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Abstract We present a theory for the construction of renormalized kinetic equations to
describe the dynamics of classical systems of particles in or out of equilibrium. A closed,
self-consistent set of evolution equations is derived for the single-particle phase-space distri-
bution function f, the correlation function C = (6f§f), the retarded and advanced density
response functions x®4 = §f/8¢ to an external potential ¢, and the associated memory
functions £*4-C. The basis of the theory is an effective action functional € of external
potentials ¢ that contains all information about the dynamical properties of the system. In
particular, its functional derivatives generate successively the single-particle phase-space
density f and all the correlation and density response functions, which are coupled through
an infinite hierarchy of evolution equations. Traditional renormalization techniques (involv-
ing Legendre transform and vertex functions) are then used to perform the closure of the
hierarchy through memory functions. The latter satisfy functional equations that can be
used to devise systematic approximations that automatically imply the conservation laws
of mass, momentum and energy. The present formulation can be equally regarded as (i)
a generalization to dynamical problems of the density functional theory of fluids in equi-
librium and (ii) as the classical mechanical counterpart of the theory of non-equilibrium
Green’s functions in quantum field theory. It unifies and encompasses previous results for
classical Hamiltonian systems with any initial conditions. For equilibrium states, the theory
reduces to the equilibrium memory function approach used in the kinetic theory of fluids in
thermal equilibrium. For non-equilibrium fluids, popular closures of the BBGKY hierarchy
(e.g. Landau, Boltzmann, Lenard-Balescu-Guernsey) are simply recovered and we discuss
the correspondence with the seminal approaches of Martin-Siggia-Rose and of Rose and
we discuss the correspondence with the seminal approaches of Martin-Siggia-Rose and of
Rose.
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1 Introduction

The present paper elaborates the foundations of a unifying approach for the construction
of renormalized kinetic equations of classical systems of particles in and out of equilib-
rium. The statistical dynamics is formulated in terms of self-consistently determined single-
particle phase-space distribution function, density response, correlation and memory func-
tions. The memory functions satisfy a functional equation that can be used to devise system-
atic renormalized perturbative approximations in powers of the bare interparticle interaction.
Important topical applications include the generalization of the Boltzmann equation to dense
gases and liquids, the kinetic theory of strongly coupled plasmas and Hamiltonian systems
in general, the proper macroscopic description of fluids beyond the Navier-Stokes equations,
and the physics of plasma turbulence.

Before embarking on the detailed description of the theory, we recall a few of the most
striking developments and unresolved issues in kinetic theory that motivated this work.

1.1 Background

Kinetic theory attempts to carry out a complete statistical description of the macroscopic
dynamics of fluids in terms of the underlying microscopic interactions of its constituents.
The foundation of modern kinetic theory dates back to 1872 when Boltzmann published
his famous equation for the single-particle distribution function for dilute gases [1-3]. The
solution of the Boltzmann equation, derived independently by Chapman and Enskog around
1915, achieved two basic goals of kinetic theory. That is, it (i) established the connection
between the microscopic dynamics and the macroscopic equations of hydrodynamics and
(i) provided explicit expressions for the transport coefficients in terms of the molecular
parameters. Unfortunately, since it is based on the assumption of uncorrelated binary colli-
sions, the Boltzmann equation gives a satisfactory description of the behavior of sufficiently
low density gases with short-range interactions only, and is inadequate to describe dense
gases, liquids and plasmas.

The generalization of the Boltzmann equation to more dense fluids and to plasmas con-
fronts the full complexity of a highly correlated many-body problem. This became very clear
when, in the early 1960’s,! it was realized that all the remarkable developments made until
then, which were based on some form of perturbation theory of the Liouville equation or the
BBGKY hierarchy, were plagued by unphysical divergences [7, 8].2 Those findings, together
with others permitted by the advent of computer simulations, shifted attention towards the
development of a renormalization (regularization) procedure, which would encompass the
“theoretical” divergences and take proper account of the correlated collisions, whereby par-
ticles interact via the effective (renormalized) potential that integrates the average effects

IDetailed surveys and references to original publications of the post-war developments until the late 1960’s
and beyond can be found in [4-6] and in [7, 8].

2The search for the generalization of the Boltzmann equation has a long and rich history (see footnote 1). It
is only after about 1946, under the impetus of Bogolyubov’s ideas, that concentrated efforts to generalize the
Boltzmann equation systematically to higher densities was undertaken. Starting with the Liouville equation,
a method was worked out, notably by Bogolyubov, Choh and Uhlenbeck, Green and Cohen and others, which
amounts to a systematic inclusion of many-body collisions through a density expansion similar to the virial
expansion for computing equilibrium properties of dense gases. In the mid 60’s, it was realized that the density
expansion of the collision operator was plagued by divergences. While it may in principle be possible to deal
with divergences by isolating and resumming the most secular terms of the virial expansion, the exceeding
complexity of the procedure has severely restricted the usefulness of the density expansion in understanding
the properties of even moderately dense gases—Ilet alone dense gases and liquids.
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of the medium on the bare interactions.>* Additionally, such a theory should yet retain the
desirable properties of the Boltzmann equation and be tractable for practical calculations.

Such a renormalized kinetic theory was first presented by Mazenko in 1974 using the
memory function approach [13]. His so-called “fully renormalized” theory applies only to
fluids in or near thermal equilibrium by means of the fluctuation-dissipation theorem. At
equilibrium, the distribution function f is known (the Maxwell-Boltzmann distribution) and
the statistical dynamics is encoded in the equilibrium two-point time-correlation function
C,4(1,1") of the microscopic phase-space density. It was shown in the 1960’s® that an exact
evolution equation for C,, can be written in the form of a generalized Langevin equation in
terms of a memory function kernel %,,. Mazenko devised an iterative scheme that can be
used to develop systematic renormalized approximations of X,.

The development of a renormalization procedure that can describe non-equilibrium states
faces additional challenges.’” A first major development in that direction was done in 1973 by
Martin, Siggia and Rose (MSR) [15]. MSR elaborated a procedure to derive self-consistent
approximations for calculating the statistical dynamical properties of a classical random
variable or field whose time dependence is governed by a nonlinear differential evolution
equation. In other words, they devised a solution to the ubiquitous statistical closure prob-
lem, which occurs as a consequence of the statistical averages and the non-linearity of the
fundamental evolution equation. Noting that satisfactory approaches to the closure problem
had been successfully developed in quantum field theory, MSR recast the classical problem

3The appearance of such divergences has several remarkable consequences. Firstly, they imply that the den-
sity dependence of the transport coefficients is non-analytic (e.g. it has logarithmic contributions). Secondly,
they suggest that the relation between applied gradients and induced hydrodynamic fluxes in non-equilibrium
thermodynamics is non-analytic in character, which leads one to wonder on the proper macroscopic descrip-
tion of a fluid beyond the Navier-Stokes equations at large values of the gradients. Thirdly, they show that
correlations in the particles positions and velocities play an important role in the physical properties even in
low density gases. The slow, non-exponential decay of the equilibrium time-correlation functions associated
with linear transport coefficients discovered around 1968 with molecular dynamics simulations is one of the
dramatic effect of correlations in dense fluids. The physical origin of those so-called long time tails is some-
times referred to as vortex diffusion and occurs through so-called mode-coupling effects. The latter occurs
when a tagged particle in the fluid creates, through collisions with and between the surrounding particles,
a back flow of momentum through the fluid, which ultimately returns to the tagged particle. At liquid density,
correlations lead to other dramatic effects. The concepts of mean-free path and of collision time cease to
have a clear meaning, and the motion of individual particles is dominated by cage diffusion: owing to pro-
nounced structural correlations, each particle finds itself trapped for some period of time in the cage formed
by its immediate neighbors, rebounding against it and thereby slowing down the diffusive motion. Cage dif-
fusion is key to understand the “universal” Stokes-Einstein relation between self-diffusion and viscosity or
the Arrhenius law satisfied by the viscosity.

