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‘We have extended nonlocal orbital-free methods which enforce the correct linear response in the noninteracting
uniform electron gas limit, developed at zero temperature for the kinetic energy to finite temperature for the
full noninteracting free energy. Comparisons are made to the Thomas-Fermi approximation and to the orbital-
dependent Kohn-Sham method. We find significantly improved agreement for the resulting functional with Kohn-
Sham for a wide range of densities and temperatures. We also provide the necessary formulas for implementation

in quantum molecular dynamics simulations.
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I. INTRODUCTION

Warm dense systems present significant challenges for ab
initio simulations. In order to incorporate the quantum nature
of these systems, state-of-the-art approaches use Kohn-Sham
density functional theory (DFT). The number of orbitals re-
quired in this approach, however, scales with the temperature,
making it computationally prohibitive. In recent years attention
has been given to finite temperature orbital-free (OF) DFT,
which depends only on the density and does not suffer the
same scaling issue. For the most part the finite tempera-
ture Thomas-Fermi approximation has been used.'? Some
efforts’ have made use of the gradient (Wigner-Kirkwood)
expansion.*> More recently, a generalized gradient form has
been investigated.® Interestingly, for systems from simple
metals and semiconductors to molecules, zero temperature
OF DFT efforts have made use of nonlocal functionals based
upon correcting the response of the kinetic energy functional,
with marked improvement of system properties including
total energy and lattice constants, over gradient methods for
the kinetic energy.”~'* Here we extend this approach to the
noninteracting free energy of finite temperature systems.

For finite temperature we may write the total free energy as
a functional of the density alone as follows: '3

F[naT] = Fs[naT] + FH[n] + Fxc[naT] + Fei[n] + Eia
(1)

where F; is the noninteracting free energy comprised of
both kinetic and entropic parts, Fy is the Hartree energy or
direct Coulomb interaction between the electrons, F,; and
F;; are the electron-ion and ion-ion Coulomb interactions,
respectively, and F,. is defined as the remainder of the total
free energy, which includes the quantum mechanical exchange
and correlation as well as the excess kinetic and entropic terms.

Of the terms given in Eq. (1), only Fy; and F,. lack
explicit calculable forms and hence require approximate
forms in OF DFT. The Kohn-Sham method alleviates the
need for an approximate F; by introduction of a fictitious
system of noninteracting particles which, while remarkably
successful, scales as the number of orbitals cubed. This scaling
limits system size, by electron number, at zero temperature
and limits accessible temperatures due to the increase of
fractionally occupied orbitals included in the calculation
with temperature increase. While computationally massive
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Kohn-Sham calculations have been performed probing into
the warm dense matter regime,'®!” OF DFT could offer
accessibility to much higher temperatures at a fraction of the
computational cost, provided we have a good approximations
for Fy and F,.. Finite temperature F,,. has recently been
examined for the local density approximation.'® In this work
we focus on an F functional to achieve results of Kohn-Sham
accuracy in regions far beyond the applicable range of the
Thomas-Fermi approximation.

The remainder of the paper will first offer the definition
and construction of this functional; then we present results for
some simple systems in comparison with other OF functionals
as well as Kohn-Sham methods. Additionally, in Appendix B
we provide necessary quantities for implementation of the
functional in quantum molecular dynamics simulations.

II. RESPONSE CORRECTED FREE-ENERGY
FUNCTIONALS

To improve upon current free-energy functionals we con-
sider a basic property of an electron system, the density-density
response function x (r,r’,T,ng), which for the homogeneous
systems of interest is a function of r — r’ only. For a given
approximate noninteracting free energy Fy, the corresponding
density-density response function for the uniform electron gas

is
-1
) , (2

where T and n are the electron gas temperature and density,
respectively. The exact response is given by the Lindhard
function (Appendix A). Popular approximations for Fy do not
reproduce the Lindhard function. Our goal is to construct a
functional that reproduces this exact result.

