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Abstract. We describe how assimilation of radiation belt data with a
simple radial diffusion code can be used to identify and adjust for unknown
physics in the model. We study the drop-out and the following enhancement
of relativistic electrons during a moderate storm on October 25, 2002.
We introduce a technique that uses an ensemble Kalman Filter and the
probability distribution of the forecast ensemble to identify if the model
is drifting away from the observations and to find inconsistencies between
model forecast and observations. We use the method to pinpoint the time
periods and locations where most of the disagreement occurs and how much
the Kalman Filter has to adjust the model state to match the observations.
Although the model does not contain explicit source or loss terms, the Kalman
Filter algorithm can implicitly add very localized sources or losses in order
to reduce the discrepancy between model and observations. We use this
technique with multi-satellite observations to determine when simple radial
diffusion is inconsistent with the observed phase space densities indicating
where additional source (acceleration) or loss (precipitation) processes must
be active. We find that the outer boundary estimated by the ensemble
Kalman filter is consistent with negative phase space density gradients in the
outer electron radiation belt. We also identify that specific regions in the
radiation belts (L∗ ≈ 5− 6 and to a minor extend also L∗ ≈ 4)where simple
radial diffusion fails to adequately capture the variability of the observations,
suggesting local acceleration/loss mechanisms.

1. Introduction

The highly energetic electron environment in the in-
ner magnetosphere (around geosynchronous orbit and
inward) is very dynamic and undergoes constant changes
by acceleration, loss, and transport processes. These
processes in the radiation belts are important to under-
stand because dynamic variations in this environment
can negatively impact the space hardware that our so-
ciety increasingly depends on.

It has been known since the late 1960’s that ra-
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dial diffusion is a key mechanism influencing radia-
tion belt dynamics, [e.g. Cornwall , 1968; Fälthammar ,
1968; Schulz and Lanzerotti , 1974; Brautigam and Al-
bert , 2000; Hilmer et al., 2000]. Recently, new obser-
vations and increased monitoring evidenced that other
processes play an important role as well [Reeves et al.,
1998]. For a review see Friedel et al. [2002]; Brautigam
and Albert [2000]; Green and Kivelson [2004]. Reeves
et al. [2003] show that the net effect of geomagnetic
activity on radiation belt dynamics is a delicate bal-
ance of acceleration, transport, and losses that can lead
to either increased or decreased fluxes or to almost no
changes at all.

Our new approach is to extend available techniques
of data assimilation that are widely used for other
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geophysical systems (meteorology, oceanography, iono-
sphere) to the radiation belts. The term “data assim-
ilation” was coined in the late sixties by the meteoro-
logical community to denote a process in which obser-
vations distributed in time are merged together with
a dynamical numerical model in order to determine as
accurately as possible the state of the atmosphere [Ta-
lagrand , 1997]. The general purpose of data assimila-
tion is to combine all available information essentially
consisting of observations and the physical laws which
govern the evolution of the system. The latter are avail-
able in practice in the form of a numerical model [see
Talagrand , 1997; Daley , 1997, for an introduction].

While diffusion is an important part of the radiation
belt description, eventually a self-consistent represen-
tation is necessary that includes ring current develop-
ment and its interaction with radiation belt particles
through whistler chorus, hiss, electromagnetic ion cy-
clotron waves, and other plasma waves and with the
changing geomagnetic field. This paper attempts to
lay the foundation for the effort to combine all these
processes into a Dynamic Radiation Environment As-
similation Model (DREAM) to understand accelera-
tion, transport, and losses in the radiation belts [Reeves
et al., 2005]. DREAM is a Laboratory Directed Re-
search and Development project at Los Alamos Na-
tional Laboratory. It will develop a space radiation
model using extensive satellite measurements, new the-
oretical insights, global physics-based magnetospheric
models, and the techniques of data assimilation.

The techniques of data assimilation complement those
of traditional first-principle physical models in several
ways. We know that a full physical description of the
radiation belts require a complete knowledge of the sys-
tem such that model and data always agree. However,
when the model and observations disagree, we have no
way to know which aspects of the model produced the
disagreement. DREAM develops both approaches in
parallel with an eventual convergence.