4The need for renormalization techniques was long recognized in plasmas physics, where the long-range
character of the Coulomb interaction yields to screening of the interaction. While in 1936 Landau® regu-
larized the Boltzmann equation to deal with the Coulomb potential by introducing ad-hoc cutoffs, in 1960,
Lenard, Balescu and Guernsey (LBG) independently derived [10-12] an equation from first principles us-
ing a systematic ordering of the correlation in terms of the plasma parameter. The Lenard-Balescu-Guernsey
equation describes the dynamics of charges undergoing binary collisions in their screened interactions.

SReference [9]: Landau derived his equation from the Boltzmann equation but the Landau equation can also
be derived systematically by a perturbation theory [8].

6Very good introduction to the equilibrium kinetic theory of fluids with references to seminal papers can be
found in [34, 35].

TReference [14]: This review paper on plasma turbulence actually also contains a wealth of information on
modern theories of statistical dynamics, renormalization and closures and its relationships to other fields of
physics. It is also a very rich source of references to the literature on the subject. Both versions of MSR,
namely the operator and functional integral formalisms are presented.
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into a quantum-mechanical-looking problem and borrowed techniques of quantum field the-
ory to derive a renormalized perturbation theory. To accomplish the recast, MSR introduced
an additional field operator that does not commute with the fundamental field and allows the
calculation of both correlation functions and response functions simultaneously, where the
latter describe the response of the fluid to the injection of particles.

Although the basic problem in kinetic theory also amounts to a closure problem, it was
then recognized that its specificities did not fit into the framework of MSR theory; in particu-
lar, its natural field variable, the microscopic single-particle phase-space density, is discrete,
singular and its statistics is strongly non-Gaussian. In 1979, Rose [16] developed another
approach specifically for dealing with kinetic theory. Like MSR, Rose also recast the basic
problem in a quantum-mechanical form but this time using an occupation number represen-
tation in classical phase-space [17]. The response to the injection of particles included in
MSR is naturally incorporated here. The implications of Rose’s paper to kinetic theory have
not yet been fully explored. In addition, Rose points out that the steps necessary to reduce
his general formalism to Mazenko’s theory of fluids in thermal equilibrium are not apparent.

Finally, very recently, Mazenko® published a new fundamental “theory of statistical par-
ticle dynamics that solves the chronic problem of self-consistency”. In that paper, the theory
is presented for the Smoluchowski dynamics and the author announces that its extension to
Newtonian dynamics is under way. From the information available in [18], it is likely that
the approach presented here is still different from Mazenko’s new theory.

1.2 Present Work

In this paper, we present an alternative, arguably simpler and elegant approach to the deriva-
tion of renormalized kinetic equations for classical fluids that applies to both equilibrium and
non-equilibrium states and encompasses the previous works on this topic. For simplicity of
the exposition, we shall consider a system of identical point particles mutually interacting
via a pair-wise additive central potential; however, no peculiar assumption is made on its
range and strength, so the theory can be applied to investigate systems ranging from neu-
tral liquids with short-range interactions to classical plasmas with the Coulomb interaction.
Moreover, the theory is derived independently of the nature of initial state of the system, and
the influence of initial correlations on the system dynamics, usually neglected or difficult to
include in the previous works, is treated explicitly.

A closed, self-consistent set of evolution equations for the phase-space density f(r, p, 1),
the two-point correlation function C, and the retarded and advanced response functions x %4
is derived in terms of time history integrals that involve three memory functions X %4:C,
Loosely speaking, the correlation and response functions describe the dynamics of emission
and absorption of phase-space density fluctuations in the fluid, which in turn determine the
effect of collisions on the dynamics of the distribution function f. The memory response
functions describe how many-body effects affect, i.e. renormalize, the time-dependent prop-
agation and lifetime of density fluctuations, and as such play a role similar to self-energies
in quantum field-theory.

To obtain this closure, we construct an action functional Q[q’)] of external potentials ¢
that contains all information about the dynamical properties of the fluid. In particular, its
derivatives with respect to ¢ successively generate the phase-space density f and all the
correlation and response functions. The latter are coupled through an infinite hierarchy of

8This paper also gives a very informative introduction to many other aspects of classical statistical dynamics.
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evolution equations, which subsumes the traditional BBGKY equations. The hierarchy is
formally closed using traditional closure (renormalization) techniques involving the Legen-
dre transform l:[ fl= —Q[d)] + f ¢f of the effective action Q[¢].

The basis of the present approach is the extension to classical systems of the closed-
time contour idea originally introduced in 1961 by Schwinger [19] in his seminal paper on
the Brownian motion of a quantum particle. Schwinger’s idea was later fruitfully used to
develop the theory of non-equilibrium Green’s functions in quantum field theory [20, 21].
Two fully equivalent formulations of the theory are presented. In the first formulation, the
theory is expressed in terms of time-dependent quantities taking their values on the closed-
time contour. The effective action Q[q&] is a functional of external potentials ¢ that lin-
early couples along the closed-time contour to the single-particle phase-space density. The
first functional derivative with respect to ¢ generates the phase-space distribution function
f=94 Q /8¢ and the second derivative 8ZQ/B¢2 equals a quantity that combines both the
two-point correlation function C and the density response functions x ®4. In the second
formulation, the theory is recast into a form that directly generates the physical quantities of
interest. The effective action is written as a functional of two external potentials, Q2[¢,, dal,

. . . L 2

of the physical time variable ¢ and has the remarkable derivatives f = %, C = ﬁ,
R _ _8Q A_ 8

X" = Sonag, X7 = 55500

The main purpose of this paper is to lay down the general foundations of the theory with-
out reference to a specific physical system or model. Its application to physical problems
would require substantial additional work, some of it being under way. The paper is orga-
nized as follows. In Sect. 2, the basic definitions and notations are introduced. To provide a
self-contained presentation of the work, we recall several basic results of classical statisti-
cal mechanics that are used thereafter. The original contributions of this work really begin
into Sect. 3 where we develop the closed-time formulation of our theory and continue in
Sects. 4 and 5 where we recast the results into equations that involve quantities depending
on the physical time. For clarity, the details of the proofs of the calculations are given in
Appendices A—I. Throughout these sections, we discuss the implications and merits of the
new approach presented. We study the special case of a fluid at equilibrium, make contact
with Mazenko’s renormalized theory, show the correspondence with popular kinetic equa-
tions (Landau, Boltzmann, Lenard-Balescu-Guernsey), and study the correspondence with
MSR and Rose’s theories. Also the present approach naturally shed light on analogies and
differences between quantum and classical kinetic theory, which we highlight throughout
the paper and in Appendices A—I. The comparison allows us (i) to comprehend the longer
resistance of classical statistical mechanics to renormalization, and (ii) to justify some of
the ingenious approaches used by previous works like MSR. For convenience, a summary
of the main components of the theory is given in Sect. 6.

