
Computational Structural Dynamics

Jobie M. Gerken

Los Alamos Dynamics Summer School

June 28 - 30, 2004

LADSS
Computational Mechanics Jobie M. Gerken

LADSS Jobie M. Gerken

Objective

• Introduction to modeling
– An example
– Strain, Equilibrium
– Solution
– An easier solution

• Solution Methods
– Finite Difference
– Weighted Residual
– Finite Element
– Others

LADSS Jobie M. Gerken

Objective

• The reality of FE modeling
– Using the finite element method
– Developments in modeling
– Simulations

Introduction

The modeler:

Reality is intractable.

The experimentalist:

It is what it is.

LADSS
Computational Mechanics Jobie M. Gerken

LADSS Jobie M. Gerken

Your Chair

Will your chair hold you?

LADSS Jobie M. Gerken

Your Chair

Sit Down

LADSS Jobie M. Gerken

Your Chair

It depends on which chapter in
Shigley & Mischke we’re studying.

LADSS Jobie M. Gerken

Your Chair

����������
����������
����������

F

�������������
�������������
�������������
�������������
�������������

LADSS Jobie M. Gerken

Your Chair

F

F

A
F=σ

LADSS Jobie M. Gerken

Your Chair

I
Mc

A
F +=σ

LADSS Jobie M. Gerken

Your Chair

 +=

I
Mc

A
Fβσ

LADSS Jobie M. Gerken

Your Chair

M

K

F

)(tFxKxM =⋅+⋅ &&

LADSS Jobie M. Gerken

Your Chair

aK ⋅= πσ

LADSS Jobie M. Gerken

Your Chair

()mKC
dN
da ∆=

Crystal Structure

LADSS
Computational Mechanics Jobie M. Gerken

Crystal Structure

���������������
���������������
���������������σ σ

Macroscopically → σ = E ε

Mesoscopically:

t

l

σσ
El �= Et

{σ} = [E] {ε}

LADSS
Computational Mechanics Jobie M. Gerken

LADSS Jobie M. Gerken

Modeling your Chair

• Boundary conditions
• Geometry
• Important Physics
• “Complexity”

• Normal loads
• Bending loads
• Stress concentration
• Dynamics
• Fracture
• Fatigue
• Inhomogeneous

Models

What decides the kind of model we need? → It all depends on the
results you want.

����������
����������
����������

�������������
�������������
�������������
�������������
�������������

F

σ(t) = F(t)
A

σ σ + dσ
dx

dx

dx

∂2u
∂x2 = 1

c2
∂2u
∂t2

LADSS
Computational Mechanics Jobie M. Gerken

What goes into a model? Physical Description

• Geometry

– length of bar

– location of discrete masses

• Material description

– mass

– constitutive model, E, σy

– dissipation

LADSS
Computational Mechanics Jobie M. Gerken

What goes into a model? Physical Description

• Loading

– P = C

– P = P(t)

• Boundary Conditions

– δ(L) = 0

– δy = 0 or; εy = νεx

LADSS
Computational Mechanics Jobie M. Gerken

What goes into a model? The Physics

• Newtonian Mechanics

–
∑ �F = m�a

• Celestial Mechanics

– �F12 = Gm1m2
r212

�r12

• Energy Conservation

– 1st Law of Thermodynamics

LADSS
Computational Mechanics Jobie M. Gerken

What goes into a model? The Solution

• Analytical

– the exact solution to the model

• Approximate

– ε = ∂u
∂x only good for small ε

• Numerical

– often combines both approximation and analytical models

LADSS
Computational Mechanics Jobie M. Gerken

What goes into a model? The Complexity

• Geometry

– l = l0
• Material

– σ = Eε

• Loading

– P(t) → Fourier Series

• Boundary Conditions

– δ(L) = 0 ����������
����������
����������

�������������
�������������
�������������
�������������
�������������

F

• Physics

– Hooke’s Law is a macroscopic model of inter-molecular

forces.

• Solution

– The solution method often grows to fit the solution power.

LADSS
Computational Mechanics Jobie M. Gerken

Split Hopkinson Pressure Bar

LADSS
Computational Mechanics Jobie M. Gerken

Split Hopkinson Pressure Bar

x X

limx→0
X−x

x = ∂u
∂x ⇒ spatial rate of change of

displacement

LADSS
Computational Mechanics Jobie M. Gerken

Split Hopkinson Pressure Bar

F

F
δ(x) = F

AEx

But, F
A = σ

so, δ(x) = σ
Ex = εx

∂
∂xδ(x) = F

AE = ε

LADSS
Computational Mechanics Jobie M. Gerken

Split Hopkinson Pressure Bar

Equilibrium on a differential element

σ σ + dσ
dx

dx

dx

m = ρV = ρ dx dy dz∑
F = ma = (ρ dx dy dz) a

σ = Eε = E∂u
∂x

−σ dy dz +
(
σ + ∂σ

∂x dx
)

dy dz = (ρ dx dy dz) ∂2u
∂t2

−σ dy dz + σ dy dz + ∂σ
∂x dx dy dz = (ρ dx dy dz) ∂2u

∂t2

∂σ
∂x dx dy dz = (ρ dx dy dz) ∂2u

∂t2

∂σ
∂x = ∂

∂x

(
E∂u

∂x

)
= E∂2u

∂x2 = ρ ∂2u
∂t2

LADSS
Computational Mechanics Jobie M. Gerken

Split Hopkinson Pressure Bar

The Wave Equation:

∂2u
∂x2 = 1

c2
∂2u
∂t2

c2 = E
ρ

This is a differential equation that describes

the pointwise motion of our rod.

LADSS
Computational Mechanics Jobie M. Gerken

Split Hopkinson Pressure Bar

Solution by inspection

σ

x

σ

x

σ

x > ct σx = 0

x ≤ ct σx = σ

ε = σx
E u =

∫
ε dx

LADSS
Computational Mechanics Jobie M. Gerken

What constitutes a solution? The governing equations are satisfied.

