

17 Minutes of computation

≈ 1 minute for contact (5
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Material

E = 200 x 10
6

E  = 1
T

x 10
6

σ  = 220y x 10
3

ρ = 7.8x 10
2

ν = 0.29
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