2 Basic Definitions

In this section, we introduce the physical systems under consideration and recall several
basic notions of statistical dynamics used thereafter such as the correlation functions, the
linear response functions to external perturbations, and the closure problem. Most of the
material is discussed in textbooks, e.g. [8, 22], and is recalled here for completeness. The
reader already familiar with these notions may wish to skip ahead to Sect. 3 where the
original contribution of this paper begins.
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2.1 Physical System

We consider a system consisting of N identical point-particles of mass m enclosed in a
volume V of the d-dimensional space R¢. We assume that the system dynamics is governed
by the laws of classical mechanics under the total, possibly time-dependent Hamiltonian
H,,. Thus, the position r;(¢) and momentum p;(¢) of the j-th particle at a time ¢ evolve
according to the Hamilton equations,

&: 0 Hpp(x, 1) @:_aHtat(xvt) )
dt Bpj ’ dt 8rj ’
where x = (ry,...,Tx;P1,....Py) € VY x RN . These equations (1) are to be solved sub-

ject of 2d N initial conditions on the coordinates and momenta x (fp) = X, at an initial time #,.

We assume that the initial state x, of the system is imperfectly known but can be char-
acterized by a distribution Fy(xo) defined such that Fy(xo)dx, is the probability that the
system is initially in a microscopic state represented by a phase-space point of volume dx
around xo. Most importantly, the present theory is derived independently of the nature of
initial distribution Fy; it is just assumed Fj to be normalized, i.e. f dxoFy(xg) = 1.

We are thus interested in the dynamics at time ¢ > 7, of a statistical ensemble of indepen-
dent systems, each of which is a replica of the system defined above, and initially distributed
according to a given Fy; the dynamics prior to the initial time #; is not of interest to us. The
uncertainty on the initial conditions will be the only element of statistics in the present the-
ory. Once the non-equilibrium initial state is specified, the time-evolution is deterministic
and completely determined by the Hamiltonian.

As time increases, the initial distribution of states F{y evolves into the distribution F (x, t)
at t > ty according to Liouville equation,

d
EF(xrt):[Ht(}t’ F]PB(xvt)’ (2)

where [A, B]pp denotes the N-particle Poisson bracket

N
0A 0B 0A 0B
ABlpp=Y (2.2 22 72
14, Bles Z<3l‘j op, 0p; 31’.;’)

j=1
We assume that the total Hamiltonian can be written as
Hioi(x, 1) = Hy(X) + Hew(x, 7). 3)

The time-independent term Hy characterizes the system in the absence of external, time-
dependent perturbations, and is of the form,

N 5 N
Hy(x) = Z(zp—,; + vo(r») + % 3 vl — )
=1 i#j=1
N 1 N
=D ho@;.p)+5 Y vl — ;). @
j=1 i#j=1

The particles interact according to a pair-wise additive central potential v(r) and the whole
system is possibly confined by a static potential vy(r). Throughout the paper, no peculiar
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assumption is made on the range and strength of the interaction potential v other than being
differentiable for r > 0. In particular, the theory applies to both short-range potentials as
encountered in neutral liquids [23] and also to the long-range, Coulomb potential of impor-
tance to plasma physics; in the latter case, a background potential may be included in vy to
ensure electrical neutrality [24].

The term H,,, in (3) represents the possible interaction to an external, time-dependent
perturbation ¢y (r, p, t),

N
Hext(xvt):Z¢0(rj’ pj’t)://drde(rvp’t)¢0(rvp’ t)v (5)

j=1

which linearly couples to the phase-space density N(r, p, ¢) (see (7) below).

The general definitions given above encompass a large class of systems, including for
instance (i) the dynamics of a fluid at equilibrium when H,, =0 and Fy = f,, is an
equilibrium (Gibbs) distribution function, (ii) the relaxation dynamics to equilibrium when
Fo # feq and H,, =0, (iii) the out-of-equilibrium dynamics of a fluid in the presence of
time-dependent fields when H,,, # 0.

2.2 Closure Problem, Correlation and Response Functions
2.2.1 Fundamental Field Variable and Correlation Functions

A dynamical variable is a quantity A that depends parametrically on the particles’ trajectory
x(t), and therefore on the initial condition x(. As a consequence of the statistical description,
A no longer has a definite value but is instead characterized by its average over all possible
initial conditions weighted by Fj,

(A)(y) = f dxoFolxo)A(xo: ¥): ©)

here y denotes the possible dependence on other parameters.
A fundamental dynamical variable in classical kinetic theory is the microscopic single-
particle phase-space density

N
N(r,p,t)=Y 8(r—r;(1)s(p—p;()), )

j=1

where (r, p) € V x RY. The density N (r, p, ¢) plays a role similar to a field in field theory or
of a random variable in the theory of stochastic processes; here N(r, p, t) is random in that
its value varies due to its sensitivity to initial conditions. The ensemble average of N (r, p, t)
defines the single-particle distribution function

fe.p, ) =(N(r,p,0), ®)

and has the meaning of the probability distribution of particles at position r with momen-
tum p at time ¢. For an unconfined fluid (vo = 0) in thermal equilibrium at temperature
T, f is independent of space and time, and reduces to the Maxwell-Boltzmann distribu-
tion f(p) = ne P /2T /g mkyT)*? where n = N/V is the particle density. In non-
equilibrium fluids, f generally depends on both r and ¢.
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As is typical in a statistical theory of a random variable N (1), an important role in the
theory is played by the fluctuations around its averaged value,

SN(1) =N(1) = (N) =N(1) — f(1), ©))
and by the associated n-point correlation functions (or cumulants)
C™(,....,n)=(8N(1)...8N(n)). (10)

For the two-point correlation function, we write C(1,2) = C?(1, 2). Equal-time correlation
functions, i.e. t; = --- = t,, will be denoted by a bar as CO(xy, ..., x.00).

As was emphasized by Rose [16], a statistical theory based on a discrete (i.e., a sum of
delta functions) random variable such as N (1) presents a serious technical difficulty in that it
is strongly non-Gaussian, even for non-interacting particles, since the equal-time cumulants
C™ are all non-vanishing and singular. Indeed, in terms of the conventional n-particle corre-
lation g, introduced in kinetic theory from the cluster expansion of the reduced distribution
functions (see Appendix A), we have

COX, X', )=8(X —X)f(X,1) + (X, X';1) (11)
and

COX, X, X", 0)=8(X—-XN(X' — X" f(X,1)
+ [8 (X — XNga(X', X"; 1) + cyclic permutations]
+4(X, X', X" 1) (12)

and so on, with X = (r, p). Thus, even in the absence of three-particle correlations (g3 = 0),
the three-point cumulant is non-vanishing because of particle self-correlations, and this re-
mains true at all times ¢ > #y. This result precludes the applicability the Wick theorem so
useful in conventional statistical field theories.

2.2.2 Field Equation and Closure Problem

For convenience we introduce the shorthand notation in which a field point and the time
variable are designated by a single number, i.e. n = (r,, px, t,) (not to be confused with
the particle labels n); for n = 1, we often drop the subscript so that 1 = (r, p, #). The delta
function §(1 — 2) denotes 6 (r; — ;)6 (p; — p2)8(t; — 1).