In the next Section we will present our model-data
framework consisting of a radial diffusion code, data
from five different satellites, and the ensemble Kalman
filter as the overarching umbrella combining data and
model predictions. Section 3 describes the results
with data assimiation and Section 4 discusses how the
Kalman innovation is actually adding a source and loss
term to the radial diffusion equation. In Section 5 we
estimate the absent source/loss term with the results
from data assimilation and Section 6 compares our re-
sults with an identical twin experiment. We dicuss our
results in Section 7. The Appendix describes the phase
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Figure 1. Satellite data and Dst. The observations
of three LANL-GEO (LANL-97a, 1991-080, 1990-095),
Polar, and GPS-ns41 vehicles were converted to phase
space densities at constant µ and K. They are plot-
ted here on a normalized log scale. The bottom panel
shows Dst for the same time period from October 23
to November 4, 2002. This data set is used as input for
the ensemble Kalman Filter. We made L∗ profile cuts
for Figure 4 at the indicated arrows similar to Green
and Kivelson [2004].

space density data and the uncertainties of data, model,
and parameters in more detail.

2. The Data and Model Framework

2.1. Data

We used data from three Los Alamos National Labo-
ratory geosynchronous (LANL-GEO) satellites (LANL-
97a, 1991-080, 1990-095), Polar, and GPS-ns41 for a
specific storm (October 25, 2002) that was chosen by
the LWS TR&T (Living with a Star Targeted Research
and Technology Program by NASA) Radiation Belt
Team (see Figure 1 for phase space density data and
disturbance storm-time index Dst). This is a moderate
storm with a minimum Dst = −90 (plotted in the bot-
tom panel of Figure 1). Over the course of eight days,
Dst slowly recovers but has intermittent minima indi-
cating ongoing activity. Already in Figure 1 we can see
radially localized enhancements.

We obtained the phase space densities at given adi-
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abatic invariants (µ = 2083MeV/G, K = 0.1
√

GRE)
by using the angular resolved electron fluxes and lo-
cal magnetic field magnitude for each of the satellites
(see Appendix A). We also applied the global magnetic
field configuration from the Tsyganenko 2001 storm-
time magnetic field model [Tsyganenko, 2002; Tsyga-
nenko et al., 2003]. See Chen et al. [2005, 2006] for
details on the calculation of phase space densities and
adiabatic invariants.

2.2. Radial Diffusion Model

The distribution of relativistic electrons in the ra-
diation belts are described by their phase space den-
sity, f(µ, J, L∗, t) [Schulz and Lanzerotti , 1973] where
the quantities µ, J, L∗ are adiabatic invariants at time t
defining the drift motion, periodic gyration and bounce
motion of electron in the geomagnetic field [Roederer ,
1970]. We apply a model that describes only their ra-
dial evolution in L∗ by using a Fokker-Plank equation
with constant adiabatic invariants µ and J

∂f

∂t
= L2 ∂

∂L

(
DLL

L2

∂f

∂L

)
. (1)

We neglect any source or loss terms here. They are
simply additive and we will show below that these are
included implicitly by the data assimilation algorithm.
In fact, identifying where the results after data assimila-
tion deviate from the assumed model is the main focus
of this work.

We solve the diffusion equation (1) assuming a dis-
crete meshed grid of dimension N (typically 91 cells)
from 1 < L∗ < 10 and use the Crank-Nicolson scheme
[Crank and Nicolson, 1947] which is an implicit, nu-
merically stable method that does not need to satisfy
the Courant condition [Press et al., 1986]. We use a
parameterized form of the diffusion coefficient that is
a function of magnetic activity [Brautigam and Albert ,
2000]

DLL(Kp,L) = 10(0.506Kp−9.325)L10. (2)

The inner boundary at L∗ = 1 is fixed at zero, how-
ever, the outer boundary is a free parameter that can
be adjusted by our data assimilation algorithm.

The initial condition for the grid is a steady state
vector that has been calculated with a constant Kp over
a very long time and outer boundary fb = 1. The steady
state is then simply multiplied by a factor to match the
very first data point. Also, all data has been scaled by
a global factor to obtain an average 〈f〉 = 1.

2.3. Ensemble Kalman Filter

The term “data assimilation” is short for “model-
based assimilation of observations”, i.e. data assimila-
tion is the combination of a given physical model with
observations. The purpose is to find the most likely
estimation to the true state (which is unknown) us-
ing the information provided by the chosen physical
model and the available observational data considering
both of their uncertainties and the limitations of both
model and observations. Data assimilation methods are
based on, and can be derived from, Bayesian statis-
tics, minimum variance, maximum likelihood, or least
square methods [Maybeck , 1979; Kalnay , 2003; Daley ,
1991; Talagrand , 1997; Tarantola, 1987; Tarantola and
Valette, 1982].