The strain displacement relationship:

In 1-D:

limx→0
X−x

x = ∂u
∂x

In 3-D :
εij = 1

2

[
∂ui
∂xj

+
∂uj
∂xi

]
,

i = 1,2,3; j = 1,2,3

ε11 =
[
∂u1
∂x1

]
; ε22 =

[
∂u2
∂x2

]
; ε33 =

[
∂u3
∂x3

]

ε12 = ε21 = 1
2

[
∂u1
∂x2

+ ∂u2
∂x1

]

ε23 = ε32 = 1
2

[
∂u2
∂x3

+ ∂u3
∂x2

]

ε31 = ε13 = 1
2

[
∂u1
∂x3

+ ∂u3
∂x1

]

LADSS
Computational Mechanics Jobie M. Gerken

A solution

Equilibrium → equation of motion

In 1-D:

∂2u
∂x2 = 1

c2
∂2u
∂t2

∂σ
∂x = ρa

In 3-D :
∂σij
∂xj

= ρai

∂σ11
∂x1

+ ∂σ12
∂x2

+ ∂σ13
∂x3

= ρa1

∂σ21
∂x1

+ ∂σ22
∂x2

+ ∂σ23
∂x3

= ρa2

∂σ31
∂x1

+ ∂σ32
∂x2

+ ∂σ33
∂x3

= ρa3

LADSS
Computational Mechanics Jobie M. Gerken

A solution

Constitutive behavior → Hooke’s Law

In 1-D:

εx = σx
E

εy = εz = −νεx

In 3-D :
σij = Cijklεkl
or
εij = 1+ν

E σij − ν
Eσkkδij

ε11 = 1+ν
E σ11 − ν

E (σ11 + σ22 + σ33)

ε22 = 1+ν
E σ22 − ν

E (σ11 + σ22 + σ33)

ε33 = 1+ν
E σ33 − ν

E (σ11 + σ22 + σ33)

ε12 = ε21 = 1+ν
E σ12; ε23 = ε32 = 1+ν

E σ23; ε31 = ε13 = 1+ν
E σ31

LADSS
Computational Mechanics Jobie M. Gerken

Solve these equations for a solution:

Strain Displacement: εij = 1
2

[
∂ui
∂xj

+
∂uj
∂xi

]

Equilibrium:
∂σij
∂xj

= ρai

Constitutive Law: σij = Cijklεkl

These are the strong forms of the governing

equations → Differential equations that must be

solved pointwise in time.

LADSS
Computational Mechanics Jobie M. Gerken

Weak form

It is sometimes easier to solve these equations in an aver-

age sense than it is to solve them pointwise. This can be

done with an integral statement of the governing equa-

tions. Then the integral over some volume of material

satisfies the governing equations.

An energy method → If we could find an equation for

the energy in a body, then minimization of this equation

would give us an equilibrium state.

LADSS
Computational Mechanics Jobie M. Gerken

Weak form

σ
��
��
��
��
��
��

x

δ
u(x = L) = δ

u(x = 0) = 0

ε = ∂u
∂x = δ

L

σ = Eε

∂σ
∂x = ρ∂2u

∂t2

Lets perturb the solution by a small amount δu. δu sat-

isfies the boundary conditions but is otherwise arbitrary.

These virtual displacements cause the internal and body

forces to do virtual work that we’ll call δW .

δW =
∫
V

ρ
∂2u

∂t2
δu dV +

∫
V

∂σ

∂x
δu dV

LADSS
Computational Mechanics Jobie M. Gerken

Princple of Virtual Work

δW =
∫
V

ρ
∂2u

∂t2
δu dV +

∫
V

∂σ

∂x
δu dV

• PVW is a volumetric statement of the work done on a body by a
set of virtual displacements.

• Equilibrium is a state of minimum energy, therefore, PVW must be
a minimum for an equilibrium state.

– In fact δW = 0 → δu cannot add energy to the system because
there is only 1 equilibrium state in the vicinity of u.

• PVW is a function of a single variable u, methods of solution will
yield u as a result.

• In a similar manner, we could formulate an energy function with 2
or 3 basic variables

– Two Field → u − p; u − ε

– Three Field → u − p − εv; u − ε − σ

LADSS
Computational Mechanics Jobie M. Gerken

Solution Methods

LADSS
Computational Mechanics Jobie M. Gerken

Solution Methods - Finite Difference

Numerical approximation to the strong form of the gov-

erning equations. Discretize the equations in space and

time → the equations are converted from pointwise dif-

ferential equations to finite difference equations.

∂2u

∂x2
= ρ

∂2u

∂t2
→ ∆(∆u)

(∆x)2
= ρ

∆(∆u)

(∆t)2

FD has been a dominant method in numerical solution

techniques. It is a natural approximation for the governing

equations and the concept is simple.

LADSS
Computational Mechanics Jobie M. Gerken

Finite Difference

In short, FD;

• Utilizes uniformly spaced grids of nodes,

• At the nodes, the necessary differences are approximated by the

nodal value at that node and the adjacent nodes,

• This creates a system of algebraic equations,

• The system of equations is solved for the dependent variable.