From the Hamilton equations (1), it is straightforward to show that the phase-space den-
sity evolves according to

%N(l) =LN() +/d2L12N(1)N(2),
1

where the summation is defined as

/dl:/dn/ dplf dt....
\4 R to

_On() de  OA(L) de .
Lie= Tor opr opyom = {h, o}(1) (13)

Here,
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is the single particle part of the Liouville operator with the total single-particle Hamiltonian
h = ho+ ¢p. In the second line of (13), it is expressed in terms of the single-particle Poisson
bracket

da db 0da 0b

{a,b}(np):a'%—%'g, (14)

for any function a(r, p) and b(r, p) in R* (note the curly brackets notation to avoid confu-
sion with the N-particle Poisson bracket [-,-]pp defined earlier). Finally,

I J _ Je Je (15)
o=—1p|———
12 or, 12 op,  op

is the interaction part of the Liouville operator with v, = v(r; — r2)8(¢; — 2). Those no-
tations are in widespread use in the literature on classical kinetic theory. In the theory pre-
sented below, however, it will be more convenient to rewrite (13) as

(i —L1>N(1) = l/512/073’)/3(1,2, 3)N(2)N(Q3)
ot 2

1
= 5?3(1,2, 3)INQ)N(3) (16)
in terms of the “bare interaction vertex”,

d
v3(1,2,3) = apr (Wi28(1 —3) + wi38(1 — 2)),
1

. a7
Wi = ar, V12
which is symmetric in its last two arguments. The second line of (16) illustrates the summa-
tion convention over repeated indices of dummy variables that we shall use throughout the
paper.
Averaging (16) over the initial conditions, we obtain the equation of evolution of the
phase-space distribution f (1),

0] 1
[a—tl - L1}f(1) — (™ (1), fF()) = 713(1,2,3)C2.3), (18)

where u™/ is the mean-field (a.k.a. Vlasov) potential

u" (r, 1) :/dzf(z)ﬁ(l -2). (19)

Equation (18) couples f(1) to the (equal-time) two-point correlation function C(1,2), and
corresponds to the first equation of the ordinary BBGKY hierarchy; the right-hand side (rhs)
is usually referred to as the collision integral. Similarly, as a consequence of the quadratic
non-linearity of the field equation (16), the evolution of C™ at each order n involves the
next higher-order correlation C*+V; those equations can be straightforwardly derived using
the equation for the density fluctuations § N obtained by subtracting (16) and (18). Thus, for
the two-point correlation function, we find

0 _ N _ ymf / _l 3) ’
o Ly|C(L, 1) - 2" (1,2)C2, 1) = 21/3(1,2,3)C (2,3,1)
1
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Table 1 The most popular closures of classical statistical physics amount, among additional hypothesis, to
replace (11)—(12) for C @.3) by the terms displayed in the table. Those approximations usually neglect the
n-particle correlation functions g, with n > 3, which is inappropriate whenever correlations are strong. One
of the challenge of kinetic theory is to incorporate the effects of those neglected terms in a self-consistent
manner. For comparison, the term g kept in the Lenard-Balescu-Guernsey (LBG) equation but discarded
in the Boltzmann equation allows the renormalization of the bare interaction into a dynamically screened
two-particle interaction between the particles of the plasma. On the contrary, the contribution to c® kept in
the Boltzmann approximation but discarded in the Lenard-Balescu-Guernsey equation, is responsible for the
bare two-particle interactions (large-angle scattering) describing the two-body collision in a dilute gas

Closure c® c®

Vlasov 0 0

Landau S(x —x")f(x,1) 0

Boltzmann S(x —x")f(x,1) [(x —xNga(x', x";t) +c.p.]
+8(x —x)8(x —x") f(x,1)

LBG g0, x's ) +8(x —x")f(x, 1) 0

Book-Frieman [36] g, X' t) +8(x —x) f(x, 1) [8(x —xga(x',x"; ) + c.p.]
+8(x —=y)8(y—2) f(x,1)

where

21,1 = y3(1,2,3) £(2)8(1' = 3). (20

The hierarchy of evolution equations for the C™ is different from the ordinary BBGKY
hierarchy, which instead involves the correlation functions g, (a quick summary of BBGKY
is given in Appendix A). The BBGKY can be recovered by considering the equal-time
limit of the equations for the C™s. The “simplest” closures of the BBGKY hierarchy lead
to the most famous kinetic equations, in particular the Vlasov equation, the Landau equa-
tion (see footnote 5) for so-called weakly-interacting gases, the Boltzmann equation [1]
for dilutes gases, and the Lenard-Balescu-Guernsey equation [10-12] for weakly-coupled
plasmas. Those closures rely, among additional hypothesis, on a systematic ordering of the
correlations g, in terms of an adequately chosen small parameter [8]. As summarized in
Table 1, each closure amounts to keeping only certain contributions in (11)—(12). In particu-
lar, these popular closures neglect the n-particle correlation functions g, with n > 3, which
is inappropriate whenever correlations are strong. A major challenge of kinetic theory is to
incorporate the effects of those neglected terms in a self-consistent manner. In Sect. 4.5, we
shall see how the present theory addresses the problem.

2.2.3 Linear Response Functions and Fluctuation-Dissipation Theorem

We now consider the linear response of the system defined above to weak, external pertur-
bations ¢ that couples linearly to the single-particle density N (X, t) as

Hpe(r,p, 1) = / drdpN (r,p,1)8¢(r,p, ).

By linearizing with respect to §¢ the Liouville equation (2) with H,, replaced by H,, +
Het, we find that to first order in the external perturbation the phase-space distribution
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f(xr,p,t) is modified from its value in the absence of perturbation by the amount,

7= [[arxt s,
in term of the retarded response function,

8f (1)
sp(17)

for all ¢,¢ > t5. The retarded response function is not symmetrical in its arguments but
instead x®(1’,1) = x4(1, 1), where x is the advanced response function,

xR, 1) = =600 — 100" — ([N, N(1H],,). @1

KAL) = =0 — 00 — 10)([N(D), N(1)] . )- (22)

In the Poisson bracket, N (1) is evaluated along the unperturbed trajectory governed by H,,,
(interaction representation). Other useful properties of x ®'# are given in Appendix B.

The two-point correlation C and response functions x®4 play a fundamental role in the
present theory. The correlation function gives information about the likelihood of fluctua-
tions in the fluid and determines the effect of particle encounters in the collision integral of
(18). The response functions carry the dynamical information on how fluctuations are prop-
agated in time. In classical mechanics, those functions are related to averages of dynamical
variables of different nature, namely the averaged product of field variables for C and their
averaged Poisson bracket for x®4. This result is to be contrasted with the equivalent re-
sult in quantum mechanics where both correlation and response functions are related to the
average of products of the same dynamical variables, on which more is said later.

Only for the special case of a system in thermal equilibrium (Fy = f,, and H,; = 0), the
response and correlation function are simply related according to

R / ’ ’ d ’
x" (1, 1) =po@ —1)0(t —to)EC(l, D),

with 8 = 1/kpT. This result is known as the fluctuation-dissipation theorem.’

3 Renormalization on the Closed-Time Contour

The present theory is based on the definition of a generating functional Q[¢] that contains
all the information about the dynamics under investigation. Here ¢ represents some exter-
nal time-dependent potential, which perturbs the system and, just like ¢y in (5), couples
linearly to the microscopic phase-space density in the total Hamiltonian. The functional is
designed such that its derivatives with respect to ¢ generate the phase-space distribution f,
the correlation and response functions C and x ®/# of the system.