One popular method for data assimilation is the
Kalman Filter [Kalman, 1960]. It is an optimal recur-
sive data processing algorithm [Maybeck , 1979, p. 4]
that has become a favorite for many engineering appli-
cation including the navigational system on the Apollo
mission, GPS stand-alone devices, and many more
[Sorenson, 1985].

We combine the phase space densities at each grid
point into a single vector x, called the state vector, and
the observations at time ti into the observational state
or data vector yo(ti). The Kalman Filter method can
be summarized in three steps which are illustrated in
Figure 2.

Figure 2. Flow diagram of the recursive Kalman filter
algorithm. Starting with initial state vector xf(0) and
an estimation of its error in Pf(0), the first step is to
compute the Kalman gain matrix K. Then observations
yo(ti) are used to calculate the state estimate xa(ti).
Step three yields the forecast state vector xf(ti+1) which
is used as input for the next cycle.

(1) Gain computation: which yields the “Kalman
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gain matrix” or “weight matrix”

K(ti) = Pf(ti)HT(ti)
[
H(ti)Pf(ti)HT(ti) + Ro(ti)

]−1

(3)
which depends on the error covariance of the current
forecast Pf and the observational uncertainty Ro. The
operator H projects the model space into the obser-
vational state space, i.e. it pulls out the specific grid
points from the state vector where observations are
made. HT indicates the transpose of H.

(2) State estimate: which uses the Kalman gain K
to weight the “observational residual” (in the older
meteorological literature) or the “innovation vector”
d = yo − Hxf and computes the “state estimate” or
“assimilated state” xa = xf + K · d.

(3) State forecast or prediction: The next step is to
apply a “forward model operator” M which results in
the “forecast state vector” xf(ti+1) = M[xa(ti)] that
can be compared with new observations at time ti+1 in
the next cycle.

The steps above also include the calculation of the
error covariances Pf and Pa. In the standard lin-
ear Kalman filter they are explicitly calculated [Koller
et al., 2005]. However, we decided to use an ensem-
ble Kalman Filter [Evensen, 1994, 2003] instead, which
is a variant of the classical Kalman filter as described
above. The standard Kalman filter can only handle lin-
ear problems but we have extended our state vector by
model parameters which make the model non-linear.

One can describe the error statistics from non-linear
models by using a Monte-Carlo technique like the en-
semble Kalman filter. The ensemble members are cre-
ated by randomly perturbing the state vector, sepa-
rately advancing them in time by using the model, and
then comparing them to each other. The new, most
likely, forecast is the mean of the whole forecast ensem-
ble. The spread of the forecast ensemble members ∆e

determines the uncertainty of the forecast. The ensem-
ble covariance matrixes around the ensemble mean x
are defined as

Pf = (xf − xf)(xf − xf)T (4)

Pa = (xa − xa)(xa − xa)T (5)

where now the overlines denote an average over the
ensemble. Thus, we can use an interpretation where the
ensemble mean is the best estimate and the spreading of
the ensemble around the mean is a natural definition of
the error in the ensemble mean. Increasing the number
of ensemble members Ne gives a better resolution of

the probability distribution of the state vector and the
error of the sampling decreases proportional to 1/

√
Ne

[Evensen, 2003]. We test the convergence of our results
with different numbers of ensembles and find that for
Ne > 30 all our results and conclusions are consistent.

We use a so-called “augmented state vector” ap-
proach [Lainiotis, 1971; Ljung , 1979] where the state
vector is extended by parameters of the physics model.
We added the phase space density of the outer bound-
ary fb to the state vector which then reads

xe = [x, fb]T . (6)

The diffusion equation (1) by itself is linear but since
we have augmented the state vector with parameters
that are used in the solution it becomes a non-linear
equation xi+1 = M(xi). All of the physics assumed in
our model is contained in the matrix M which simply
advances the state from time ti to ti+1. The matrix
M will be used for the prediction part in the Kalman
Filter.

3. Data Assimilation Results

Assimilating and combining all data with our 1-D
radial diffusion code results in the states shown in Fig-
ure 3. The whole data set and, hence, also the result-
ing phase space density is normalized by a fixed value.
The first two days (marked gray in Figure 3) before the
strong drop-out in phase space density should be con-
sidered as an adjustment period for the Kalman Filter
because of the initial conditions which were simply a
steady state system. Also, the outer boundary was still
at a high value from the initial steady state system. The
Kalman Filter assimilated two days worth of data to ad-
just from the initial conditions to the observed radiation
belt profile. The boundary consistently dropped during
that same time period and stayed low for the rest of
the studied interval. One can also see in Figure 3 that
the outer boundary is modulated mostly by Polar data
due to the proximity of measurement locations to the
computational boundary at L∗ = 10.

