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[1] In this paper we take a first step toward the development of a realistic global
magnetospheric model in which the magnetic forces are equilibrated by plasma pressure
forces. Such a model describes a ‘‘quasi-static’’ equilibrium, a condition valid at most
times in the Earth’s magnetosphere. The work reported here involves the coupling in two
dimensions of a numerical inner/middle magnetosphere model in flux coordinates, which
solves the Grad-Shafranov equation in ‘‘inverse’’ form, with an asymptotic magnetotail
model farther away from Earth. We discuss the obtained configurations (including the
resulting magnetic fields and electric currents) under different observation-based inputs
(parameters include plasma and total pressures, as well as the magnetic flux boundary).
In particular, we focus on the boundary value problem, in which we take realistic shapes
for the outer magnetic flux surface (close to the magnetopause) and plasma
pressure distributions as model inputs and obtain the total pressure variation in the
tail as a by-product of the model.

Citation: Zaharia, S., J. Birn, and C. Z. Cheng (2005), Toward a global magnetospheric equilibrium model, J. Geophys. Res., 110,

A09228, doi:10.1029/2005JA011101.

1. Introduction

[2] Self-consistent (force-balanced) magnetospheric mag-
netic field models are crucial for many studies in magneto-
spheric physics, from plasma wave and stability analyses to
the study of field-aligned currents. A ‘‘quasi-static’’ equi-
librium exists in the Earth’s magnetosphere during most
periods because the flows are sub-Alfvénic [Wolf, 1983],
except for times of explosive activity such as substorm
expansion phases. The evolution of the magnetosphere
(including during gradually driven events such as the sub-
storm growth phase) can therefore be portrayed as a time
series of such quasi-static equilibria.
[3] Generally a three-dimensional (3-D) magnetic field

configuration is not in force balance with any plasma
population, and in particular the commonly used existing
empirical models are neither likely nor expected to satisfy
such balance [Zaharia and Cheng, 2003b]. While they are
parameterized using many observations, the nonlinearity of
the force balance equation together with the variability of
magnetospheric states causes deviations from equilibrium in
such models. Therefore, for applications in which force
balance is required, equilibrium configurations have to be
explicitly computed.
[4] Two major approaches have been developed in the

area of 3-D numerical magnetospheric equilibrium model-
ing: a ‘‘magnetofrictional’’ MHD approach [Hesse and
Birn, 1993; Lee et al., 1995; Toffoletto et al., 2001; Lemon

et al., 2003] and an iterative solution with prescribed
pressure in flux coordinates (Euler potentials) [Cheng,
1995; Zaharia et al., 2004] (for a comprehensive review
of various numerical methods for solving the plasma
equilibrium, see Takeda and Tokuda [1991]). The magneto-
frictional approach essentially consists of solving the fully
dynamic MHD equations, albeit with an artificial damping
term, to approach a final equilibrium, which is given by the
fields as functions of the three space coordinates. In
contrast, the Euler potential approach, to be described in
more detail in section 2.1, permits a reduction of the
problem to an iterative solution of ‘‘quasi 2-D’’ equations,
with the final equilibrium obtained in ‘‘inverse’’ form, that
is, the Cartesian coordinates of the points defining field
lines given as functions of the flux coordinates.
[5] Between the two methods mentioned above, currently

only the latter one in flux coordinates is generalized to
include anisotropic pressure (for a more detailed discussion
of differences between the two methods, the reader is
directed to Zaharia et al. [2004, section 2.3]). Computations
have been performed using this approach with pressure and
anisotropy degree from observations or kinetic models
[Zaharia and Cheng, 2003a; Zaharia, 2003; Zaharia et
al., 2004, 2005], leading to both quiet and active time force-
balanced magnetospheric states.
[6] Still, the computational flux coordinate approach

discussed above has numerical limitations that prevent its
use past 25 RE in the magnetotail, because of the need of
maintaining ‘‘nested’’ magnetic flux surfaces. Beyond
about 20 RE in the tail however, an approximate calculation
can be used, the so-called ‘‘tail approximation’’ of Birn
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[1987]. That approach, also employing the Euler potential
representation, assumes that the total pressure is indepen-
dent of the GSM Z coordinate, an assumption that becomes
valid at around 20 RE from Earth. The tail approximation
greatly simplifies the 3-D equilibrium problem by reducing
it to the integration of simple ordinary differential equations.
[7] This article presents the coupling between the two

approaches mentioned (the inner and the tail models) in
the simpler 2-D case, performed through a ‘‘line-tying’’
technique, facilitated by the similar Euler potential repre-
sentation in both models. The 2-D line-tying approach will
in the future be applied to the full 3-D problem, which in the
interior region is a set of ‘‘quasi 2-D’’ equations in flux
coordinates [Zaharia, 2003].
[8] The paper is organized as follows: in section 2 we

summarize the theory of the two models to be coupled, first
in full 3-D geometry, as well as the particularization to two
dimensions. Section 3 presents numerical details of the
iterative coupling procedure through a planar interface in
the magnetotail, including a technique for ensuring that the
numerical mesh is non-self-overlapping. Section 4 describes
configurations obtained using the coupled model with
different choices of plasma/total pressure, as well as outer
flux boundary shape. The focus is on the boundary value
problem, treated before in the tail [Birn, 1991]. In this
problem we specify (from an empirical model) the shape of
the outer magnetic flux surface (close to the magnetopause)
and the plasma pressure (observation-based), obtaining as a
by-product the total pressure variation in the tail. Then,
section 5 presents additional discussion of the results and
compares them with previous results/observations. Finally,
section 6 summarizes the paper and sets forth several
conclusions.