The functional Q[¢] plays a role similar to the grand-potential Q[vo] in the density
functional theory of classical fluids used to study their static properties [23]; in this case,

9With to — —oo, all dynamical quantities are time-translational invariant, e.g. xR, 1) = xRt —
' X',0)= xR (X, X’; t — ') and the fluctuation-dissipation theorem reads

R / d ’
XXX ;t)=—ﬂ9(t)EC(X,X 3 0).
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the first derivative with respect to the confining potential vy gives the particle density
8QR[vg]/8vo(r) = p(r) and the second derivative equals the density correlation function
8R2[vg]/8vo(r)8vo(r') = (8p(r)8p(r'))., [23]. The existence of such a generating functional
for the calculation of dynamical properties is far from obvious. For instance, if one imag-
ines a straightforward extension of the static theory in which Q[¢0(1)] is a functional
of time-dependent external potentials ¢o(r, p,?) that generates the phase-space density
8Q/8¢0(1) = f(1), one is immediately led to a contradiction. Indeed, the symmetry of the
second-order derivative requires

b 5Q 8 5Q
8¢0(2) So(1) ~ 8¢po(1) 8¢pp(2)’

while causality requires

) 83 sf()
80(2) 8go(1) 8¢ (2)

since, say when #; > 15, x®(1,2) = ((N(1), N(2)]pp) and xR(2,1) =0 (see (21)). Both
requirements could never be satisfied together and therefore the search for such a functional
is doomed to fail.

In order to cope with the problem, we shall define Q over a wider set of dynamics using
the idea of closed-time contour originally introduced by Schwinger in the early 1960’s to
deal with quantum systems [19]. Because quantum mechanics propagates probability am-
plitudes instead of probability densities, the mere notion of closed-time contour arises more
manifestly in quantum than in classical mechanics. Thus, if at time ¢ > #y, a quantum system
is in the state |\ (¢)), the expectation value of an observable O at that time can be expressed
as

x*(1,2)# %21

(0)(1) = (WD) 0w () (23)
= (W (10)|U (t0, HOU (¢, 10)| ¥ (t0)) (24)

in terms of the propagator U (z,1") from time ¢’ to ¢, and the initial state |V (¢y)) at time #,. If
we read the time arguments of the propagators in (24) from right to left we may say that the
system evolves from 7, to time ¢ after which the operator O acts; then the system evolves
back along the real axis from time ¢ to fy. Schwinger first noticed that one could imagine
that the forward and backward time evolutions are governed by different dynamics (e.g., if a
different external potential acts on each branch), and showed how this can be turned into an
ingenious device to probe (generate) the properties of the physical system under investiga-
tion simply by suitably perturbing its dynamics along the closed-time contour that goes from
fo to t back to fy. The closed-time contour approach was further developed by Keldysh [25]
and many others to obtain an elegant and powerful treatment of non-equilibrium quantum
systems in terms of non-equilibrium Green’s functions [20, 21, 26].
By contrast, in classical mechanics, the expectation value (23) becomes

(0)(t)=/deF(xO)0(X(t)),

and the concept of closed-time contour is much less apparent. Nevertheless, we shall show
how a similar idea can be fruitfully developed to the classical case. First we shall define the
notions of closed-time contour and extended dynamics. Then we shall use these concepts to
define the action functional [¢] and investigate its generating properties. Finally we shall
show how Q[¢] provides a formal solution to the closure problem.
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Fig. 1 Schematic illustration of
the closed-time contour. For any T, +
time ¢ € [#g, tp7], T+ is the time \
on the forward branch ¢4 and 7— t,
is the time on the backward 4 / t M
branch c_ of the closed-time
contour such that

t=1(t4) =1(1-)

time

Fig. 2 Illustration of the x(7)
extended dynamics X (7) on the
closed-time contour. For a
physical potential, the dynamics
retraces the forward trajectory on
the return branch

Xy o(1) =9, (I(T)) Xo

3.1 Closed Time Contour

We shall extend the dynamics under investigation along a closed path in time that, as il-
lustrated in Fig. 1, goes from the initial time 7, to some time #;, in the future and back to
the initial time 7. The value of #;, can be chosen arbitrarily as long as it is larger than the
largest time of interest; for definiteness, we shall set ¢); = 400 in the following. The closed-
time contour can be conveniently defined by parameterizing the physical time t = #(7) in
terms of a time variable 7 in such way that if 7 runs from an initial 7; to a final 7, then
t () monotonically increases from the initial time 7y to the maximum time f); at 7); and
then monotonically decreases from ¢ back to #,.!° In fact, the chosen parametrization is
inconsequential since the final results are independent of it.

In the following, for any physical time ¢ € [#y, )], we will denote by 7 the unique time
on the forward branch and 7_ the unique time on the backward branch of the closed-time
contour such that r = #(t,) = ¢(7—). We will also distinguish certain quantities defined on
the closed-time contour variable t by a tilde. Thus we write i= (ry,p1,11) = (Xy,11) or
simply 1= (X, 7) when no confusion is possible. In these notations, §(1 —2) = §® (r; —
)89 (p1 — p2)é(t1 — o).

3.2 Dynamics on the Closed Time Contour
Let us first imagine that the dynamics x(t) = {r;(¢), p;(¢)}j=1,5 under investigation over

the physical time interval #y <t <1y, or equivalently 7; < t < 1), extends to the backward
branch 7y < v < 7/ of the contour in such way that, as illustrated in Fig. 2, the extended

10 possible parametrization is given by
i+
a(t — 1) + 19, TiETSTM:¥,

t(r)=
—a(t—ty)+iy, TMST=Tf

with @ = 2(ty — 10)/(tf — 77).
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dynamics retraces backward the same phase-space trajectory along [y, T¢]. In other words,
if F;(t) and p;(7) denote the positions and momenta of this extended dynamics, we require
that for all = € [1;, /],

(0 =r;(t(), pjr)=p,(t@). (25)

We stress that this operation is not equivalent to the traditional time reversal transformation.
Indeed, in the latter case, both the propagation of time and the particles momenta are flipped,
i.e. p; = —p;, while here only the direction of time is reversed p; (t,;) = P; (t;;) = p; (tm)-

By differentiation of (25) with respect to t, we easily find that the extended dynamics is
Newtonian and governed by the Hamiltonian,

N
Hoy (3. 7) = 1/ (O Hn (3, 1(1)) =1 () (HN@ + 6o . z(r))) (26)

j=1

Withi:(f'l,...,f'N;ﬁl,...,f)N).
We then note that this extended dynamicscan be regarded as a special case of a larger set
of dynamics on the closed-time contour and characterized by the Hamiltonians

N
Hy(@. 1) = r’(r)(HN@) +> 6. b, r))

j=1
= t’(t)(HN (xX) + jg dxdtN (X, 1) (X, r)) 27

where ¢ is any external, time-dependent potential defined on the closed-time contour, and

N
N(r,p, 1) =) 8(r—F;(x)3(p—p;()

j=1

is the single-particle phase-space density. Just like in calculus it is often very useful to con-
sider a real function of the real variable as a complex function of the complex variable,
considering the physical dynamics under consideration as an element of the set of extended
dynamics will allow us to derive properties of the physical dynamics that are difficult to
obtain otherwise.

We can distinguish between two types of external potentials ¢, namely physical and
non-physical potentials; we shall denote physical potentials with a subscript p, e.g. ¢,,.
A physical potential is identical on both branches of the contour, i.e. ¢, (t;) = ¢,(7_), while
a non-physical potential is not. Any potential with real, physical origin such as ¢, in (5),
defines a physical potential through ¢,(7) = ¢o(7(r)). By construction, under the influence
of a physical potential, the extended dynamics retraces its forward trajectory backwards on
the return branch of the closed-time contour, while for a non-physical potential, forward and
backward trajectories are generally different. Both cases are illustrated in Fig. 2.