After the minimum Dst on October 25, the phase
space density dramatically rises within just two days
between L∗ = 4− 7. After a maximum is reached, Fig-
ure 3 shows several smaller decreases. We find that the
evolution of the phase space density is well correlated
with the temporal evolution of Dst.

Compared to Figure 1, the entire L∗-time space is
now filled (top panel in Figure 3). However, it is im-
portant to keep in mind that the uncertainty of each
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Figure 3. (1) Assimilated state result using data from
Figure 1 and a 1-D diffusion with variable outer bound-
ary. The locations of satellite data that went into this
result are shown as white circles. Cuts for density pro-
files in Figure 4 are indicated as well. (2) Relative resid-
ual used by the ensemble Kalman Filter to adjust for
model discrepancies. The light blue area depicts the rel-
ative uncertainty of the forecasts. The red line shows
the relative residual that is positive for a long period
which results in an increase of the phase space densities
to match the observations of LANL-GEO satellite 1991-
080. We used a moving average of 3.3 hours. (3) Same
as panel 2 but showing the absolute residual. (4) Ab-
solute residual at GPS orbit. Note the different scale
compared to panel two and three. The gray area in
panel one to four indicates the initial adjustment pe-
riod for the data assimilation algorithm. (5) Dst for
the same time period.

forecast increases with increasing distance to the data:
The further one goes away from regions where data is
available, the lower the confidence in the prediction of
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Figure 4. Phase space density profiles of the assimi-
lated states in Figure 3. Cut times are indicated by the
letter a-f.

the state will be.
Figure 4 shows cuts through the phase space den-

sity at six different times which are indicated in Figure
3. All cuts from pre-storm through the recovery phase
show a negative slope for L∗ > 6 and either a single
peak or a double peak between 4 < L∗ < 6 indicating a
source process in the inner regions of the radiation belts
and not radial inward diffusion which is consistent with
the results of Green and Kivelson [2004].

Looking at Figure 3 one might wonder how a model
without a source or loss process can produce such dis-
tinctive phase space density peak in the center of the
radiation belts. The reason lies in the data assimilation
as described below.

4. Kalman Innovation Adding
Source/Loss Processes

The second step in the Kalman filter where the state
estimate is calculated warrants a more detailed discus-
sion because this is where a source/loss term is effec-
tively incorporated into the Kalman Filter. The solu-
tion to the diffusion equation (1) can be formulated as
xf(ti+1) = Mxa(ti). Replacing xf in the state analysis
equation xa = xf + K · d yields

xa(ti+1) = Mxa(ti) + S (7)

where S = K · d is acting as the source term. This is
equivalent to solving
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Figure 5. Ensemble Kalman filter diagram explain-
ing how the Kalman innovation is implicitly acting as a
source or loss process. The current state forecast (blue
circle) is compared to the observation (red box). The
Kalman gain is calcualted as a function of the uncer-
tainties. If the forecast is within the errors of the ob-
servations, the forecast model adequately describes the
data. However, if the observation falls outside of the
forecast uncertainty, the model has a large discrepancy
and the Kalman filter will apply a significant amount of
source or loss in the form of S = K ·d in order to match
the observation. The result is the assimilated state. We
use large values of S to indicate strong discrepancies be-
tween the model forecast and the observations.

∂f

∂t
= L2 ∂

∂L

(
DLL

L2

∂f

∂L

)
+ S̃ (8)

but with S̃ as a function of time and the radial coor-
dinate L∗. However, K · d is a full adjustment to the
model state and applied in the Kalman filter during a
comparison of forecast with an observation whereas S̃
is applied with each time step.

The magnitude of the source or loss S in Equation
(7) depends on the uncertainty of model and observa-
tions and how they compare to each other. If the confi-
dence in the observations is low, the estimate will favor
the model with small values in K. The elements in the
source vector S = K·d will then be close to zero. On the
other hand, if the uncertainty of the model is large, then
more weight will be given to the observations with large
values in K. If K is large and the difference between the
observation and the forecast yo−Hxf is also large, then
elements in S will be large as well. See Appendix B for

a discussion on model and data uncertainties.
Since elements in S can be positive or negative,

the exact same arguments apply for losses. We note,
however, that S̃ in Equation (8) represents overall net
sources or losses at a given time step.