2. Theory of the Constituent Models

[9] Both models tackle the standard equations describing
magnetostatic equilibrium, which for the particular case of
isotropic pressure have the form

j� B ¼ rrrrrrrrrrP ð1Þ

rrrrrrrrrr� B ¼ m0j ð2Þ

rrrrrrrrrr � B ¼ 0: ð3Þ

[10] The model coupling is greatly facilitated by the fact
that the magnetic field is expressed in both models in terms
of Euler potentials [Stern, 1970]:

B ¼ rrrrrrrrrra�rrrrrrrrrrb: ð4Þ

Equation (4) shows that the intersection of constant a and b
surfaces defines the magnetic field lines.

2.1. Inner/Middle Magnetosphere 3-D Equilibrium

[11] With the magnetic field expressed by equation (4),
one can construct a flux coordinate system {a, b, c} (a note
of caution: for clarity purposes we use the same notation
here, a and b, for the pair of Euler potentials defining the

field in both the inner and the tail model; this notation is the
same as the one used by Birn [1987] and is common in the
space physics community; it is however a change from the
(y, a) terminology commonly used in fusion plasmas and
employed in our previous flux coordinate equilibrium work).
[12] For the magnetospheric case, a can be chosen to be a

magnetic flux function, and then the other potential (b) is a
periodic azimuthal angle-like function, not equal to the
longitudinal angle in general. The third function c com-
pleting the flux coordinate system is a generalized ‘‘poloi-
dal’’ angle, and is a function of the distance along the field
line. Very near the Earth (within 2 RE) a constant a surface
can be well approximated by an L shell of the dipole field,
while b there is very close to the longitudinal angle.
The flux coordinate system is generally not orthogonal,
with rrrrrrrrrra � rrrrrrrrrrb 6¼ 0, rrrrrrrrrra � rrrrrrrrrrc 6¼ 0 and rrrrrrrrrrb � rrrrrrrrrrc 6¼ 0.
[13] The equilibrium method in flux coordinates allows

one to specify an arbitrary pressure tensor [Zaharia, 2003].
For the case of isotropic pressure, because B � rrrrrrrrrrP = 0, the
pressure is constant along the field line: P = P(a, b).
Decomposing the force balance equation (1) along
the directions B � rrrrrrrrrra and B � rrrrrrrrrrb, respectively, one
obtains

j � rrrrrrrrrra ¼ 1

m0
rrrrrrrrrr � rrrrrrrrrrað Þ2rrrrrrrrrrb� rrrrrrrrrrb � rrrrrrrrrrað Þrrrrrrrrrra

h i
¼ � @P

@b
ð5Þ

j � rrrrrrrrrrb ¼ 1

m0
rrrrrrrrrr � rrrrrrrrrrb � rrrrrrrrrrað Þrrrrrrrrrrb� rrrrrrrrrrbð Þ2rrrrrrrrrra

h i
¼ @P

@a
: ð6Þ

Equations (5) and (6) are elliptic equations for b and a on
each constant a and b surface, respectively. In the
axisymmetric limit, equation (5) is trivially satisfied by
b 	 f. Equation (6) is a generalized Grad-Shafranov
equation. In general (5) and (6) are three-dimensional
equations. However, in the {a, b, c} system we can reduce
their dimensionality to 2-D. They are a coupled set of
‘‘quasi 2-D’’ equations that can be solved by specifying
boundary conditions for a and b as well as the P(a, b)
distribution at an arbitrary location on each field line.
[14] A numerical 3-D code has been developed to solve

the nonlinear equilibrium equations above [Cheng, 1995;
Zaharia, 2003; Zaharia et al., 2004]. The numerical grid is
tied to the equilibrium solution in such a way that grid
points automatically accumulate in regions of steep gra-
dients, thus yielding accurate solutions of high plasma beta
(bp) equilibria. An iterative metric method [DeLucia et al.,
1980] is used to solve for the discrete Cartesian coordinates
X (a, b, c), Y(a, b, c) and Z(a, b, c) defining constant a
and b surfaces such that the finite differenced equations
based on these points are satisfied to a small tolerance. The
fixed-boundary problem is solved inside a domain bounded
by (1) an outer a = aout flux boundary, with shape specified
to take into account the effects of the solar wind and
interplanetary magnetic field (IMF); (2) an inner a = ain

boundary primarily determined by the Earth’s magnetic
field; and (3) the Earth’s surface (or a sphere of radius r
enveloping the Earth) between the ain and aout surfaces.
The boundary condition for b on the inner sphere is b = f.
The flux boundaries, a = aout and a = ain delimiting the
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domain have shapes usually obtained by field line tracing
using empirical models such as T96 [Tsyganenko and Stern,
1996] or T01 [Tsyganenko, 2002], with various solar wind
and IMF conditions.
[15] Besides boundary conditions, the method requires