3.3 Generating Action Functional
The extended dynamics governed by H, can also be described by the Lagrangian

Ly(F,0,7)=p -V —Hy(F, p,7), (28)
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with the velocity v = d7/dt and the short-hand notation 7 = (¥, ..., Fy).
Given an initial condition x( and the corresponding trajectory (7(7), v(t)), we define the
total action over the closed-time contour as

Tf
S[¢;xo]=/ dtLy(F (1), 0(1), 7) — Spl@, x0] 29)
+o00
:/ dtII(T) Ly (7 (1), U(7), T) — Spl, xol, (30)

with the boundary term,

1
Spl. x0] = E(ﬁ(n) + P (F (1) — F(Ty)).

The role of S, is to cancel boundary terms that arise when performing the variations of the
first term with respect to ¢. In the second line, we include the integration range [1;, 7/] in
the integrand through the “window” function

(7)) =0(r — )0 (zy — 1) =0 (7) — 1) 3D

where 6 is the (Heaviside) step function!' so that [T1(t) =1 when 7; < < Trand I1(7) =0

when t < 7; or T > 7. As we shall see, this apparently insignificant rewriting of (29) in fact

allows us to self-consistently include the contribution of initial conditions within the theory.
We then define the effective action functional fZ[(b] such as

o~ FQU) (e§81¢:x01> = Z[¢], (32)

where we recall that (. ..) denotes the average of the initial conditions x( as in (6). Here s is a
fixed parameter with the dimension of an action, or energy times time, to make the exponent
dimensionless. Its value may be set to the quantum of action 7 if one regards e SI#:%0]
as the classical contribution to the total quantum amplitude to go from points x(z;) = xo
to X(t¢) [27]. However the identification s = 7 is not required since (32) could also be
defined without reference to its quantum origin. Accordingly, we find that the actual value
of s is inconsequential since all the general results derived from (32) are independent of it.
(The situation here is reminiscent of the problem encountered in the early days of classical
statistical mechanics [28], where an arbitrarily chosen size & of the unit cell in phase-space
was introduced in order to count the accessible classical states; while the physical laws were
not affected by the value of &y, the arbitrariness was later removed using the principles of
quantum mechanics, leading to iy = h.) It may for instance be useful to chose s to be purely
imaginary, s — is, and write

Q[q)] =—sln Z[¢] = —9 11’1<€%S[¢;X0])

in order to circumvent difficulties related to complex logarithms, to ensure nice properties
of the effective action (e.g. convexity), etc.; we shall not delve into these technical points
here.

U The Heaviside step function is defined as

1 >0,

®(T):{O T <0.
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We remark that the action functional vanishes at any physical potential ¢,,,
Qlg,1=0. Ve,
Indeed, the total action S vanishes
Sl¢p: xol =0,  Vxo,

since the contributions over both branches of the closed-time contour have opposite sign by

construction,
™ Tf
/ dr£¢(r):—/ dtLy(T),
T

™

and S, = 0 since 7(t;) =7 (tf). As a consequence, Z[¢,] = f dxoF (x9) = 1, and therefore
fl[qﬁp] = 0. However, since Q[(b] generally takes on nonzero values outside the subset of
physical potentials, its functional derivatives at a ¢, can take finite values.'” As mentioned
earlier, those functional derivatives are indeed quite remarkable since they are simply related
to key physical quantities.

3.4 Functional Derivatives of fZ[d)]
3.4.1 Quick Comparison with Quantum Action Functionals

Action functionals of the form (32), i.e. the exponential of an action, play a fundamental
role in field theory, which often deals with generating field integrals (i.e. traces) of the form
[29],

o—iQ0l0l/R _ </DW€%<SQM+I¢W)>

v

= / f dvndynnlpolyn) [ DWwekSelvie/ow (33)

Vi

where W is the field, Sp[W] is the action, gy is the initial density matrix, and ¢ is an external
source term that couples linearly to W. In that case, the whole exponent in (33) is linear in ¢,
and the successive functional derivatives 8(”>QQ[¢]/ 8¢ (1)...8¢(n) simply insert the field
W in the field integral and generate the averaged (time-ordered) products (8¢ (1) ...5¢ (n))
of the field, alternatively referred to as the time-ordered correlation functions, propagators
or Green’s functions of the theory.

By contrast, the classical action functional (32) is highly non-linear on the external po-
tential ¢ since the phase-space trajectory X (7) in S[¢; xo] implicitly depends on the external
potential ¢ as well. If, as already mentioned in the previous paragraph, one regards S[¢; xo]
as the classical contribution to the total quantum amplitude to go from x, to X(ty), we see
that the reduction of the quantum field integral from all possible field configurations to the
classical path only is responsible for the non-linearity in the external perturbation of the

12The situation is analogous to a function, say f(x, y) = e” sin(y), which is zero along the x-axis but takes
non-zero values when leaving it, i.e. when y # 0, and therefore has differentials that are generally non-zero
along the x-axis.
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classical action (32). As a consequence, two types of quantities arise when differentiating
the classical action functional Q[¢)] instead of only one, namely the time-ordered correlation
functions, in quantum field theory. The explicit linear dependence of S on ¢ generates the
correlations of the phase-space density as in field theory, while the implicit non-linearities
generate terms involving the Poisson bracket [-,-]pp such as the response functions x *4,
(21).13

3.4.2 First and Second Derivatives

In the neighborhood of the external potential ¢, fl[(b] can be expanded in the series,
o0
5 1 7 =0 (] NS (1 ;
Qoo + 0] = Z | dl...dnQ"(1,...,n)8¢p(1)...8¢ 1), (34)
n=0 " "

where we introduce the short-hand notation,

- +00
¢d1=\/\ drlt/(tl)/dqlfdpl-“-
—00 Vv

Here Q© = Q[¢] and, for n > 1, Q® is the n-th functional derivative at potential ¢y,

() &
QWd,....n) = &
sp(1)...8¢ ()

The latter can be obtained by a systematic perturbation expansion in powers of the variations
8¢ around ¢py. We are particularly interested in this work in the first two derivatives n = 1, 2.
For clarity, we just report here the main results and give their proofs in Appendix C; in addi-
tion, the differentiability properties of $[¢] are discussed more thoroughly in Appendix D.

The first functional derivative generates the phase-space distribution function f of the
dynamics under investigation,

P=do

8Q
8¢ (1) lp=gy

where we recall that T1(7) is the window function defined by (31). Accordingly, its second
functional derivative,

=W, p, 1)) =) f(r,p.t (1)) = f (D), (35)

8@Q[¢] _8f()
8¢ (8¢ Q) lp=g, 562

can be regarded as the linear response function along the closed-time contour of the system’s
dynamics. The direct calculation of x developed in Appendix C leads to

=x(1,2) (36)
=0

x(1,2)= n(ron(rz)(?zd,i) - ’ECd,i)), (37)

13 Another distinction between (33) and (32) is in the boundary conditions. In the quantum expression (33),
the field integral is over all trajectories starting at ¢(z;) = ¢ at 7; and ending ¢, at ¢(7s) = 7, indepen-
dently of the source ¢. In the classical expression (32), while initial the value x(t;) = x(7;) is the same for
all external potential ¢, the final value X(t ) depends on the overall trajectory X(t) and therefore on the
potential ¢. This saddle difference actually can not be discarded when considering the functional derivatives
and the additional term S, in (30) was added to absorb such spurious boundary effects (see Appendix C).
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and consist in the linear combination of two terms. The last term is the two-body correlation
function