F
��
��
��
��
��
��

��
��
��
��
��
��

∂2u

∂x2
= ρ

∂2u

∂t2
→ ∆(∆u)

(∆x)2
= ρ

∆(∆u)

(∆t)2

LADSS
Computational Mechanics Jobie M. Gerken

Finite Difference

Taylor series approximation of u(x + h):

u(x + h) = u(x) +
h

1!
u′(x) +

h2

2!
u′′(x) + . . . =

∞∑
n=0

hn

n!
un(x) = u(x) +

h

1!
u′(x) + O(h2)

LADSS
Computational Mechanics Jobie M. Gerken

Finite Difference

h

��
��
��

u

x

Forward difference approx. of du
dx:

du

dx
≈ u(x + h) − u(x)

h

LADSS
Computational Mechanics Jobie M. Gerken

Finite Difference

h

��
��
��

u

x

Backward difference use u(x − h):

du

dx
≈ u(x) − u(x − h)

h

LADSS
Computational Mechanics Jobie M. Gerken

Finite Difference

h

��
��
��

u

x

Central difference:

du

dx
≈ u(x + h) − u(x − h)

2h

LADSS
Computational Mechanics Jobie M. Gerken

Finite Difference

Approximate d2u
dx2

u(x + h) ≈ u(x) +
h

1!
u′(x) +

h2

2!
u′′(x) +

h3

3!
u′′′(x)

u(x − h) ≈ u(x) − h

1!
u′(x) +

h2

2!
u′′(x) − h3

3!
u′′′(x)

u(x + h) + u(x − h) ≈ 2u(x) + h2u′′(x)

d2u

dx2
≈ u(x + h) − 2u(x) + u(x − h)

h2

LADSS
Computational Mechanics Jobie M. Gerken

Finite Difference

In a similar manner, du
dt

Forward difference:

du

dt
≈ u(x, t + l) − u(x, t)

l

Backward difference:

du

dt
≈ u(x, t) − u(x, t − l)

l

Central difference:

du

dt
≈ u(x, t + l) − u(x, t − l)

2l

d2u

dt2
≈ u(x, t + l) − 2u(x, t) + u(x, t − l)

l2

LADSS
Computational Mechanics Jobie M. Gerken

Finite Difference - An Example

h
��
��

1 2 3 4 5

δ

d2u

dx2
=

1

h2

(
u(xi−1) − 2u(xi) + u(xi+1)

)
= 0

u(xi−1) − 2u(xi) + u(xi+1) = 0

u(x1) = δ; u(x5) = 0

LADSS
Computational Mechanics Jobie M. Gerken

Finite Difference - An Example

h
��
��

1 2 3 4 5

δ

Node 2:
u(x1) − 2u(x2) + u(x3) = 0

−2u(x2) + u(x3) = −δ

Node 3:
u(x2) − 2u(x3) + u(x4) = 0

Node 4:
u(x3) − 2u(x4) + u(x5) = 0

u(x3) − 2u(x4) = 0

LADSS
Computational Mechanics Jobie M. Gerken

Finite Difference - An Example

h
��
��

1 2 3 4 5

δ
−2u(x2) + u(x3) = −δ

u(x2) − 2u(x3) + u(x4) = 0

u(x3) − 2u(x4) = 0
 −2 1 0

1 −2 1
0 1 −2

 u(x2)

u(x3)
u(x4)

 =

 −δ

0
0

 u(x2)

u(x3)
u(x4)

 =

 −2 1 0

1 −2 1
0 1 −2

−1 −δ

0
0

 u(x2)

u(x3)
u(x4)

 =

3
4δ
1
2δ
1
4δ

LADSS
Computational Mechanics Jobie M. Gerken

Finite Difference - Some complexities

h
��
��

1 2 3 4 5

σ

σ(x1) = σ

E
du

dx
= σ

du

dx
=

σ

E

-Neumann (natural) BCs are naturally applied → they

specify the solution variable.

-Dirichlet (essential) BCs are a little bit more difficult →
they specify a derivative of the solution variable.

LADSS
Computational Mechanics Jobie M. Gerken

Finite Difference - Some complexities

h
��
��

1 2 3 4 5

σ

h
��
��
��

1 2 3 4 5a

du
dx

-Add node a to the mesh.
At node 1:

u(xa) − 2u(x1) + u(x2) = 0

The central difference for du
dx

du

dx
=

u(xi+1) − u(xi−1)

2h

u(x2) − u(xa)

2h
=

σ

E

u(xa) = u(x2) − 2h
σ

E

u(xa) − 2u(x1) + u(x2) = 0 → −2u(x1) + 2u(x2) = 2h
σ

E

LADSS
Computational Mechanics Jobie M. Gerken

Finite Difference - Some complexities

Irregular spacing

��
��

1 5

σ
432

(
du

dx

)
1−2

=
u(x2) − u(x1)

h1−2

d2u

dx2

2

=
d

dx

(
du

dx

)
=

u(x3)−u(x2)
h2−3

− u(x2)−u(x1)
h1−2

h1−2 + h2−3

LADSS
Computational Mechanics Jobie M. Gerken

Finite Difference - Some complexities

Time Dependence - The Wave Equation

∂2u

∂x2
=

1

c2
∂2u

∂t2

Explicit Method:

u(xi+1, t) − 2u(xi, t) + u(xi−1, t)

h2
=

1

c2
u(xi, t + ∆t) − 2u(xi, t) + u(xi, t − ∆t)

∆t2

c2

∆t2h2

[
u(xi+1, t) + u(xi, t) + u(xi−1, t)

]

+2u(xi, t) − u(xi, t − ∆t) = u(xi, t + ∆t)

LADSS
Computational Mechanics Jobie M. Gerken

Finite Difference - Some complexities

Time Dependence - The Wave Equation

Implicit Method:

u(xi+1, t + ∆t) − 2u(xi, t + ∆t) + u(xi−1, t + ∆t)

h2
=

1

c2
u(xi, t + ∆t) − 2u(xi, t) + u(xi, t − ∆t)

∆t2

-The result of the above approximation is a system of

equations that can be solved for u(xi, t + ∆t).

-Explicit schemes formulate a solution at a node in terms

of explicitly known quantities.

-Implicit schemes formulate a solution at a node in terms

of quantities that are implied.

-Explicit schemes are generally limited to very small ∆t

whereas, implicit schemes are not.

LADSS
Computational Mechanics Jobie M. Gerken

Solution Methods - Weighted Residual

Assume a general solution (e.g. u∗ to the governing equa-

tion. The difference between the expected solution and

the assumed solution is the residual.

∂2u

∂x2
− ∂2u∗

∂x2
= R

Weight R to zero in some manner so that the error be-

tween the assumed solution and the actual solution is

small over the body of interest.