We introduce here a method that can be used to
identify time intervals where disagreements between the
model and the observations imply that a simple diffu-
sion model (without additional source/acceleration or
loss/precipitation terms) is inadequate to describe the
dynamics of the system. Every time an ensemble mem-
ber is integrated from time ti to ti+1 it becomes a “fore-
cast” (this term is used regardless of whether ti+1 is in
the future or applied to retrospective data sets). We
employ the forecast ensemble to calculate the average
forecast and the spread of the ensemble describing the
probability distribution of that average forecast (Figure
5). The mean forecast is compared to the observations
using the innovation equation d = yo − Hxf . If the
mean forecast plus or minus its uncertainty (based on
the ensemble) overlap the uncertainty of the observa-
tion, then the forecast can be considered as consistent
with the observations. But if the forecast by the model
is outside of the observational error bar, the model was
not able to predict the observation well enough. See
Figure 5 for a sketch of this process.

If the model is frequently too low or too high, the
model is said to be “drifting” relative to the observa-
tions. When this occurs the Kalman Filter responds
by adjusting the current state xa away from the model
forecast xf and toward the observations yo. In this case
it does that by adding or subtracting phase space den-
sities - essentially mimicking the effects of source or loss
terms by the means of the “Kalman innovation” term
K · d. We can use this term to estimate the missing
source term in Equation (1) and localize the L∗-shell
region. We will discuss this in the next section.

5. Estimating the Missing Source/Loss

The second panel in Figure 3 shows the relative resid-
ual dj/xf

j (red line) between the forecast and the obser-
vations of one Los Alamos National Laboratory geosyn-
chronous (LANL-GEO) satellite 1991-080. xf

j is short
for the predicted phase space density at the correspond-
ing L∗ grid point of satellite j or in a more mathemat-
ical way xf

j := Hjxf . The operator Hj is the j-th row
of the observation operator H. The relative residual
is positive (negative) when the observations are signif-
icantly higher (lower) than the forecast and hence the
Kalman Filter is adding (subtracting) phase space den-
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sity to compensate and to match the observations. The
relative residual is plotted in Figure 3 with a moving
average of 3.3 hours. Note that the peak in the rela-
tive residual dj/xf

j of satellite j does not correspond to
the peak in phase space density. This is because the
phase space density is low. It is the relative variation
that is large. For comparison, the absolute residual dj

(third panel in Figure 3 correlates better with the peaks
in phase space density. The light blue area indicates a
one sigma uncertainty of the prediction P f

j (t)0.5 at the
L∗ location of satellite j. If the red line overlaps with
the blue area, the residuals are within the prediction
uncertainty and noise of the observations.

This type of plot can be used to identify when and
where “missing physics” in the model becomes appar-
ent. In our case, the missing source/loss term in the
radial diffusion model is most obvious between October
25-27 for geosynchronous satellites (Figure 3), where
the model is significantly drifting away from the obser-
vations. That trend is compensated by K ·d in the state
analysis equation xa = xf + K · d which can also be in-
terpreted as a source/loss term (see Section 4 for a more
complete discussion).

We compare the residuals at LANL-GEO to the
residuals at GPS and find that they are a factor of 10
larger for geosynchronous satellites (Figure 3 panel 4).
The Kalman Filter added only a much smaller amount
to the phase space density. This indicates that the real
source region of acceleration is not at the GPS orbit
but rather at geosynchronous orbit or between GPS and
LANL-GEO.

The dimension of the Kalman innovation K ·d is the
same as the state vector and can be used to identify
where the Kalman Filter has added the most phase
space density. We sum over all Kalman innovations
K · d during the recovery phase from October 25 to
November 2, 2002 and find the largest amount is added
between L∗ = 5− 6 (Figure 6). This indicates that the
phase space density measured by GPS around L∗ = 4
can mostly be accommodated by inward radial diffu-
sion. There is a small peak of added source but it is
a factor 10 smaller than at geosynchronous orbit. Re-
gions outside of L∗ = 6 are also not receiving any addi-
tional source. Changes in phase space density outside
of L∗ ≈ 6 are consistent with outward radial diffusion.

This particular finding is not necessarily the same
for other storms. We studied here the radiation belt
response due to a fairly standard interaction region with
a sector reversal in the solar wind. Other, more extreme
storms, could very well lead to a different response and a
different localized particle acceleration region as Shprits
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Figure 6. Kalman innovations K(yo − Hxf) versus L∗

summed over the time period of the recovery phase from
October 25 to November 2, 2002. This shows at what
L∗-shells the ensemble Kalman Filter added phase space
densities like a source term in order to match the obser-
vations. Most of the source is added between L∗ = 5−6
whereas the enhanced phase space density outside this
region is mostly explained by radial diffusion.

et al. [2006] suggest an L∗ ≈ 3 during the Halloween
storm in 2003.