C(1,2) =[N (1SN (), (38)
and, as discussed earlier, comes from the explicit linearity of the action S in the external

potential. The first term in (37) originates from the non-linearity of the action and involves
the many-body Poisson bracket [.,.]p5,

<. 1 - <
R(,2) = 5(72[/\/(1),/\/(2)1m>- (39)

In (39), we have introduced the chronologically ordered Poisson bracket of two dynamical
variables A(t) and B(t) as

T[A(t1), B(r)]pp =0(11 — )[A(T1), B(2)]pp + 0 (12 — 1) [B(12), A(T1)]ps-
Accordingly, x can also be expressed as,'*
x(1.2)=0(n — )™ (1.2 +0(n — m)x~(1,2), (40)

where for 7; > 7, (dropping the window functions for simplicity),

x (1,2)= %([N(D,N(i)]ps) - ;QC(T, 2). 1)
and for 7, > 1,

x<(i,i)z—%(wd»N(i)]pB)— EC(I,Z). (42)
3.5 Connection to Physical Response and Correlation Functions
Remarkably, the function x contains information about both the physical correlations and
response properties of the physical system, which can easily be extracted as follows.

The physical correlation function C(1, 2) defined in Sect. 2 is easily extracted from x by
taking the sum of (41) and (42),"

is
C(l,2):3(X>(1,2)+X<(1,2)), Vi, by > to. (43)

The connection to the physical response can be seen by calculating the variation 6f of the
phase-space density due to a change in the external potential §¢y around ¢,. We have,

14We remark that, contrary to the functional defined on the real-time axis imagined at the beginning of Sect. 3,
x is fully symmetric in its arguments,

x1,2)=x2,1) Vvi,2.

I5por simplicity, we write a(t) = a(t4+) = a(t—) where (see Fig. 1) t =t(14) = t(z—), and x~(1,1") =
X~ (e, prt—ir, pr. i) and x <(1, 1) = x~ (r1, p1, T4: 11, p1. 7).
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8f(x1.1) = 74 d2x(1,2)8¢0(2)
I
:/dx2/ dtyx” (X1, t1; X2, 12)8¢po (X2, 1)
10
o0
+/dX2/ X = (X1, 115 X2, 1) 8o (X2, 1)
1
fo
+/dX2/ X = (X1, 115 X, 1) 8¢ (X2, 1)
o0

1
= fdxz/ dn[x™ (X1, 1y X, 1) — x = (X1, 115 X2, 12) 1860 (X2, £2).
1

Using (41)~(42), we find 8 (1) = [ dx, [ dix®(1,2)8¢(2), with

xR, =0t —n)x™(1,2) — x=(1,2)]
=0(t1 — )0(t2 — 16){[N (1), N(2)1p5),

which is just the retarded response function (21) of traditional perturbation theory recalled
in Sect. 2.2.

In conclusion, simple linear combinations of the second order derivatives x yield to key
dynamical properties of the physical system under investigation, namely C and x 4. The
simultaneous occurrence of both C and x %, two quantities of different nature, is remarkable
and further discussed in Appendix E with regard to its counterpart in quantum field theory.

3.6 Generalized BBGKY Hierarchy for the Extended Dynamics

We consider the statistical dynamics on the closed-time contour governed by H, defined in
(27). We assume that at the initial time t;, the initial positions and momenta X (t;) are dis-
tributed according to the same distribution Fy(xp) as the physical system under investigation
(see Sect. 2). The notations used here for Ly, y3, ... are those of Sect. 2.2 with the real time
variables 71, 15, ... simply replaced by 7, 1, . . ..

The microscopic phase-space density N ( i) evolves according to,

1 0 -
[m) ot LT]N(D N

1 o~ ~ ~
§y3(1, 2, NN (3). (44)

By averaging over the initial state, we obtain the evolution equation for the phase-space
density f defined by (35),

1 9 -~ s g 1 - -~ <=

S — L[S =V (D, f(DY=5ys(1L.2.3)CQ3) + A FD). (49)
t'(t) 0t 2

in terms of the two-point correlation function C and of

I dn@) 1

S e e

[ =) = 8(r — )] =8t (1) — 1). (46)

Following the traditional BBGKY approach, the evolution equation (45) would be regarded
as the first equation of the hierarchy of evolution equations between the successive equal-
time cumulants C™. Our approach allows us to instead regard (45) as the first equation of
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a “larger” hierarchy in terms of the successive functional derivatives Q" (1, ..., n), which
combine information on both correlation and response functions. The advantage of this ex-
tended hierarchy is that it can be formally closed at second order n = 2 using the procedure
discussed below.

To obtain this extended hierarchy, we note the equal-time property

i
XX, 1; X0, 1) =—-C(X1, 1, X5, 7),
S

as can simply be seen by setting t; = 7, = 7 in (40). The collision integral in (47) can then
be rewritten in terms of x and yields the evolution equation

[ ,1 2 Li]fd) (D), FD) = i35G+ AOFD. @)
t'(t) ot 2

which relates the first derivative f = EYe) /8¢ to the second derivative y = 82Q /8¢* of the
generating functional. Successive functional differentiations of (47) with respect to ¢ gen-
erate the extended hierarchy between the Q’s. The first functional derivative yields the
evolution equation for y (see footnote 16 for details),

[ ! i—L] A, 1) -2™d,2)-x2,1)
roar X K

=5,1)+ %S;@(i, 2,3)Q%92,3, 1)+ A@IE)Cd, 1) /is, (48)
where we define,'®
s(1, 1) =8 =1, FD}D).
The mean-field kernel is defined as in (20),
21,1 =y:(1,2,3) f2)s(1' = 3). (49)

In the rhs of (48), the second term comes from the direct differentiation of the collision
integral in (47), and the last term includes the boundary conditions.
Similarly, functional differentiation of (48) yields the evolution equation for Q®,

1 9 R - . < < =
— L |199@2,3,1) - =™ (1,2)Q®2,2,3)
t'(r) ot’

o is ~xx, @5 353 2 s = o
=S3(231)+5)/3(123) Q (2,3,2,3)+£X(2,2)X(3,3)

+A@HQP 2,3, 1), (50)

]6A1tematively, of course, the same hierarchy could be obtained from a “direct calculation” using (44) and

the explicit expressions of the QU in terms of the microscopic field AV. In this direct approach, the secular
term s, in (48) arises from the time derivative of the Heaviside functions in (40),

S =" (1L,1) =8 =)= (1,1) =8 = H(IN(D), NN} =521, 1.

The functional derivative of the boundary term in (47) yields A(r)l'[(r/)C(T, T’) as can be seen by applying
(131) with A = N and using SN/ (t;)/8¢ (t/) = 0 since the initial value is fixed.
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where
53231) = {8(1 - 2), x (1, 3)}(D) + {8(1 = 3), x (1, 2)}(D), (51)

and so on and so forth. The hierarchy thus obtained for the s suffers from the closure
problem whereby the equation for 2 depends on the next order response function Q'+,
In the following we show that this hierarchy can be closed at the n = 2 level.