LADSS
Computational Mechanics Jobie M. Gerken

Solution Methods - Weighted Residual

The governing equation:

∂2u

∂x2
= 0

The residual:

∂2u

∂x2
− ∂2u∗

∂x2
=

∂2u∗

∂x2
= R

The trick is to try to force:

R = 0 ∀ x ∈ [Ω]

-If this is true, u∗ is an exact solution.

-This is rarely the case so we want to get close.

-In general there are two ways to approximate R = 0 in

the domain; (1)At a specific number of points, (2)In a

specific number of sub-volumes.

LADSS
Computational Mechanics Jobie M. Gerken

Solution Methods - Collocation

δ

��
��
��
��1 2 3 4 5

1 34
1
2 14 0

u∗ = a0 + a1 x + a2 x2 + a3 x3

R =
d2u∗

dx2
= 2 a2 + 6 a3 x

LADSS
Computational Mechanics Jobie M. Gerken

Solution Methods - Collocation

δ

��
��
��
��1 2 3 4 5

1 34
1
2 14 0

u∗ = a0 + a1 x + a2 x2 + a3 x3

R =
d2u∗

dx2
= 2 a2 + 6 a3 x

R2 = 2 a2 + 6 a3

(
3

4

)

R3 = 2 a2 + 6 a3

(
1

2

)

R4 = 2 a2 + 6 a3

(
1

4

)

u∗(1) = δ = a0 + a1 + a2 + a3

u∗(0) = 0 = a0

LADSS
Computational Mechanics Jobie M. Gerken

Solution Methods - Collocation

δ

��
��
��
��1 2 3 4 5

1 34
1
2 14 0

2 a2 + 6 a3

(
3

4

)
= 0

2 a2 + 6 a3

(
1

2

)
= 0

2 a2 + 6 a3

(
1

4

)
= 0

a0 + a1 + a2 + a3 = δ

a0 = 0

-5 equations , 4 unknowns → over-

contrained.

-Increase order of u∗.
-Remove nodes from the domain.

-Find the best solution (e.g. least

squares)

LADSS
Computational Mechanics Jobie M. Gerken

Solution Methods - Collocation

For simplicity, remove node 2

2 a2 + 3 a3 = 0

2 a2 +
3

2
a3 = 0

a1 + a2 + a3 = δ

→

0 2 3
0 2 3

2
1 1 1

a1
a2
a3

 =

0
0
δ

[
C−1

]
{R} = {a} →

−1

6
1
3 1

−1
2 1 0

2
3 −2

3 0

0
0
δ

 =

δ
0
0

u∗ = δx

LADSS
Computational Mechanics Jobie M. Gerken

Solution Methods - Subdomain

Weighted Residual methods have the general form:∫
xi

W (x)R(x) dx = 0

Collocation can be viewed in the above form with

W (x) = δ(xi) =

{
1; x = xi
0; x �= xi

In the subdomain method, the problem is divided into many subdomains

and the average residual in each subdomain is forced to be zero.

W (x) =
1

∆xi

1

∆xi

∫
xi

R(x) dx = 0

LADSS
Computational Mechanics Jobie M. Gerken

Solution Methods - Subdomain

δ

��
��
��
��1 2 3 4 5

1 34
1
2 14 0

u∗ = a0 + a1 x + a2 x2 + a3 x3

R =
d2u∗

dx2
= 2 a2 + 6 a3 x

∫
Rdx = 2 a2 x + 3 a3 x2

LADSS
Computational Mechanics Jobie M. Gerken

1

Solution Methods - Subdomain

δ

��
��
��
��1 2 3 4 5

1 34
1
2 14 0

∫
Rdx = 2 a2 x + 3 a3 x2

D1−2 :
(
2 a2 x + 3 a3 x2

)1

3/4
= 2 a2 + 21

4 a3 = 0

D2−3 :
(
2 a2 x + 3 a3 x2

)3/4

1/2
= 2 a2 + 15

4 a3 = 0

D3−4 :
(
2 a2 x + 3 a3 x2

)1/2

1/4
= 2 a2 + 9

4 a3 = 0

D4−5 :
(
2 a2 x + 3 a3 x2

)1/4

0
= 2 a2 + 3

4 a3 = 0

LADSS
Computational Mechanics Jobie M. Gerken

2

Solution Methods - Subdomain

δ

��
��
��
��1 2 3 4 5

1 34
1
2 14 0

2 a2 +
21

4
a3 = 0

2 a2 +
15

4
a3 = 0

2 a2 +
9

4
a3 = 0

2 a2 +
3

4
a3 = 0

a0 + a1 + a2 + a3 = δ

a0 = 0

-6 equations , 4 unknowns.

-Reduce order of guess to

u∗ = a0 + a1 x.

Then,

a1 = δ

LADSS
Computational Mechanics Jobie M. Gerken

Solution Methods - Galerkin’s Method

-We have been using u∗ = a0 + a1 x + a2 x2 + a3 x3 to approximate the

solution throughout the body.

-Another method is to approximate the solution in each domain:

u∗ =
n∑

i=1

Niai

Where n is the number of nodes in each domains, Ni are interpolation

functions, and ai are unknown node parameters (e.g. nodal displace-

ments).

-With this method, the dependent variable is determined at each node

and interpolated between nodes with the functions Ni.

-The solution is thus approximated in each domain and not throughout

the body.

-We could have used this method for the collocation and subdomain

methods, and avoided the overconstraint problems.