To illustrate the failure of local (and semilocal) functionals
for this response condition and motivate the form of the
proposed functional, we extend previous considerations at zero
T."%%0 In Fig. 1 we plot the Fourier transform %(g,T,no)
of the response result of Eq. (2) for the uniform electron
gas at T = 50.1 eV and reduced density r;, = 1, where r; =
3/ 4n)'/3 /ap. First, for reference, the exact Lindhard result
is shown. Second, the Thomas-Fermi approximation (TF) is
shown [see Eq. (4)]; it has no g dependence and is correct
only at ¢ = 0. Third, the gradient-dependent von Weizsacker

8% Fy[n,T]
sn(r)sn(r)

X(r - r/vTanO) = - (
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FIG. 1. (Color online) Response function of several local free-
energy functionals compared with the exact Lindhard result for the
uniform electron gas, kr = (3m2ng)'/>.

term (VW) is shown [see Eq. (5)]; this is correct in the large
q limit but diverges for small g. The sum of the previous two
terms gives the Thomas-Fermi-Weizsacker (TFW) functional,
which has the advantage of being correct at ¢ = 0 and in the
large g limit, but fails at intermediate g. Finally we show the
gradient expansion of TF to second order (GE2), as given
by Perrot,* which enforces the correct response for small ¢
to second order. Though fourth-order TF gradient expansion
further improves the results, it still does not go to the correct
limit and divergence problems for real densities begin at sixth
order.?-??

It is clear that TF, vW, and linear combinations cannot
reproduce the exact response. A nonlocal functional, however,
may be used to achieve this. Following the zero-temperature
formalism, we separate the functional into a sum of TF, vW,
and a nonlocal term. This separation is well motivated by
Fig. 1, as the nonlocal contribution F,; can be seen as an
interpolative correction between the large and small g limits
which are satisfied by a functional simply summing TF and
vW,

Fi[n,T] = Fre[n,T1+ Fywlnl + Fap[n,T]. 3)

The first term on the right-hand side is the finite temperature
Thomas-Fermi term, which is correct in the high-temperature
limit,

Fre[n,T] = / Sfreln(m),T]dr, 4

where frp is just the noninteracting electron gas energy per
volume. Second is the von Weizsacker term, which is exact for
the single-orbital system and also is a lower bound to the finite
temperature kinetic energy,
n o IvVamP
Fywlnl= — | ———
m, 8n(r)
For the final term we choose the finite temperature extension
of the nonlocal zero T form originally given by Wang and
Teter,’

dr . (®)]

Fopln,T] = // n () wy p(r — ¥, T)n’(’) dr dr' . (6)

PHYSICAL REVIEW B 88, 195103 (2013)

0

N, 05
Y
o

X

o -15F

1S
g 2r
ey
& 25}

<
8 3r ]
[aV]
@ -3.5 B
12 4 | rS:1 .

_45 1 1 1 1
0 2 4 6 8 10

a’ke

FIG. 2. (Color online) The kernel w,, with a =b =5/6 for
electron density r, = 1 and several different temperatures given in
electronvolts.

Here the powers a and b and the kernel w are to be determined.
Recall that the purpose is to enforce the correct linear response
for the uniform electron gas. This is done by evaluating the
response of Eq. (3) according to Eq. (2) and setting the result
equal to the exact (Lindhard) response xo. Then in the Fourier
transform we have

X7+ (T.n0) + Zow(@.T.no) + %o 3(q.T.no) = %y ' (q.T.no),
@)

with all terms of the above equation given in Appendices A and
B. Finally, subject to the condition that @, ,(¢g = 0,7 ,n¢) = 0,
we can solve Eq. (7) for the kernel,

~%o '+ X+ Xow
Zabngﬂrh_z)

Wa,p(q,T,n0) = ; ®)
where we have dropped the dependencies on the right-hand
side for clarity.

This leaves now the determination of a and b. Various
values have been used at zero 7. Nonempirical determination
can be made by examining small variations from the uniform
electron gas in both the large and small ¢ limits.'” A judicious
choice that does well in both the large and small ¢ limits is the
original parameters of Wang and Teter, a = b = 5/6, which
we will employ throughout the remainder of this work and
hence label our total free-energy functional

Fwr = Frrp 4+ Fow + Fs/6,5/6 - 9

We note also that up to this point @ and b have been arbitrary.
Nonequal values as well as temperature-dependent values
might be explored.