We also note that the ensemble Kalman Filter did
not raise the boundary condition to facilitate inward
diffusion but rather added phase space densities locally
like a source term otherwise the forecasts would become
inconsistent with Polar.

The next step, but beyond this paper, will be to iden-
tify the physical processes that are responsible for the
model trend and to include them in a new version. That
should greatly reduce the residuals and lead to a better
model based on better physical understanding. Possi-
ble candidates for these model trends are most likely
wave-particle interactions (whistler chorus, hiss, elec-
tromagnetic ion cyclotron waves, etc.) which are also
being studied by other modeling and data analysis ef-
forts [Horne and Thorne, 1998; Meredith et al., 2002;
Summers, 2005; Varotsou et al., 2005; Shprits et al.,
2005; Green and Kivelson, 2004].

6. Discussion and Conclusion

The advantage of an analysis with data assimilation
lies in obtaining a complete picture of the radiation belt,
estimating free parameters like the outer boundary, and



KOLLER ET AL.: RADIATION BELT DATA ASSIMILATION 8

incorporating uncertainty in data and model.
We studied the combination of a 1-D radial diffusion

code with an ensemble Kalman Filter and assimilated
data from 5 satellites for the time period from October
22 to November 4, 2002. The data from three LANL-
GEO, Polar, and GPS show strong enhancements af-
ter a drop out. We used the ensemble Kalman Fil-
ter with a state vector that was extended to allow the
outer boundary to adjust freely. We find that the outer
boundary stayed low during the whole time period in-
dicating that a local acceleration process is dominating
the dynamics instead of an inward radial diffusion from
the boundary.

We were also using the ensemble Kalman Filter to
identify time periods when the model is drifting away
from the observations suggesting diffusion alone with-
out internal sources and losses provides an incomplete
physical description of the dynamics. The specific equa-
tions of the Kalman Filter can compensate for such
“missing physics”. We find that the largest relative
residual between the forecast ensemble and the observa-
tions are at the minimum of Dst. This entails that the
actual phase space density is a factor 3-4 larger than
the predicted value. That relative residual is falling off
as the phase space density rises but stays positive until
October 26. The absolute residual corresponds to the
peaks in phase space density of the assimilated state
around October 27 and 30.

We find that the source region may be very localized.
The Kalman Filter adds most of the phase space density
between L∗ = 5− 6. Radial diffusion then redistributes
the effects of source or loss. It is possible that this
results is due to the location of geosynchronous obser-
vations. The new RBSP (Radiation Belt Storm Probe)
mission with its geo-transfer orbit will help to pin down
the answer.

We also want to point out that we used the diffusion
coefficients from Brautigam and Albert [2000] assuming
they were fixed. However, Brautigam and Albert [2000]
point out in their paper that these diffusion coefficients
have a large uncertainty. Also, more recent studies by
Fei et al. [2006] find that DLL = D0L

n where D0 =
1.5×10−6days−1 and n = 8.5 representing an average of
the time-varying ULF-driven diffusion coefficient. We
could have added the diffusion coefficients to the state
vector as well but we will leave this to a future study.

We plan to repeat the same analysis when we have
models with explicit sources and losses to quantify the
effect on residuals. In a next step we will identify the
processes behind these explicit sources and losses and
include them in a new model which should have much

smaller residuals.
In summary, the ensemble Kalman Filter can be used

with a relatively simple model to identify where and
when sources and losses operate. This makes data as-
similation a promising method to study radiation belt
data to get a better understanding of the tug-of-war
between physical processes causing acceleration, losses,
and transport.

Appendix A: Phase Space Density Data

On board of the Los Alamos National Laboratory
geosynchronous (LANL-GEO) satellites (1990-095, 1991-
080, and LANL-97A), the Synchronous Orbit Particle
Analyzer (SOPA) instrument [Belian et al., 1992] can
measure the full three-dimensional electron distribution
from 50 keV to more than 1.5 MeV in each spin. Since
the LANL-GEO satellites carry no magnetometer in-
struments, we employ the method developed by Thom-
sen et al. [1996] through which the local magnetic field
direction can be derived from the measurement of the
plasma distribution by another instrument on board -
the Magnetospheric Plasma Analyzer (MPA), to obtain
the pitch angle distribution [Chen et al., 2005]. In this
work the LANL-GEO electron data have a 10 minute
time resolution, and we use the empirical magnetic field
model to calculate the adiabatic invariants (µ, J, L∗).