LADSS
Computational Mechanics Jobie M. Gerken

Solution Methods - Galerkin’s Method

δ

��
��
��
��1 2 3 4 5

1 34
1
2 14 0

a a

2 3

2 3

For the local coordinate system

x2 = 0, x3 = ∆x:

u
x3
x2 =

(
1 − x

∆x

)
a2 +

(
x

∆x

)
a3

2∑
i=1

Niai =
[
1 − x

∆x
x

∆x

] [a1
a2

]

Then for our 2 node element,

N1 = 1 − x

∆x
; N2 =

x

∆x
Note the properties of Ni

N1(x1) = 1; N1(x2) = 0

N2(x1) = 0; N2(x2) = 1

LADSS
Computational Mechanics Jobie M. Gerken

Solution Methods - Galerkin’s Method

In Galerkin’s method, the weights on the residual are the interpolation

functions Ni ∫
xi

W (x)R(x) dx = 0

R(x) =
d2u∗

dx2
=

d2

dx2

∑
Niai

∫
xi

W (x)R(x) dx =
∫
xi

Nj(x)
d2

dx2

∑
Niai dx

LADSS
Computational Mechanics Jobie M. Gerken

Solution Methods - Galerkin’s Method

Ni is linear in x, hence the second derivative vanishes. Through inte-

gration by parts:

∫
xi

Nj
d2

dx2

∑
Niai dx =

∫
xi

d

dx
Ni

d

dx

∑
Niai dx = 0

Aside:
∫

u dv = uv −
∫

v du

dv =
d2

dx2

∑
Niai u = Ni

v =
d

dx

∑
Niai du =

d

dx
Ni

And u · v vanishes by virtue of the properties of Ni

LADSS
Computational Mechanics Jobie M. Gerken

Solution Methods - Galerkin’s Method

We can rewrite the following equation in a shortened notation∫
xi

d

dx
Ni

d

dx

∑
Ni ai dx = 0

Using the following definitions

[K] =
∫
xi

d

dx
Ni

d

dx

∑
Nidx =

∫
xi

 1

∆x − 1
∆x

− 1
∆x

1
∆x

 dx

{u} = ai =

{
a1
a2

}

Then,

[K] {u} = {0}

LADSS
Computational Mechanics Jobie M. Gerken

Solution Methods - Galerkin’s Method

Element 1 → nodes 1,2:

∫
x1

1
∆x1

− 1
∆x1

− 1
∆x1

1
∆x1

 dx

{
a1
a2

}
=

{
0
0

}

=

[
1 −1
−1 1

]{
a1
a2

}
=

{
0
0

}

Element 2 → nodes 2,3:

∫
x2

1
∆x2

− 1
∆x2

− 1
∆x2

1
∆x2

 dx

{
a2
a3

}
=

{
0
0

}

And so on . . .

LADSS
Computational Mechanics Jobie M. Gerken

Solution Methods - Galerkin’s Method

The global system of equations is then

1 −1 0 0 0
−1 1 + 1 −1 0 0
0 −1 1 + 1 −1 0
0 0 −1 1 + 1 −1
0 0 0 −1 1

a1
a2
a3
a4
a5

=

0
0
0
0
0

Boundary conditions: a1 = δ, a5 = 0 → remove rows 1 and 5, then rows

2 and 4 become:
2 a2 − a3 = δ; −a3 + 2 a4 = 0

The matrix equation is then
 2 −1 0
−1 2 −1
0 −1 2

a2
a3
a4

 =

δ
0
0

LADSS
Computational Mechanics Jobie M. Gerken

Solution Methods - Finite Elements

-The basic philosophy of the finite element method (FEM) is to divide

the body into (somewhat) arbitrary and convenient subdomains (i.e.

finite elements).

-The weak form of the governing equations is then enforced over each

of these elements.

-The global solution is determined by assembling the numerical approx-

imation of each element into a global system of linear equations and

then solving the resulting matrix equation.

[K] {u} = {F}

-The Galerkin method is one way to derive the FEM equations.

-The Direct Method formulates equations based on F(δ).

-The variational approach manipulates the weak form of the governing

equations.

LADSS
Computational Mechanics Jobie M. Gerken

Solution Methods - Direct Finite Elements

u1 u2

F1 F21 2

δ =
FL

AE
→ F =

AE

L
δ

F1 =
A1E1

L1
δ1−2 =

A1E1

L1
(u1 − u2)

F2 =
A1E1

L1
δ2−1 =

A1E1

L1
(−u1 + u2)

A1E1

L1

[
1 −1
−1 1

]{
u1
u2

}
=

{
F1
F2

}

u1 u2

1 2 3

u3

Element 2:

A2E2

L2

[
1 −1
−1 1

]{
u2
u3

}
=

{
F2
F3

}

LADSS
Computational Mechanics Jobie M. Gerken

Solution Methods - Direct Finite Elements

-The equations are assembled in the usual manner (this is left to the

interested student).

Look at the case for {F} = 0. Then for element 1,

1

L1

[
1 −1
−1 1

]{
u1
u2

}
=

{
0
0

}

-This is the same equation as the Galerkin method.

LADSS
Computational Mechanics Jobie M. Gerken

Solution Methods - Variational Finite Elements

The coolest thing since sliced bread.

Recall the principle of virtual work;∫
x

dσ

dx
δu dx = δW = 0

Look at
d

dx
(σδu) =

dσ

dx
δu +

dδu

dx
σ

dσ

dx
δu =

d

dx
(σδu) −

dδu

dx
σ

Then PVW becomes ∫
x

d

dx
(σδu) −

dδu

dx
σ dx = 0

LADSS
Computational Mechanics Jobie M. Gerken

Solution Methods - Variational Finite Elements

Look at;

dδu

dx
= δ

du

dx
= δε

PVW becomes ∫
x

d

dx
(σδu) − δε σ dx = 0

Recall the divergence theorem;∫
V

d

dx
F dV =

∫
S

F · n dS

PVW becomes ∫
s
σ · nδuds −

∫
x

δε σ dx = 0

LADSS
Computational Mechanics Jobie M. Gerken

Solution Methods - Variational Finite Elements

Recall our Galerkin displacement interpolation;

u∗ =
n∑

i=1

Niai

Then;

δu =
∑

Ni δai

ε =
∑ dNi

dx
ai → δε =

∑ dNi

dx
δai

Also recall the constitutive relation;

σ = Eε → σ ≈ E
∑ dNj

dx
aj

PVW becomes∫
s
σ · n

∑
Niδaids =

∫
x

∑ dNi

dx
δai E

∑ dNj

dx
aj dx

LADSS
Computational Mechanics Jobie M. Gerken

Solution Methods - Variational Finite Elements

PVW now ∫
s

∑
[σ · nNi] δaids =

∫
x

∑[
dNi

dx
E
∑ dNj

dx
aj

]
δai dx

-In the development of the PVW we developed a state-

ment of the work for a small arbitrary variation (δu) in

the actual solution.