specifying the P distribution at one location on each field
line for a unique solution. It is usually given in the
equatorial plane from either direct observations [Lui and
Hamilton, 1992; De Michelis et al., 1999], or indirectly
through empirical formulas [Spence and Kivelson, 1993].
[16] The numerical code was used to obtain 3-D quasi-

static equilibria in the closed field region under different
solar wind conditions and with both isotropic and aniso-
tropic pressure [Zaharia and Cheng, 2003a; Zaharia et al.,
2004]. We have also recently extended [Zaharia, 2003] the
computational domain from the closed field region to cover
high-latitude, sometimes open field lines as well. The
domain was again constructed by field line tracing using
empirical models. It was limited in the ‘‘open field’’ regions
by cutting the lines as they touched an ‘‘eggshell’’ surface
(Figure 1) obtained by the rotation of an equatorial closed
contour around the x axis. Inside the whole volume

delimited by that surface equations (5) and (6) were solved
iteratively, using a modified Spence-Kivelson pressure
profile [Spence and Kivelson, 1993] in the equatorial plane
and an analytical extension of P(a, b) in the ‘‘open’’ region
(for computation purposes, whether the ‘‘open’’ field lines
that are cut at the boundary are indeed open to the IMF or
close farther in the tail is not relevant). Continuity of
physical quantities at the open-closed boundary was main-
tained throughout the iterations. Having in place the meth-
odology to treat both closed and open field regions in the
interior equilibrium code allows a coupling with the tail
equilibrium model that will cover all a values (all latitudes).

2.2. Magnetotail Model

[17] We now briefly describe the ‘‘tail equilibrium’’
model [Birn, 1987]. The magnetic field in this approach is
also expressed in terms of Euler potentials by equation (4)
(in general a and b here need not be the same as the ones in
section 2.1). The model relies on the fact that under typical
magnetotail conditions, excluding the inner magnetosphere
and the magnetopause boundary regions, the characteristic
scale length LZ for variations in Z, equivalent to the

Figure 1. (top) Noon-midnight meridian picture of constant magnetic flux (a) surfaces for a computed
3-D equilibrium with ‘‘open field’’ regions included. The thick black dashed line is the outer closed a
surface at the beginning of the computation, that is, obtained from the empirical model. (bottom) Three-
dimensional view of field lines with two different a in the Northern Hemisphere: the last ‘‘closed field’’ a
(blue) and an open field a (red). The lines with the same a are shown in the same colors in the top plot as
well [from Zaharia, 2003].
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characteristic current or plasma sheet half thickness, is of
the order of a few RE or smaller, whereas the variations
along X and Y occur on scales of the order of 10 to tens of
RE. In other words, the ‘‘tail approximation’’ is the ordering

BZ ; @=@X ; @=@Y ¼ O �ð Þ; �2 � 1:

[18] Under these conditions, the curvature term in the Z
component of equation (1) is small and the pressure balance
becomes [e.g., Siscoe, 1972]

P þ B2

2m0
¼ P̂ X ; Yð Þ; ð7Þ

where P̂ is the total pressure. As shown by Birn [1987],
equations (1) and (2) can then be reduced to a set of
ordinary differential equations for the case of isotropic
pressure:

dX=dt ¼ BX

dY=dt ¼ BY

dBX =dt ¼ m0@P̂=@X

dBY=dt ¼ m0@P̂=@Y

ð8Þ

and an integral

Z ¼
Z
rrrrrrrrrrbj ja

daffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m0 P̂ � P a; bð Þ

� �q þ Z0 X ;Yð Þ: ð9Þ

Here t is a variable

t ¼
Z

ds

B
ð10Þ

expressing the differential flux tube volume integrated along
a field line, such that d/dt 	 B � rrrrrrrrrr represents the derivative
along a field line, that is, for constant a and b.
[19] Equation (8) yields the field line projections in the

(X, Y) plane, X = X(a, b, t), Y = Y(a, b, t), while equation
(9) gives the Z coordinate of the field lines as a function of
X and Y, using the solution of equation (8) to express b as a
function of X, Y, and a. The gradient of b in equation (9) is
to be understood as the gradient for constant a. The
potentials a and b enter the solutions via the boundary
conditions. The function Z0(X, Y) can be chosen as the
location of the neutral sheet. The tail equilibrium solutions,
like the inner numerical ones, are therefore achieved as
explicit representations of the field lines.
[20] The solutions of equations (8) and (9) are governed

by two functions, the total pressure P̂(X, Y) and the plasma
pressure function P(a, b). In the coupling of the two
models, P(a, b) will be taken at the coupling interface from
the calculation in the inner region. The total pressure
function P̂(X, Y) then determines how the configuration
continues into the tail under equilibrium conditions. It can
be taken from various sources: empirical models, observa-
tions, global simulations or it can be designed from first
principles. For example, from equation (7) P̂ is approxi-
mately equal to the magnetic pressure in the lobes, where
plasma pressure is negligible. Therefore lobe measurements
[e.g., Slavin et al., 1985; Fairfield and Jones, 1996] could
be one source for specifying P̂. An alternative to taking P̂ as
an input is the boundary value problem [cf. Birn, 1991], in
which one specifies the shape of the outer magnetic flux
surface (for example from empirical models) and either the
plasma pressure or the total pressure function.