The Polar satellite, with a polar orbit of 2 × 9RE ,
crosses the magnetic equatorial plane every 18 hours
just outside of GEO during the time periods studied
here. The Comprehensive Energetic Particle and Pitch
Angle Distribution (CEPPAD) experiment [Blake et al.,
1995] on board of Polar provides angular resolved flux
data of energetic electrons, covering the energy range
from 30 keV-10 MeV. Flux data have a time resolu-
tion of 3.2 min, and we only use the measurements at
the apogee equatorial crossings. Polar also carries a
Magnetic Field Experiment (MFE) [Russell et al., 1995]
measuring magnetic field vectors. Therefore, µ can be
calculated directly but J and L∗ still require the model.

The GPS satellites have a circular orbit with a radius
of 4RE and inclination of 55 degrees, which makes them
cross the equatorial plane every 6 hours. The electron
data used in this work are from one satellite, GPS-ns41,
measured with the BBD-IIR (Burst Detector Dosimeter
IIR) obtaining differential energy electron fluxes from
77 keV up to > 5 MeV [Cayton et al., 1998]. The flux
data have a time resolution of 4 min. Since GPS satel-
lites are three-axis stabilized and have no magnetome-
ter on board, we assume here an isotropic pitch angle
distribution and use the Tsyganenko 2001 storm-time
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magnetic field model [Tsyganenko, 2002; Tsyganenko
et al., 2003] for obtaining (µ, J, L∗).

We made strong efforts to calibrate the measured
data between satellites. The inter-calibration between
the three LANL-GEO satellites was obtained in Chen
et al. [2005] by matching the phase space densities, that
is, comparing the phase space density values of electrons
with the same combination of (µ,K, L∗) but measured
by satellites at different spatial locations during mag-
netically quiet times. The same method is applied to
obtain the inter-calibration between LANL-GEO and
Polar [Chen et al., 2006]. Also, a preliminary inter-
calibration between Polar, LANL-GEO, and GPS fluxes
was done following the procedure decribed in Friedel
et al. [2005].

One distinguished feature in Figure 1 is that the L∗

positions of satellites vary greatly with time, even dur-
ing quiet times. This variation involves two parts: (1)
The diurnal variation for LANL-GEO satellites, which
have nearly fixed equatorial radial distances, is caused
by the asymmetric magnetic field. For larger L∗ and on
the night side, the measured field is more stretched and
weaker than on the day side [Chen et al., 2005, 2006].
This variation dominates during quiet time. (2) Af-
ter the diurnal change is removed, the remaining varia-
tion in L∗ is more pronounced during storm times and
is caused by changing magnetospheric current systems
(especially the ring current). These current systems
simultaneously cause the change in Dst and therefore
lead to the ”Dst effect”. Electrons move to different
spatial position so they conserve the third adiabatic in-
variant [Kim and Chan, 1997]. To conserve the invari-
ants, the ”Dst effect” requires the drift shell to move ra-
dially outward and consequently leaves the GEO satel-
lite to find itself on a new drift shell with smaller L∗

value. The same reason makes the GEO satellites move
back to the pre-storm L∗ shells in the recovery phase.
This mechanism applies to all satellites. Such changes
in L∗ justify the importance of comparing phase space
densities in a correct magnetic coordinate system.

Appendix B: Data, Model, and
Parameter Uncertainties

Uncertainties of the observations ∆y and the model
∆M are an important ingredients to every data assim-
ilation process except the method of direct insertion
where the data is assumed to have no error at all. Also,
the task is left to the model to propagate the informa-
tion from data to other surrounding locations. This is
in strong contrast to other data assimilation methods

where correlations between all locations are used to find
the best approximation to the true state while staying
consistent with all data points.

We estimate the observational uncertainty by com-
paring different satellite measurements of the same pa-
rameter against one another and adding an estimate of
systematic uncertainties [Friedel et al., 2005]. We use
a 1-D grid in L∗ and were therefore able to find many
conjunctions between geosynchronous satellites. A sta-
tistical analysis of the conjunctions gave us the relative
uncertainty of the observations. We find a relative un-
certainty of 30% using 6500 conjunctions over the course
of half a year. We applied then the same uncertainty to
all instruments including GPS and Polar that did not
have any conjunctions (along a drift shell) with data
from LANL-GEO satellites. We note that in practice
this is often only a best estimate of the observational
uncertainty.

Model uncertainties, ∆M , are determined by a com-
bination of the ensemble spread, ∆e, in the ensemble
Kalman Filter and free parameters like the outer bound-
ary. They are much more difficult to estimate, espe-
cially since we know that our simple 1-D diffusion model
is incomplete but we do not know the magnitude of the
resulting model uncertainty. This is an still ongoing
research topic even in the atmospheric data assimila-
tion community [see Mitchell et al., 2002, and references
therein].