-Since the variation in the actual solution is arbitrary, then

the variation in the approximation (δa)is arbitrary.

-We can then make δa anything,lets make it independent

of space and make δaLHS = δaRHS

∫
s
σ · n Ni ds =

∫
x

dNi

dx
E
∑ dNj

dx
aj dx

LADSS
Computational Mechanics Jobie M. Gerken

Solution Methods - Variational Finite Elements

PVW now ∫
s
σ · n Ni ds =

∫
x

dNi

dx
E
∑ dNj

dx
aj dx

Rewriting the above in shortened matrix notation

[K] {u} = {F}

Where

[K] =
∫
x

dNi

dx
E

dNj

dx
dx

{u} = aj

{F} =
∫
s
σ · n Ni ds

LADSS
Computational Mechanics Jobie M. Gerken

Solution Methods - Variational Finite Elements

-We have thus derived the standard finite element equations,

[K] {u} = {F}

which, if we took our 5 node 4 element example problem:
δ

��
��
��
��1 2 3 4 5

1 34
1
2 14 0

would look amazingly similar to the finite difference and Galerkin matrix

equations.

-While this coincidence is only true for special cases, the methods are

intimately connected in that they provide an approximation to the gov-

erning equation.

∂2u

∂x2
=

1

c2
∂2u

∂t2
→ ∂2u

∂x2
= 0

LADSS
Computational Mechanics Jobie M. Gerken

What about Dynamics?

-We could have used a similar procedure to derive a matrix equation of

the form,

[M] {ü} + [C] {u̇} + [K] {u} = {F}

where,

[K] =
∫
x

dNi

dx
E

dNj

dx
dx

[M] =
∫
x

ρ
dNi

dx

dNj

dx
dx

[C] =
∫
x

κ
dNi

dx

dNj

dx
dx

This equation looks very similar to the generalized MDOF

equation except now we have a representation of the con-

tinuous mass, damping and stiffness.

LADSS
Computational Mechanics Jobie M. Gerken

How do we solve these equations?

-In our previous examples we formed [K] {u} = {F}.
-It is a simple concept to find {u} = [K]−1 {F}.
-This is often effective and efficient given the symmetric

and sparse nature of [K].

-What about [M] {ü} + [C] {u̇} + [K] {u} = {F}?
-Similar to spacial discretization, let’s try to find solutions

at specific times.

-Two principle methods → explicit and implicit integra-

tion.

LADSS
Computational Mechanics Jobie M. Gerken

Explicit integration in brief

Central difference approximation to ü and u̇

ü ≈ 1

∆t2
(u(t − ∆t) − 2u(t) + u(t + ∆t)

u̇ ≈ 1

2∆t
(u(t + ∆t) − u(t − ∆t)

Substituting in to [M] {ü} + [C] {u̇} + [K] {u} = {F}:[
1

∆t2
[M] +

1

2∆t
[C]

]
{U(t + ∆t)} =

{F (t)} −
[
[K] −

2

∆t2
[M]

]
{U(t)} −

[
1

∆t2
[M]−

1

2∆t
[C]

]
{U(t − ∆t)}

This is a matrix equation that can be solved for

{U(t + ∆t)}. This method is conditionally stable → the

stable time step, ∆t, must be less than the time it takes a

wave to traverse one element. For steel, the wave speed

200,000in/s. For a 1 in. element ∆t < 5 × 10−6 s.

LADSS
Computational Mechanics Jobie M. Gerken

Explicit integration in brief

[
1

∆t2
[M] +

1

2∆t
[C]

]
{U(t + ∆t)} =

{F (t)} −
[
[K] −

2

∆t2
[M]

]
{U(t)} −

[
1

∆t2
[M]−

1

2∆t
[C]

]
{U(t − ∆t)}

-Lump the mass matrix.

-Ignore damping.

-Note that [K] {U} = {F}.

[
1

∆t2
[M]

]
{U(t + ∆t)} = {R}

Where {R} is a vector of all forces acting on a node.

This looks very much like
∑

F = ma

applied to each node

LADSS
Computational Mechanics Jobie M. Gerken

Implicit integration - Newmark Beta

-Assuming [M], [C], and [K] are constant over ∆t, an incremental form

of the governing equation can be written as:

[M]
{
üt+∆t − üt

}
+ [C]

{
u̇t+∆t − u̇t

}
+ [K]

{
ut+∆t − ut

}
=
{
Ft+∆t − Ft

}

-Grouping things we don’t know on the LHS and things we do know on

the RHS:

[M]
{
üt+∆t

}
+ [C]

{
u̇t+∆t

}
+ [K] {∆u} = [M] {üt} + [C] {u̇t} + {∆F}

-We would like to formulate the problem in terms of a

single unknown ∆u. Let’s see what we can do with the

ü − u̇ − u relationship and see if we can get üt+∆t and

u̇t+∆t in terms of ∆u and known values.