3. Model Coupling: 2-D Solution

3.1. General Coupling Issues

[21] The fact that both models describe the magnetic
configuration as an explicit field line representation (i.e.,
X, Y and Z as functions of a, b and c) allows for a coupling
through a ‘‘line-tying’’ approach, performed at a planar
interface at distance X0 where the tail approximation
becomes valid (see Figure 2). The domain in Figure 2, with
the outer flux surface aout being the magnetopause, is
obtained by tracing of an empirical model field and cutting
of the traced field lines as they touch a plane perpendicular
to the x axis at X = X0. In our work here we will not take the
outer flux surface to be the magnetopause, but rather the
field line (close to the magnetopause) starting from the pole
on the Earth’s surface.
[22] As discussed, the tail model will be run with either

total pressure or boundary shape inputs. If the total

Figure 2. Picture in the noon-midnight meridian of a
domain bounded by a (closed) magnetopause (thick solid
lines), defined by the T96 model (with northward IMF);
inside the domain, a numerical equilibrium is sought.
Interior field lines are also obtained by field line tracing
using T96, to be employed as an initial ‘‘guess’’ for the
inner computation. The domain is limited in the tail by a
plane perpendicular to the x axis, at a distance X0 where the
‘‘tail approximation’’ starts to become valid; approximate
tail solutions are sought beyond X0.

A09228 ZAHARIA ET AL.: MAGNETOSPHERIC EQUILIBRIUM MODEL

4 of 11

A09228



pressure is specified, the relationship between plasma
pressure and the lower bound P̂min of P̂(X, Y) directly
determines which lines are open, since only field lines
with a pressure above P̂min can cross the neutral sheet
[Wiechen and Schindler, 1988; Birn et al., 1992]. There-
fore the equilibrium tail structure follows largely from
the total pressure function, and major mapping features,
such as the location of the distant neutral line, can be
derived (or imposed by the choice of P̂(X,Y)) even
without having to integrate field lines. With the boundary
specified, the same characteristics are determined by the
interplay between plasma pressure and the boundary
shape.
[23] The tail model provides the foot points of the field

lines on the coupling interface, which are used as boundary
conditions for the ‘‘open’’ field lines in the inner model.
Conversely, the inner model provides the pressure on each
field line connected to the tail. An iterative approach is
employed back and forth between the two models until
convergence to a final equilibrium solution.
[24] On the basis of the empirical T87 model

[Tsyganenko, 1987], Figure 3 suggests that a tail distance
between 15 and 20 RE is suitable for the coupling
interface, because BZ

2 becomes reduced there to only a
few percent of the lobe magnetic pressure, equivalent to
the total pressure.

3.2. Two-Dimensional Case

[25] Because the inner 3-D solution consists in successive
solutions of ‘‘Grad-Shafranov-like’’ 2-D equations for one
Euler potential on surfaces on which the other is constant, a
line-tying approach will provide boundary conditions for a
2-D equation at a time. It is useful therefore to solve the less
complex problem of 2-D equilibrium before tackling the full
3-D solution. The 2-D coupling will be the focus of this

paper from here on, while also considering a zero Earth
dipole tilt (north-south symmetry); the extension to a tilted
dipole is straightforward.
[26] In the 2-D case (with BY = 0) in the midnight

meridian, while taking the field invariant in Y in the tail,
we consider it axisymmetric in the inner region (the B field
cannot be invariant in Y near Earth as that would require a
line dipole instead of the Earth dipole). Introducing the two-
dimensional flux function A, the field representation in the
two regions and the coupling condition are

Binner ¼ rrrrrrrrrra�rrrrrrrrrrf ð11Þ

Btail ¼ rrrrrrrrrrA�rrrrrrrrrrY ð12Þ

ajX¼X0
¼ �X0AjX¼X0

; ð13Þ

where X0 < 0 is the location of the coupling interface in the
tail.
[27] The 2-D equilibrium is described by the Grad-

Shafranov equation for a in the inner region (equation (6)
with b 	 f), while in the tail solution (9) becomes

Z X ;Að Þ ¼
Z A

A0

dA0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m0 P̂ � P A0ð Þ

� �q þ Z0 Xð Þ; ð14Þ

where Z0(X) is the Z location of the field line A = A0.

3.3. Numerical Issues

[28] The interior model requires specifying a starting
configuration as an ‘‘initial guess’’ in the iterative compu-
tation. In our previous equilibrium work, we took such a
guess from the empirical models that also provided the
boundaries. An issue arises in the coupling however
because as the tail model provides new foot points for the
field lines at the boundary, the interior computational points
have to be redistributed; that is, a new ‘‘guess’’ configura-
tion must be found for the next iteration. If the Z values
provided by the tail model are very different from the
boundary foot points at the previous step, just changing
the locations of the end points on the field lines could lead
to lines touching one another (also known as mesh ‘‘self-
overlapping’’), thus violating the nested-flux assumption
critical for the interior numerical solution.
[29] A method is therefore needed to smooth the mesh.