We did several tests and find that the ensemble
spread should be ∆e ∼> ∆y in order to leave enough
room for the Kalman Filter to adjust for the fast
changes in phase space densities of the observations.
This way, we put enough confidence in the observation
so that unknown physical processes in the model are
compensated for by the source term which largely de-
pends on the uncertainty of observations versus model.
We find that as long as the assumed model uncertainty
is approximately equal or larger than the data uncer-
tainty, the results are stable and, moreover, consistent
with the data. In any case, the model uncertainty
should adequately represent the “large” portion of miss-
ing source/loss in the model although the exact number
might be difficult to determine.

The uncertainty of the outer boundary is estimated
by how fast the observations from Polar satellite (at
L∗ ≈ 7− 10) change within a certain time period.
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Figure C1. Identical twin experiment with an artificial source region followed by a loss period. The initial
conditions are derived from a steady state system with constant boundaries. The true state xtrue is shown in the
upper left panel. We created artificial data using the true state and assimilated the data with a model that does
not contain source/loss processes. The result of the assimilated state xa is shown in the lower left panel. Although
the physics model did not contain a source/loss process the Kalman Filter can compensate for it. The upper right
panel displays the ratio xa/xtrue on a logarithmic scale. The lower right panel shows the relative residual to point
out the time periods where the Kalman Filter had to add or subtract a significant amount of phase space density
in order to match the observations. The blue area describes the uncertainty of the forecast.

Appendix C: Tests with Identical Twin
Experiments

We use “identical twin experiments”, a term intro-
duced by the data assimilation community, to test the
results with artificial data. We use these experiments
to assess their applicability to identify source and loss
processes. The method of the identical twin experiment
is to create artificial data with simulated uncertainties
and to test assimilation schemes in such a controlled
environment [Koller et al., 2005; Naehr and Toffoletto,
2005]. This has several advantages over using real data.
First, we have exact knowledge of the ”true” state at
all times and all locations. This is something that can
never be found in reality because data as well as models,
no matter how good they are, are only approximations

to the true state. Second, data can be artificially cre-
ated with any kind of error statistics along arbitrary
satellite orbits.

Observations and true state are related by yo =
xtrue + εo where εo is the unknown observational un-
certainty but with known statistical properties. Also
we will never know the exact true state xtrue. However,
in the “identical twin experiment” we get to assume a
certain “true state” and create an artificial data point
yo by randomly adding an error reflecting the chosen
statistical uncertainty.

For the following identical twin experiment, we cre-
ate a steady state system with constant boundaries and
a constant rate of radial diffusion. We then add an arti-
ficial source region followed by a loss period (see upper
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left in Figure C1). We sample the true state every six
hours with five artificial satellites at constant L∗-shells
between 3 < L∗ < 8 and randomly perturb these ob-
servations to simulate observational uncertainty. These
observations are then fed into the Kalman Filter algo-
rithm for assimilation with a physics model that con-
tains only radial diffusion but no source or loss pro-
cesses.

The resulting Kalman Filter output, the assimilated
state, is shown in Figure C1 (lower left panel). It con-
tains information from the data and the model pre-
diction. We find that even when the model does not
contain source/loss processes, the Kalman Filter can
compensate model discrepancies by adding (subtract-
ing) phase space density very efficiently in order to
match the observations. We identify such model trends
or “drifts” by comparing the ensemble of predictions
with observations. If the mean of the ensemble forecast
members is inconsistent with the observation and their
uncertainty, then the Kalman Filter is adding a signifi-
cant amount by the means of K ·d in the state analysis
equation xa = xf + K · d which can also be interpreted
as a source/loss term.

We visualize model discrepancies or the observational
residual by plotting components of the innovation vec-
tor d. Each component represents the difference be-
tween the forecast and the observation of a particular
satellite. Specifically, in the lower right panel of Figure
C1, we plot a smoothed relative observational residual
dj/xf

j to eliminate noise. We also plot the uncertainty
of the forecast xf

j at the location of satellite j (blue
area). If the residual dj (red line) of satellite j falls
outside of the uncertainty then the model discrepancy
is significant. Further, if the residual is positive (nega-
tive) then phase space density was added (subtracted)
by the Kalman Filter compensating for an unspecified
source process (loss process).

This identical twin experiment shows that the Kalman
filter can be used to compensate for and identify regions
and time periods with significant “unknown” accelera-
tion and loss processes.
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