LADSS
Computational Mechanics Jobie M. Gerken

Implicit integration - Newmark Beta

t tt + t∆

..
ut

..
ut+ t∆

..
u

t tt + t∆

t

t+ t∆

.
u

.
u

.
u

Using the trapezoidal rule:

u̇t+∆t = u̇t +
1

2

(
üt+∆t + üt

)
∆t

ut+∆t = ut+∆t +
1

2

(
u̇t+∆t + u̇t

)
∆t

⇓

∆u =
1

2

(
u̇t+∆t + u̇t

)
∆t

LADSS
Computational Mechanics Jobie M. Gerken

Implicit integration - Newmark Beta

∆u =
1

2

(
u̇t+∆t + u̇t

)
∆t → u̇t+∆t =

2

∆t
∆u − u̇t

u̇t+∆t = u̇t +
1

2

(
üt+∆t + üt

)
∆t =

2

∆t
∆u − u̇t

⇓

üt+∆t =
4

∆t2
∆u − 4

∆t
u̇t − üt

LADSS
Computational Mechanics Jobie M. Gerken

Implicit integration - Newmark Beta

[M]
{

4

∆t2
∆u − 4

∆t
u̇t − üt

}
+ [C]

{
2

∆t
∆u − u̇t

}
+ [K] {∆u} =

[M] {üt} + [C] {u̇t} + {∆F}

⇓
[

4

∆t2
[M] +

2

∆t
[C] + [K]

]
{∆u} =

2 [M] {üt} +
[

4

∆t
[M] + 2 [C]

]
{u̇t} + {∆F}

⇓
[K] {∆u} = {F}

LADSS
Computational Mechanics Jobie M. Gerken

Other methods - Boundary Integral

- Boundary integral - often called boundary element method (BEM).

- The development starts with the weak form.

- Recall we used the divergence theorem to transform part of PVM from

a volume integral to a surface integral.

- We can do something similar to transform PVW completely into a

surface integral.

- Then the EOM for the entire body is solved by an integration per-

formed on the surface of the body.

- This can significantly reduce the size of the matrix problem.

- One drawback is the matrix is fully dense.

LADSS
Computational Mechanics Jobie M. Gerken

Other methods - Meshless methods

- Meshless methods can be thought of as the finite element method.

- The difference is that the nodes that define an element are found

during the simulation.

- In other words, the are meshless (or element free), in the sense that

the user doesn’t have to define the element.

- One of the primary benefits of this type of formulation is that mesh

evolution is natural.

- One drawback is that they are slower than molasses in January.

- This is a current hot research topic and advances could make them

competitive with finite elements.

LADSS
Computational Mechanics Jobie M. Gerken

This all sounds so simple - then why is it so hard?

- The major problem in numerical simulation of anything is the question

of how well does the model represent the reality.

LADSS
Computational Mechanics Jobie M. Gerken

LADSS
Computational Mechanics Jobie M. Gerken

Current Research - Speed by Parallelization

LADSS
Computational Mechanics Jobie M. Gerken

Current Research - Parallelization

LADSS
Computational Mechanics Jobie M. Gerken

Current Research - Multi-Scale Physics/Code Coupling
• VIPAR

•Parachute performance code, vortex method with transient dynamics
• PRONTO

•Transient dynamics
•Lagrangian solid mechanics

• JAS
•Quasistatic solid mechanics

• COYOTE
•Thermal mechanics with chemistry

• GOMA
•Incompressible fluid mechanics with free surfaces

• PEGASUS
•Neutron Tube Physics

• FUEGO
•Fire simulation

• SALINAS
•Linear structural dynamics

• SACCARA
•Compressible fluid mechanics

• ITS
•Radiation transport

LADSS
Computational Mechanics Jobie M. Gerken

Current Research - Material Models

LADSS
Computational Mechanics Jobie M. Gerken

Current Research - Material Models

LADSS
July 2,3,5, 2002 Jobie M. Gerken

Material Modeling

1η 2η 3η 4η nη

1G 2G 3G 4G nG

ve
ije&

ce&

ijS&

+

−−= ijij

n

n

n
ij

ij
nn

ij S
a
cS

a
c

a
c

G
GS

eGS &&
&&

32)(

)(

)(
)()(32

τ

ijmijij S δσσ &&& +=

∑
=

=
N

n

nSS
1

)(

c
ijijij eee &&& += υε

iim Kεσ && =

3
1

2

)(

)(

1

32

+

−−

=
∑

a
c

S
a
c

a
cS

eG
S

N

ijn

n
ij

ij

ij

&
&

& τ

G
ητ =

Deviatoric strain rate decomposition

Stress rate decomposition

ijijkkij e&&& += δεε
3
1

Strain rate decomposition

LADSS
Computational Mechanics Jobie M. Gerken

Read Material
Data Cards

all
Materials?

Read

Read Nodes
and Elements

Decompose Mesh of
Flagged Materials

Proceed
With

Solution

Read Interface
Behavior DataMaterial

Comment?

Flag in Yes

Yes

No

No

Fracture Modeling

• Decompose Mesh
– Add Nodes
– Store Interface Data
– Apply BC’s

LADSS
Computational Mechanics Jobie M. Gerken

Fracture Modeling

Add Forces
to Nodes

Average Nodal
Forces - Apply to
Each Node in Set

Find Coincident
Node Sets from
Adjacent Pairs

Yes

No

No

Yes

Interface
Separations?

New

Interface
Behavior?

Any

DYNA3D FEM
Solution

Modify Adjacent
Node Pairs

• Evaluate Fracture
– Function of local variables

• Nodal - acc., vel., disp., etc.
• Element - ε, σ, material

parameters, etc.
• Time
• Interface state variables

• Discontinuous Interface
– Traction - Nodal force added

to FEM solution
– No Traction -

(Semi)Independent surface

LADSS
Computational Mechanics Jobie M. Gerken

Fracture Modeling

Add Forces
to Nodes

Average Nodal
Forces - Apply to
Each Node in Set

Find Coincident
Node Sets from
Adjacent Pairs

Yes

No

No

Yes

Interface
Separations?

New

Interface
Behavior?