For this, we perform a ‘‘boundary-conforming’’ mapping
[e.g., Wang and Tang, 2005]. We first take as an initial
guess for each field line a fourth-order Bezier curve with
anchor points fixed on the Earth’s surface and at the
matching boundary. The tangents of the field lines are set
to match the dipole and tail field tangents, respectively.
Initially, the fifth control point of each curve is left arbitrary.
In general, such a set of Bezier curves does not guarantee a
nonself-overlapping mesh. We can however obtain a good
mesh by imposing a specific condition as a criterion for
finding the coordinates of the fifth control point. Following

Figure 3. Variation of magnetic pressure contributions in
the T87 model (for Kp = 0 and zero tilt) along the tail at Y =
0. BL (solid line) is the total lobe field (evaluated at Z = 15
RE), BZL (dotted line) is its Z component, and BZ0 (dashed
line) is the equatorial BZ. The figure shows that the pressure
contributions from BZ are a few percent of the lobe field
contribution tailward of X ’ �15 RE.
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the method described by Wang and Tang [2005], we
construct a functional

� ¼
X
k2I

@X

@t

@X

@r
þ @Z

@t

@Z

@r

	 
2
k

þ l
X
k2I

max
@X

@r
@Z

@t
� @X

@t

@Z

@r

	 

k

; 0

� �2

ð15Þ

with the sums performed over all points k in the mesh I. The
variables t 2 [0, 1] and r 2 [0, 1] are computational flux
coordinates, such that at equilibrium t = t(c) and r = r(a).
The first term in equation (15) is related to mesh
orthogonality, while the second (related to the Jacobian of
the transformation from Cartesian coordinates to flux
coordinates) describes self-overlapping (a positive Jacobian
everywhere ensures a non-overlapping mesh). We then use a
conjugate gradient method [Press et al., 1992] to find the
coordinates that lead to a minimum in � and thus ensure a
well-behaved (non self-overlapping) mesh. The parameter l
is varied during the calculation, from a smaller value
initially to a larger one later.
[30] After the mesh is built, we apply a Picard iteration

technique to find the interior solution, such that at step n + 1
we use the right-hand side computed from the quantities at
step n. The Grad-Shafranov equation is solved at each step
via SOR iteration with Chebyshev acceleration [Press et al.,
1992] (a direct block tridiagonal method is also imple-
mented). The iterative process is performed until conver-
gence, defined [Zaharia et al., 2004] as the moment when
the relative force imbalance fn = kFnk/kF0k decreases by
about 2 orders of magnitude. Here F0 and Fn are the force
balance imbalance before the computation and at step n,
respectively, defined as

kFk¼

Z
j� B�rrrrrrrrrrPj jdVZ

dV

: ð16Þ

[31] In order to improve numerical convergence for
the interior computation we also use an ‘‘under-
relaxation’’ or ‘‘blending’’ technique [Mouschovias,
1974; Zaharia et al., 2004], whereby some fraction of
the solution of the previous iteration is ‘‘blended’’ into
the latest solution: a(n+1)  gaa

(n) + (1 � ga)a
(n+1),

where ga is the blending parameter. Obviously, the
larger the ‘‘blending parameter’’ g, the less change
between two consecutive iterations, and the more
iterations are needed for convergence.
[32] In the work presented here we use 75 � 75 compu-

tational grid points, and typically 30 iterations are necessary
for the coupled code to converge. We have also performed
computations with more (101 � 101) and less (51 � 51) and
obtained very similar final configurations.

4. Results for 2-D Coupling

4.1. Prescribing P(A) and P̂(X)

[33] In this coupling scheme, we prescribe in the tail
model the plasma pressure P(a) (from the inner region) as

well as the total pressure function P̂(X). The shape of the
outer flux boundary a(X) is then obtained as a solution to
the problem. We present here a quiet-time configuration
obtained through this approach. In the inner closed region
(for field lines that close through the equatorial plane closer
to Earth than the matching boundary), we do not use a
specified function P(a), but rather an observation-based
dependence of P on X, the so-called Spence-Kivelson
profile [Spence and Kivelson, 1993]:

P Xð ÞjZ¼0 nPað Þ ¼ 89e�0:59 Xj j þ 8:9 Xj j�1:53: ð17Þ

[34] This profile has been shown [Zaharia and Cheng,
2003b] to approximately equilibrate a quiet-time T96 mag-
netic field on the noon-midnight meridian line. The func-
tional P(a) in the closed field region then changes at each
iteration until equilibrium. In the ‘‘open field’’ region, since
we do not have an observation-based spatial dependence
available, we use an analytic extension:

Popen að Þ ¼ P0 þ PN � P0ð Þ exp �C a� an

an � a1

� �
; ð18Þ

where a1 and an are the flux values for the first and last
‘‘closed’’ flux surfaces, respectively. The constants PN and
P0 are found from the pressure continuity at the open-closed
boundary, as well as from the value of the plasma pressure
in the lobes (on the field line with a = 0). The choice of an
exponential added to P0 in equation (18) is inspired by the
Harris current sheet [Harris, 1962] and by typical tail
models [e.g., Birn, 1987]. The lobe pressure (very close to
P0) can be reasonably taken to be on the order of 10�2 nPa
during quiet times, as most in situ observations suggest
(e.g., Tsyganenko [2000], using ISEE 2 observations, finds
at 20 RE a typical lobe plasma bp of 4% and a typical plasma
pressure of 0.01 nPa). The remaining parameter C is found
at each iteration from the continuity of dP/da at the open-
closed field boundary.
[35] For the total pressure variation in the magnetotail we

use a power law dependence of a form similar to that used
by Birn [1987]:

P̂ Xð Þ ¼ P̂0

X0

X


 �m

: ð19Þ

[36] In the inner region only, we need a flux boundary
choice, and we take it from the T96 empirical model
[Tsyganenko and Stern, 1996], with parameters representing
average quiet-time conditions [Zaharia et al., 2004]:
BZIMF = 1 nT, BYIMF = 0, Dst = �5 nT and PSW =
2.1 nPa. Since in this case the total pressure is given at
the matching boundary from the inner region, we also need
a lobe plasma pressure value (’P0) such that the ‘‘magne-
topause’’ location there coincides with that (from T96) in
the inner region. We find that P0 = 0.031 nPa gives the best
match for a quiet-time case (alternatively, P̂ can be found at
the matching boundary by taking a[P̂(X0)] there and invert-
ing it).
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[37] The form of the pressure function (18) allows for an
analytical solution for the field lines, in the form (in the
normalized units in the code)

Z P̂;a
� �

¼
ffiffiffi
2
p

an � a1ð Þ
C X0j j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P̂ � P0

p atanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P̂ � P að Þ
P̂ � P0

s
: ð20Þ

[38] This can also be interpreted as a solution Z(X, a),
since we know P̂(X). Replacing a = 0 in equation (20) gives
the shape of the outermost magnetic field line, a(X).
[39] Figure 4 shows the field line geometry in the final

equilibrium configurations for three different choices of the
P̂ variation: m = 0.1, 0.35 and 0.65. It is clear that too small
m (very slow decrease of P̂) leads to a flat outer flux
surface, in disagreement with observations [e.g., Shue et
al. 1997] showing an increase in the tail radius with
distance. The choice m = 0.1 also leads to a field curvature
in the tail much larger than in the inner region, that is, a
jump in the field value at the matching boundary. On the
other hand, too large m (rapid decrease of P̂) causes an
unrealistically large magnetotail flaring, much larger than
observed. Therefore magnetopause shape observations are
an additional constraint on model parameters, with only a
restrictive range allowed for the total pressure variation.
[40] The optimal m (m = 0.35) would correspond (since

P̂ / Blobe
2 ) to a tail lobe field variation with distance with

a power of 0.175. This is much lower than observed
[Fairfield and Jones, 1996] and is likely an effect of the
two-dimensional approximation. In the full 3-D case, for
a given variation of lobe field with distance, the exis-
tence of the additional tail flaring in the Y direction will
decrease the flaring in Z [Birn et al., 2004], allowing the
larger observed variation of the lobe field (or total
pressure) while keeping the flaring in Z realistic. There-
fore, rather than claiming that m = 0.35 is a realistic
value for the P̂ behavior in reality, we only stress that
observations do impose a constraint on the total pressure
variation. We also note that in this coupling approach,
the monotonically decreasing P̂(X) causes all obtained
configurations to have the field lines closed in the
equatorial plane and there is no X line anywhere in the
magnetotail.
[41] Now focusing on the realistic configuration with m =

0.35, in Figure 5 we plot the plasma and total pressures as a
function of a and distance, while Figure 6 shows the

perpendicular current density jY in the midnight meridian
plane. The current in the interior region is very similar to
that obtained before in 3-D computations [Zaharia and
Cheng, 2003a]. The tail current is concentrated in the
plasma sheet, which has a width almost constant in Z (half
width of 4 RE) from 20 down to 75 RE. As also obtained in
3-D computations, the ring current and the cross-tail current
are not distinct current systems, with the transition between
them rather gradual.

4.2. Prescribing P(A) and the Outer Flux Surface

[42] In this case we use as input the plasma pressure P(a)
and the shape of the outer flux surface a(X), while the
solution gives the total pressure P̂(X). This is a boundary
value problem, similar to that treated before in the tail by
Birn [1991]. We again take in the inner closed region a
spatially given pressure profile, with an analytical continu-
ation in the ‘‘open’’ region given by (18).

Figure 4. Equilibrium field line geometry for three different choices for m in the variation of P̂(X)
(equation (19)).

Figure 5. Quiet-time equilibrium with plasma pressure and
P̂(X) (m = 0.35) inputs. (a) Pressure (in nPa) as a function of
the flux function a. The solid (dashed) line shows pressure
in the closed (open) field region. (b) Pressure in the closed
field region (solid line) and total pressure on the equatorial
plane at midnight (dash-dotted line).
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[43] For the shape of the flux boundary, we use field line
mapping with the T96 empirical model [Tsyganenko and
Stern, 1996]. The equation for the boundary location as a
function of P̂ can be straightforwardly obtained from
equations (20) and (18) by imposing a = 0:

a P̂
� �
¼

ffiffiffi
2
p

an � a1ð Þ
C X0j j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P̂ � P0

p arctanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� PN � P0

P̂ � P0

exp
Can

an � a1

� �s
:

ð21Þ

[44] We however know now a(X), therefore we can find
P̂(X) numerically by inverting the expression above for a(P̂)
at each X. Because of the chosen monotonicity in P(a), a(P̂)
is monotonic, however a(X) or P̂(X) need not be. Once P̂(X)
is known, the tail equilibrium solution, equation (14), can be
integrated and gives the magnetic field lines in the tail
region through equation (20).
[45] Below we present results for the boundary value

problem in two cases, a quiet- and a disturbed-time config-
uration. To allow comparison with results previously
obtained for interior 3-D equilibria [Zaharia and Cheng,
2003a; Zaharia et al., 2004] we use the same pressure
profiles in the inner closed field region, as well as the same
parameters in the T96 model.
4.2.1. Quiet-Time Equilibrium
[46] For obtaining the outer boundary in this case we use

the T96 model with the quiet-time parameters described
before. In the inner region we again consider the Spence-
Kivelson pressure, equation (17), and we extend it in the
‘‘open field’’ region through equation (18). For the plasma
pressure in the lobes we take P0 = 0.03 nPa, which is on the
order of magnitude typical of quiet times as discussed
before.
[47] The equilibrium is achieved after 25 iterations. In the

final state, Figure 7a shows the plasma pressure as a
function of a. The decrease with a becomes very steep
from a certain a value on, such that in the lobes the pressure
is practically constant. Figure 7 also shows the variation of
the pressure with distance in the ‘‘closed field’’ region, as
well as that of P̂ everywhere. One can see in Figure 7c a
weak minimum in P̂ at around �60 RE, which has impli-
cations for the B field configuration as we will see.

[48] In Figure 8 we plot several magnetic field lines of the
obtained equilibrium. Of interest is the existence of an X
line at around �60 RE in the tail, where P̂ is minimum (and
also corresponding to the maximum in the tail radius). This
is an effect due to the shape of the outer boundary from T96,
which has a weak maximum there. This would present
topology problems if an equilibrium solution were to be
attempted numerically using the interior model (for which
nested flux surfaces are needed). However, such a solution
with an X line can be obtained in the form Z(a, X) using the
tail model because we find P̂ at each X location by inverting
a(P̂), but without requiring monotonicity in P̂(X) [Birn,
1991].
[49] Finally, we present in Figure 9 the perpendicular

current density jY. It is quite similar to that obtained before,
and also very similar in the inner region to what we
obtained in previous 3-D computations [Zaharia and
Cheng, 2003a; Zaharia et al., 2004]. This is in spite of
the ability of the last closed flux surface to vary in this
computation, as opposed to previous calculations where it
was kept fixed. The current is strongest close to Earth,
forming the ring current. As before, the transition between
this ring current and the ‘‘cross-tail’’ current is gradual. The
cross-tail current extends all the way down the tail, with
only slightly diminishing current density.
4.2.2. Disturbed-Time Equilibrium
[50] Here we present the solution of the boundary value

problem for a disturbed time. We use similar inputs (but in

Figure 6. Current density jY for the quiet-time equilibrium
with plasma pressure and P̂(X) (m = 0.35) inputs.

Figure 7. Quiet-time boundary value problem. (a) Pres-
sure (in nPa) as a function of a. Solid (dashed) line shows
pressure in the closed (open) field region. (b) Pressure in the
closed region (solid line) and total pressure on the equatorial
plane at midnight (dash-dotted line). (c) Enlargement of
Figure 7b, showing a minimum in P̂ at ’�60 RE.
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2-D) to those used before for the interior region in 3-D
[Zaharia and Cheng, 2003a], as representing typical
conditions during a substorm growth phase. Specifically,
the outer magnetic flux surface is chosen using T96, with
the disturbed-time parameters: BZIMF = �5 nT, BYIMF = 0,
Dst = �50 nT and PSW = 5 nPa.
[51] For the plasma pressure we also take the same form

in the inner closed field region in the midnight meridian
plane as in our previous study [Zaharia and Cheng, 2003a]:

P Xð ÞjZ¼0 ¼ 12:5e�0:25 Xj j �
	
1:25 þ 0:75 tanh

X1 � Xj j
DX


 �

þ 8:9 Xj j�1:53; ð22Þ

with X1 = 10 and DX = 1.25. Equation (22) takes into
account the increase seen in the plasma pressure values
during the substorm growth phase (the increase is every-
where, but is higher at smaller radial distances). We use the
same analytical continuation in the open field region,
equation (18); however, with the lobe pressure higher in
this case, Plobe = 0.225 nPa (the pressure is higher in the
compressed lobes because of the higher solar wind
pressure). The constant C in equation (18) is again found

such that the pressure and its derivative are continuous at
the open-closed boundary. For this computation, C is found
to be smaller than in the quiet-time case, showing a less
abrupt decrease of P with increasing a.
[52] For this case we show the plasma pressure as a

function of a in Figure 10a. Figure 10 also presents P̂(X),
with a minimum in P̂ here as well, at around ’�55 RE.
[53] The field lines of the disturbed-state equilibrium are

shown in Figure 11. An X line is visible at about �55 RE in
the tail. Finally, Figure 12 shows the perpendicular current
density. We use a scale up to 2.5 nA/m2 only in order to
compare to the quiet-time case (the current in the inner
region saturates at about 11 nA/m2 as before [Zaharia and
Cheng, 2003a].) The interior current is very similar in shape
and magnitude to the one obtained before with the same
pressure profile. The higher current extends in the tail,
where the current density has lower values than near Earth,
but higher than in the quiet-time case.

5. Discussion

[54] The present work demonstrates the feasibility
of applying a line-tying approach to couple the two
equilibrium models. A notable advantage of this technique
vs. purely numerical approaches is that the magnetotail part
is given by asymptotic theory and only entails solving

Figure 8. Magnetic field lines in the quiet-time boundary
value equilibrium. An X line is located at ’�60 RE.