For illustration of the temperature dependence, the kernel is
plotted in Fig. 2 for reduced density r; = 1 at several different
temperatures, and witha = b = 5/6.

III. RESULTS AND COMPARISONS

We have implemented the nonlocal free-energy functional
Eq. (9) for periodic systems through modification of the zero T
OF DFT code PROFESS.?* As a preliminary calculation we have
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FIG. 3. (Color online) Simple cubic hydrogen at temperature 100 000 K (8.617 eV) is shown for densities from 1 to 12 g/cc. From left
to right is shown the free energy per atom, the difference of the free energy per atom of the OF methods with that of KS, and the ratio of the
pressures of the OF methods with the KS pressure. This nonlocal functional shows a very significant improvement over the Thomas-Fermi and

Thomas-Fermi plus von Weizsacker functionals.

WT, we compare with the Thomas-Fermi approximation
TF, and the Thomas-Fermi plus full von Weizsacker, TFW.
The last is given by the first two terms on the right-hand

considered a fixed geometry system, simple cubic hydrogen
(sc H), at a wide range of temperatures and densities. In
addition to the functional Fyr, labeled in all figures as
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FIG. 4. (Color online) Simple cubic hydrogen at fixed densities, 1 g/cc (top panels) and 2 g/cc (bottom panels) as a function of temperature
from 10 000-200 000 K (0.8617-17.23 eV). Free energy is shown in the left panels for several OF and KS DFT calculations, and pressure is
shown on the right. Very good agreement for the functional with respect to KS is seen, as well as significant improvement of the Thomas-Fermi

approximation.
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side of Eq. (3) and not to be confused with the gradient
expansion of Perrot,* which has a reduced von Weizsécker
term. The pseudopotential for the OF DFT calculations has
been generated by the Goodwin-Needs-Heine method, as
described in Ref. 6, with cutoff radius r. = 0.25 bohr. All
calculations were performed with a 64 x 64 x 64 reciprocal
grid containing 216 atoms.

In addition to the OF DFT results, we also calculate as
a benchmark the same systems in Kohn-Sham (KS) DFT.
Here we use the plane-wave code QUANTUM-ESPRESSO,%*
with a small cutoff radius, r. = 0.45 bohr, pseudopotential of
the projector-augmented-wave variety, valid for warm-dense-
matter conditions.® The KS calculations were performed for
a single-atom cell, where the plane-wave energy cutoff was
set at 200 Ry and the k grid for Brillouin zone integration
was at minimum 17 x 17 x 17. The number of bands varied
with temperature such that a threshold of 10~ was achieved
for the thermal occupation numbers. For example, at 10000,
100 000, and 200 000 K, the number of bands required were
2,8,and 16 at 1 g/cc and 2, 4, and 8 at 2 g/cc. In the reduced
Brillouin zone scheme for a 17 x 17 x 17 k grid, there were
2457 unique k points, making the number of orbitals in the
calculation 2457 times the number of bands. Both the OF and
KS DFT use the Perdew-Zunger local density approximation
for the exchange-correlation energy.”

We note here that the local pseudopotential provides a regu-
larization of the Coulomb potential inside of the cutoff radius,
without which much finer numeric grids would be required
to achieve accurate results. The nonlocal pseudopotentials
used in KS DFT provide, as well, this type of regularization
near the nucleus but also allow for different potentials for
different angular momentum states and allow exclusion of
core electrons from the calculation for higher Z elements.

The pressure and free energy results, exclusive of any ion
kinetic contributions, for the sc H system are shown in Figs. 3
and 4. In the first set (Fig. 3), the sc H system is at constant
temperature 7 = 100 000 K (8.617 eV) and the lattice is
compressed from 1 to 12 g/cc. In the leftmost panel the free
energy per atom for each of the three OF methods and KS are
shown. While TFW shows a great improvement over TF, the
KS crosses lie nearly centered in the boxes marking WT for
all densities shown. In the middle panel, the differences of the
OF methods with KS are shown along with the zero line for
reference. Though there is slope in the WT line, it remains
very close to zero. The last panel shows the pressure of the OF
results relative to KS; again, a significant improvement is seen
with WT.