Any

DYNA3D FEM
Solution

Modify Adjacent
Node Pairs

• Ensure Continuity

∑=
i

ifF
v

where,
v

MFa /
vv

=

ii maf /
v

=
v

∑=
i

imM

LADSS
Computational Mechanics Jobie M. Gerken

Ceramic Ball

LADSS
Computational Mechanics Jobie M. Gerken

Cantilever Impact

LADSS
Computational Mechanics Jobie M. Gerken

Cantilever Impact

LADSS
Computational Mechanics Jobie M. Gerken

Cantilever Impact

Gas Gun Design & Operation

Gas Gun & Sabot Stripper

Gas Gun, Boom Box, & Anvil Setup

The boom box was certified
for handling 45 grams of HE

Taylor Cylinder Impact of Mock 900-21 at 38.9 m/sec (1)

Taylor Cylinder Impact of Mock 900-21 at 38.9 m/sec (2)

LADSS
Computational Mechanics Jobie M. Gerken

Taylor Cylinder impact

LADSS
July 2,3,5, 2002 Jobie M. Gerken

Taylor Impact of PBX 9501

LADSS
July 2,3,5, 2002 Jobie M. Gerken

Mechanically Coupled Cook off

 2.5000 "

 1.0000 "

 2.0000 "

 4.5000 "

 4.5000 "

spacer

toughened glass or sapphire

steel

steel

glass or ceramic disk

0.125 "

 0.2500 "

Side view

PBX

 0.7500 "

 2.5625 "

 1.0000 "

 1.2500 "

 0.5000 "

 0.7500 "

3/8 "

Scale: x2

LADSS
July 2,3,5, 2002 Jobie M. Gerken

Mechanically Coupled Cook off

1
2

1 2

3 4

LADSS
July 2,3,5, 2002 Jobie M. Gerken

Mechanically Coupled Cook off

Using randomized failure
criteria, the simulations
show qualitative agreement
with experimental results

LADSS Jobie M. Gerken

Crystal Structure

LADSS
July 2,3,5, 2002 Jobie M. Gerken

Earth Penetrating Weapons

LADSS Jobie M. Gerken

Some cool stuff I found on the web

LADSS
July 2,3,5, 2002 Jobie M. Gerken

Some cool stuff I found on the web

•SNL - Comet impact

The reality of Finite Element modeling
• The steps to modeling

– Get a mesh of your system

– Define the properties

∗ Loading

∗ Boundary conditions

∗ Material Behavior

∗ Body interaction

– Solve the model

– View the results

– Decide they are wrong and start over

LADSS
Computational Mechanics Jobie M. Gerken

Get a mesh

- Canned packages

LADSS
Computational Mechanics Jobie M. Gerken

Solve the model

- Integrated solution environments

LADSS
Computational Mechanics Jobie M. Gerken

Solve the model

• Specilaized FE codes

– DOE

∗ LLNL - DYNA3D, NIKE3D, TOPAZ

∗ SNL - PRONTO3D, JAS, SALINAS, COYOTE

– Other government codes

– Research developed codes

LADSS
Computational Mechanics Jobie M. Gerken

View the results

- Integrated solution environments

LADSS
Computational Mechanics Jobie M. Gerken

View the results

• Many codes (integrated environments or not) have post-processors.

• Stand alone post-processors are available. (e.g. Ensight)

• Sometimes simply looking at the results is not enough.

LADSS
Computational Mechanics Jobie M. Gerken

Meshing

• Matching the relevant geometry

• Good element shape

• Automatic meshing

LADSS
Computational Mechanics Jobie M. Gerken

Elements

u∗ =
n∑

i=1

Niai

• linear

• quadratic

• cubic, . . .

ε =
∂u

∂x

γ

LADSS
Computational Mechanics Jobie M. Gerken

Elements

• Shape

– 3D, Brick, Tetrahedral

– 2D, Quadrilateral, Triangular

• Integration

– Fully integrated

– Reduced integration

– Pressure integration

• Distortion

LADSS
Computational Mechanics Jobie M. Gerken

Material

E = 200 x 10
6

E = 1
T

x 10
6

σ = 220y x 10
3

ρ = 7.8x 10
2

ν = 0.29

LADSS
Computational Mechanics Jobie M. Gerken

Material/timing

cl =
√

E
ρ =

√
200×106

7.8×102 = 500

cl(steel) ≈ 5000

lmin ≈ 2 × 10−3

∆tmin ≈ 2×10−3

500 = 4 × 10−6

∆tactual = 2.5 × 10−6

tsim = 2 × 10−2

inc = 2×10−2

2.5×10−6 = 8000

LADSS
Computational Mechanics Jobie M. Gerken

Simulation

8000 elements

8682 nodes → 26046 DOF

SGI IRIX 195 MHz

17 Minutes of computation

≈ 1 minute for contact (5

LADSS
Computational Mechanics Jobie M. Gerken

Material

E = 200 x 10
6

E = 1
T

x 10
6

σ = 220y x 10
3

ρ = 7.8x 10
2

ν = 0.29

LADSS
Computational Mechanics Jobie M. Gerken

References

• ” The Finite Element Method Vol 1”, O.C Zienkiewicz, R.L. Taylor

• ”Finite Element Procedures”, Klaus-Jurgen Bathe

• ”Concepts and Applications of Finite Element Analysis”, R.D. Cook,
D.S. Malkus, M.E. Plesha

• http://caswww.colorado.edu/courses.d/IFEM.d/Home.html

• http://caswww.colorado.edu/courses.d/NFEM.d/Home.html

• http://www.cs.berkeley.edu/~flab/elas/elasticity.html

LADSS
Computational Mechanics Jobie M. Gerken

	your_chair.pdf
	Your Chair
	Your Chair
	Your Chair
	Your Chair
	Your Chair
	Your Chair
	Your Chair
	Your Chair
	Your Chair
	Your Chair
	Modeling your Chair

	Objective.pdf
	Objective
	Objective

	web_stuff.pdf
	Some cool stuff I found on the web

	web_stuff.pdf
	Some cool stuff I found on the web

	crystal_movie.pdf
	Crystal Structure
	Crystal Structure

	crystal_movie.pdf
	Crystal Structure
	Crystal Structure

	crystal_movie.pdf
	Crystal Structure
	Crystal Structure