Figure 9. Electric current density jY for the quiet-time
equilibrium with plasma pressure and a(X) inputs.

Figure 10. Disturbed-time boundary value problem.
(a) Pressure (in nPa) as a function of the flux function a.
Solid (dashed) line shows pressure in the closed (open) field
region. (b) Pressure in the closed field region (solid line)
and total pressure on the equatorial plane, midnight
meridian (dash-dotted line). (c) Enlargement of Figure
10b, showing a local minimum in P̂ at around �55 RE.
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ordinary differential equations and integrals. This is much
faster than purely numerical equilibrium calculations
(i.e., solving the Grad-Shafranov equation or the more
complex 3-D equations in flux coordinates or via the
magnetofrictional method). Since the tail solution is found
by separate integration for each field line, it can be sought
with arbitrary accuracy; at the same time, this allows the
concentration of numerical resources (grid points) in the
inner magnetosphere.
[55] Our results also show how coupled equilibrium

solutions depend on different combinations of flux bound-
ary conditions and plasma parameters taken as inputs. The
input quantities have to be realistic; however, with some
inputs, the approach does not guarantee the existence of a
solution. For example, in the boundary value problem,
given the shape of the outer flux surface, it is clear from
equation (21) that in order for a solution to exist P0 (close to
Plobe) cannot be too large.
[56] Two restrictions of the present technique need to be

mentioned. While this paper is more of a proof of principle
for the line-tying approach, the coupled model can be
straightforwardly employed in several applications, such
as particle tracing or mapping of satellite data. For some
purposes however further smoothing might be necessary
near the coupling boundary; this is because while the inner
model gives an exact (to the numerical accuracy) solution,
the tail model is an asymptotic approximation; line tying at
one plane, while guaranteeing continuity in the Euler
potentials, might not guarantee it in their derivatives (i.e.,
the field itself) right at the boundary (leading to an ‘‘infi-
nitely thin’’ current sheet, of finite but small current, there).
A solution would be a finite-width buffer zone that would
be set up to match the field and its derivative at its left and
right boundaries and to interpolate between them inside.
[57] The other limitation has to do with the way of

solving the equilibrium problem in the interior region.
Specifically, the total magnetic flux is fixed inside the
near-Earth ‘‘closed field’’ region, so realistic choices for
the magnetic flux boundary conditions are very important.
While we have no reason to question the ability of the T96
model of providing a good estimate of the outer flux
boundary, the future solution to this limitation would be

to solve a free -boundary equilibrium instead of the current
fixed-boundary problem.
[58] Future work will also extend the computation to the

three-dimensional case. To tackle the full 3-D problem, the
line-tying approach presented here will be extended to the b
equation as well. Since the computation of 3-D equilibria is
an iterative sequence of solving quasi 2-D Grad-Shafranov-
like equations, such an approach will permit the coupling in
three dimensions. However, while the first coupling
approach presented (specifying P and P̂(X)) is directly
extendable to 3-D, the boundary value case might not
straightforward. A direct prescription of the magnetopause
boundary or some equivalent flux surface is possible for the
inner 3-D model, however only possible in the tail model
for 2-D solutions [Birn, 1991] and a limited class of 3-D
solutions [Birn, 2005], but not for the general case yet.

6. Summary and Conclusions

[59] In this paper we present first results (specifically, the
two-dimensional case) from coupling two approaches of
obtaining magnetospheric equilibria: a numerical flux coor-
dinate method that solves the equilibrium in the inner/
middle magnetosphere, and an asymptotic ‘‘tail approxima-
tion’’ farther away from Earth. The two approaches work
best in complementary regions and both express the mag-
netic field in terms of Euler potentials, allowing their
coupling through a ‘‘line-tying’’ technique.
[60] The problem is solved by specifying two out of three

possible inputs: plasma pressure P, total pressure variation
in the tail P̂(X), and the shape of the outer magnetic flux
surface (close to the magnetopause), a(X). We present
solutions for both a quiet time and a substorm growth
phase. Our focus is the boundary value problem, whereby
we specify the shape of the outer flux surface and the
pressure, while P̂(X) is an output of the model. The results
in the interior region for both the quiet and the disturbed
time resemble midnight meridian profiles obtained before in
3-D [Zaharia and Cheng, 2003a; Zaharia et al., 2004]. The
solutions for the tail region are found in analytical form for
the particular pressure functions used. They can be easily
found by numerical integration in the more general case
however.

Figure 11. Several B field lines in the disturbed-time
equilibrium. A far-tail neutral line is located at ’�55 RE.

Figure 12. Electric current density jY for the disturbed-
time equilibrium with plasma pressure and a(X) inputs.
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[61] Besides showing the feasibility of using a line-tying
approach to solve a magnetospheric equilibrium problem,
the current work treating the 2-D case is relevant to the
future 3-D model coupling, as the 3-D numerical solution
consists of an iterative sequence of 2-D solutions. Future
work will thus include the extension of the line-tying
approach to the full 3-D case, by also applying the line-
tying to the other Euler potential (b) in the equilibrium
equations. While noting that the states described here were
computed independently by specifying distinct input param-
eters and thus are not connected in any way, in the future we
will also describe the magnetospheric evolution as a
sequence of computed quasi-static equilibria, linked
together through conservation laws such as topology and
entropy conservation.
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