In Fig. 4 the free energy per atom and the pressure for the
sc H system are shown at 1 (top) and 2 (bottom) g/cc as a
function of the temperature. Similar trends as before are seen,
including good agreement between WT and KS, where KS
calculations are performed from 10 000 to 200 000 K.

Briefly we discuss two functionals not shown yet. First is
the second-order gradient expansion GE2 given by Perrot* and
the second is the generalized gradient approximation (GGA)
givenin Ref. 6, in which both of those functionals are examined
in more detail. The GE2 does improve moderately upon TF,
while the GGA actually produces results that lie close to the
TFW presented here. Figure 5 shows these two functionals in
comparison to the functionals shown in Fig. 4.
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FIG. 5. (Color online) Simple cubic hydrogen free energy per
atom at 2 g/cc as a function of temperature from 10 000 to 100 000
K (0.8617-8.617 eV) for several OF functionals and KS DFT.

IV. CONCLUSIONS

We have extended and implemented a nonlocal orbital-free
free-energy functional enforcing the correct linear response for
the uniform electron gas at finite temperature. By construction
this nonlocal functional should be most applicable for free-
electron-like systems; this is the same argument that can be
made for Thomas-Fermi or Thomas-Fermi plus the gradient
expansion. However, the addition of the full von Weizsacker
term greatly improves results for nonuniform systems beyond
the last two mentioned methods, due to the correctness of the
large g limit of the response. Adding then the interpolative
nonlocal term further increases the accuracy for nonuniform
systems even quite distant from the free-electron-like system.

Our implementation using the Wang-Teter parameters for
a and b have shown excellent agreement with Kohn-Sham, far
beyond Thomas-Fermi, Thomas-Fermi plus gradient expan-
sion, and Thomas-Fermi plus full von Weizsacker. Importantly,
this greatly extends the regime where OF DFT results can
be used as opposed to computationally expensive, even pro-
hibitive Kohn-Sham calculations. Though there is increased
cost with the nonlocal functional, it still scales as local
methods due to the efficient reciprocal space implementation.
In particular, we have seen only a couple to a few times the
computation time between Thomas-Fermi and Wang-Teter.
In general, these orbital-free methods scale only with the
physical size of the unit cell, as a larger cell requires more
grid points to achieve the same accuracy. There is no scaling
with temperature as there is in KS DFT due to the increase of
fractionally occupied orbitals.

The kernel of our functional depends only on the av-
erage density, not the local density; hence it is a density-
independent kernel, and it is constructing to reproduce the
density-density response. In the zero-T literature there exist
nonlocal functionals which make use of a density-dependent
kernel or are constructed to enforce higher-order response
terms. These methods can improve accuracy but in general
will increase the computational cost dramatically. Hence

195103-4



NONLOCAL ORBITAL-FREE NONINTERACTING FREE- ...

the density-independent kernel presented here provides a
computationally effective bridge between Kohn-Sham and
Thomas-Fermi calculations for accurate characterization of
warm dense systems.
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APPENDIX A: FINITE TEMPERATURE
LINDHARD FUNCTION

The finite temperature static Lindhard function for the non-
spin-polarized system is given by

Sk — fraq dk,

Al
)} J ek — exiq (A

%o(q,T,no) =

where f; = 1/{exp[B(ex — w)] + 1} are the Fermi-Dirac ther-
mal occupations, and g; = (fik)?/2m, the single-particle ener-
gies. It may be calculated by a one-dimensional integral of the
zero temperature Lindhard function as®®

Xo(q, T = 0)le,=k

. (A2
4kpT cosh? (—E;,{’:(TT))

(o]
Xo(g,T,no) = / dE
0

It is helpful to have asymptotic expansions available for the
Lindhard function, in our case, particularly for large ¢ since
we need w(q) to such values of g. For this large g limit it is
helpful to first write Eq. (A1) as

q+2k
dk.
g

20(q.To110) m, 2 /oof 0
,IT',ng) = ———— n
Xo\q 0 w2 2n2q J, k q—2

(A3)

Then, after expanding for large g we may find

Xo(q,T,no)
me kF > n 3n+1 n
= {1 F L gy e |
n=1

(A4)

where krp = (3n2n0)1/3, xX= 4k12¢/3q2, t = 2/,8k2 , and
112(no) = (2/3)t=%/2. The I, functions are all Fermi integrals

given by
*  dyyY 1
1u<z)=/ R
0

: AS
=i+ 1 2 A

In the long-wavelength regime, we may expand Eq. (Al)
for small ¢ to find

1 2\ 12 m, 3/2
i (5) (e (52)

J A2
—6]2%%[171/2(770)] (%) + 0(6]4):| .

XO(‘]» T,l’l()) = -

(A6)

PHYSICAL REVIEW B 88, 195103 (2013)

Finally, note that for ¥, in the small and large g expansions the
leading terms are ¥7 ¢ and ¥,w, respectively (see Appendix B).

APPENDIX B: FUNCTIONAL DETAILS FOR
MOLECULAR DYNAMICS

Orbital-free DFT requires solution of a single Euler-
Lagrange equation 6 F/6n — u = 0. Each free-energy term,
as given in Eq. (1), therefore has a corresponding potential
given by the functional derivative with respect to n. Another
consideration is that in molecular dynamics the pressure is

calculated by the stress tensor as P = —Tr o /3, where the
stress tensor is given by the derivative with respect to the
infinitesimal strain 04?" = (8 Fyx/0€,.,0)le,,,—0/ $2, where Q is
the system volume, and p and v index the coordinates. We now
will describe in detail each of the terms of Eq. (3) including
their corresponding potentials and stress tensors.

First, for the TF term we provide the free-energy density of
Eq. (4):

me>3/2 V2

h_2 n2B5/2

freln(m),T] = (

2
X |:—§I3/2(/3M0) + ,BMOII/Z(ﬂMO)} , (B

with the electron density given by

me 32 2
n(r):( ) Wll/z(ﬁﬂo)» (B2)

n
where the 7, are Fermi integrals (see Appendix A). The TF
potential is given by the functional derivative, and this is just
the noninteracting chemical potential

SFrp[n,T]
on

In practice, fit functions® are used for the elimination of Ho
from the above equations. The stress tensor is then given by

v 8y, 0 (n,T)
orp = gzv /fTF(n,T)—"f“;—n dr .

For the vW term the functional derivative and stress tensor
are given by

= poln(r)] . (B3)

(B4)

8Fuwlnl _ R* ( 1V2n(r) = 1|Va(m)|
sn m, \ 4 n(r) 8 n(r)?
hZ 1 V2 1/2
— —__ﬂ s (BS)
me2 n(r)l/?
n? o1 1 9n(r)d
gty = L[ 1 0n@0int) g
v me.4Q J n(r) or, 9,

Finally, for F, ; the functional derivative may be immedi-
ately taken to find

§Fapln,T]

; = an’"(r) f o p(r — ', THn® () dv’
n

+bn®"(r) / o p(r — v, T)n(x') dr’ . (B7)

It is convenient for implementation to have the stress tensor in
reciprocal space, so first we rewrite the free-energy component
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as

1
Fopln.T1= o D 0ap@ia(~@iin(@).  (BS)
q

where W, ,(q), 7i.(q), 7i,(q) are the respective Fourier trans-
forms of w, ,(r — r'), n®(r), n®(r). The stress tensor is then
given by

2

Gu,b - 3QFa,b8p_,u

2

2abni "k

Y [Af(@I[ARL(—q)]

q#0
% 9udv ‘S,u_u iawa,b(Q) (B9)
q* 3 )kr dq
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with A7, (q) = Fln*(r) — ny(r)]. While the real space version
of w,;, may be found by the inverse Fourier transform,?” for
periodic systems use of the properties of the convolution allow
evaluating the free energy as follows:

Fupln,T] = / 0 (e, T)E~ [0 (q. T)in(q.TY] dr . (B10)

Lastly, we give the individual response functions as defined in
Eq. (2), needed for evaluating the kernel:

mA\32 1 /a2
XTF(T)=—( e) (E) I_12(Buo) , (B11)

h_z 27?2
m, 4k3
Fow(q,T) = ———F_ B12
Xow(q,T) 2 3m2q? (B12)
~ —-2) ~ -1
Zap(@,T) = —[2abn{*" w0, 4(q,T)] . (B13)
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