3.7 Formal Closure of the Hierarchy!”
3.7.1 Effective Potential and Vertex Functions

The method uses a Legendre transformation of Q[(b] [29, 30], a functional of the external
potentials ¢, to obtain a function I'[ f4] of the phase-space densities f, given by

FLfyl = —Qlel+ 7§ di f,(He (D). (52)

We shall refer to I as the effective potential; the latter can be regarded as the generalization
of the Helmholtz free energy used in density functional theory [23]. The transformation (52)
shifts attention from the potential that perturbs the system to the phase-space density that
describes its effect.

The functional derivatives of the Legendre transform I'[ f,;] at the phase-space distribu-
tion f, = f under investigation,

8"T[ ]

rod, . ia)=——="
81, (1) ... 8f,()

fo=r

are intimately related to those of S~2[¢]. In statistical field theory, the functions I'™ are
usually referred to as vertex functions. For n = 2, we shall write ' = '®.
The first derivative simply equals the external potential,

ST
8f5(1)

=go(1). (53)
fo=r1

In the special case when ¢y = 0 as in equilibrium or relaxation problems, the previous re-
lation shows that the physical density f under investigation is an extremum of the effective
potential I". As such, I" plays a role similar to a thermodynamic potential in equilibrium
statistical mechanics.

17Using Q® =3 x/8¢ in (48), the latter can then be regarded as a functional differential equation for
x (1, 1). In principle, this equation could be used to generate approximate but closed relations for . Thus,
following ordinary perturbation theory, we could for instance use (48) to expand x in powers of the bare
interaction vertex y3 and of its “non-interacting” limit solution yq (solution of (48) with y3 = 0). Lowest
order approximation obtained in this way would most certainly suffer form the common divergence and sec-
ular problems that often plague ordinary perturbation theory. These difficulties could in principle be cured by
summing infinite classes of terms in the expansion, which would lead to excessively complicated calculations.
In our approach, following the lessons of field theory, those issues are dealt with more efficiently by working
directly with the so-called self-energy and vertex corrections; in the present work, the role of self-energy is
played by the memory function.
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The higher-order derivatives can be obtained by differentiation (53) with respect to ¢ and
using the chain rule of differentiation. For instance, for the second-order derivative, we find

2 5 2 28
?gdé 8~F[¢] ~ 5f¢(~2) =¢.d§ 5~F[¢] _ 5~Q[¢]~ —5.0-1) (54
8fp(1)815(2) 8¢ (1) 8/ (1)8£5(2) 66 (2)8¢(1")

where the §,-function 8,(1 — 1) = ﬁ(S(I — 1') satisfies

%di&(i -2 fQ=f. (55)
With short-hand notations, (54) writes as
ra,2) - x2,1=x1,2)-r2,1)=s.1-1), (56)

and shows that I" can be regarded as the inverse of the response function x. Taking the
derivative of (56) with respect to ¢ yields a relation between I'® and Q®,

Q¥(1,2,3)=—x(1,1x2,2)x(3,3)r¥1',2,3), (57)
and so on and so forth [30].
3.7.2 Closure of the Hierarchy

The relation (57) provides the starting point for closing the extended BBGKY hierarchy
linking the Q. Firstly, we can now express the collision integral (48) as

is o O is o ~ - ~ - P _ o
3)/3(123)9(3)(2, 3,10 = Zr(123)[=x2.2x 3, Hx (T, 1roe,3,1]
=2(1.2)- x2.1),

in terms of the memory function kernel X,

=21,1) = —%Syg(iﬁ)x(i 2)x(3,3r¥2,3,1) (58)
is o~~~ 8x(2,3)

= ——»(123 —. 59

5 13(123) s, () (59)

The equation of evolution (48) becomes
[6(1,2) -2 (1,2) - 2(1,2] xQ2. 1) =s1.1)+ A@IE)CA, 1) /is  (60)

where for convenience we have defined

~ ~ 0 -~ o~
G(1,2)= — —L{|6(1=2).
{,2) [m) - 1} i-2)
Equation (60) for the closed-time contour response function y will play here a role simi-
lar to the Dyson equation in quantum field theory [26, 30]. In the latter case, the equation
describes the evolution of the time-dependent Green’s functions, from which all other dy-

namical properties including correlation and response functions can be calculated. Here, in
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contrast, (60) describes the evolution of the quantity x, defined in (37), which combines in
one single quantity, two properties of different nature in classical mechanics, namely the
correlation and response functions (see also discussion in Appendix E).

Secondly, (60) allows us to derive another relation that expresses I'® in terms of . To
this end, we multiply (60) on the right by the inverse x ~' = I', which leads to a relation
between ¥ and I,

G1, 1) -1, 1)-xd,1)
={r'{1, 1), FYD) + A@E)CA, )T 2, 1)/ is.

By taking the functional derivative of the previous equation with respect to f and combining
the result with (58), we obtain the following integro-differential equation for the memory
function kernel,

(2. 1), FAH}A)

= %y3(i23)S3(23i/) (61a)
+ s (123)x2,2)x(3 3)( 123 + 82(1'.2) ) (61b)
B V3 , s Y3 8f¢(§) fos
1 - - -8 e o=
N=y5(123)x(2,2 —[cd,2)r@,2). 1
+A(r)27/3( 3x (2, )x(3,3)8f(3)[C( ,2OT(2,2)] (61c)

The set of equations consisting of the first two equations (47) and (60) of the hierarchy, to-
gether with (58) and (61a)—(61c) is closed and is fully equivalent to the hierarchy of evolu-
tion equations for the QY. Equations (61a)—(61c) are a functional equation for the memory
function that can be used to generate self-consistent approximations in terms of y3 and x
(see also Appendix F).

3.8 The Memory Function Kernel

Equations (61a)—(61c) imply that the memory function ¥ can be splitted into three parts as
(1, 1) =20X,, X1 DAGE) + 28Xy, X3 1)8(r — ) + (1, 1). (62)

The physical interpretation of the different components of ¥ is discussed in detail in the

following sections. We just give here a short description of their origin.
The first term

(2O, X0, £AY}AY
= (39X DG I — 0.2 @.2)]
SV ) 5G) , ;
describes the effect of initial correlations in the initial state at time #, on the dynamics of
the system at ¢ > #;. This term can be shown to vanish for Gaussian initial conditions but,
as was recalled in Sect. 2.2, this simplification is always invalid here since the phase-space

density N is always strongly non-Gaussian [16]. The neglect of this term has deep con-
sequences related to so-called Bogolyubov’s condition of weakening (suppression) of the
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initial correlations and to the transition from reversible to irreversible dynamical equations
[31].

The second term, proportional to the delta function §(r — t’), is singular in time and
satisfies,

2(5) X X/ ) T/ i/ = —l Tig 2~:~;T/
{ ( 15 lst)v.f( )}( ) 23/3( )S}( )

This term is related the instantaneous effect of correlations on the effective interactions
between particles (at equilibrium, those correlations are the so-called ‘static’ correlations
[23]). This term naturally combines to the mean-field contribution X"/, (49), such that
6 — f )
O =y 4 5O
renormalizes the instantaneous mean-field effect with instantaneous correlations effects be-
yond the mean-field. In the absence of particle correlations (Vlasov approximation), %
vanishes.
Finally, the last term describes memory, non-Markovian correlation effects in the dynam-
ics and satisfies

{200, 1), FAH}T)
sx(1,2)

IS  ~~~ ~ = ~ = . ==
=—1(123)x(2,2)x (3,3 1'23) + >
2 3(123) x (2, 2) x ( )<J/3( ) 5,0

f¢—f>

4 Real-Time Formalism (I)

The previous approach allowed us to derive a closed, self-consistent set of equations to de-
scribe the evolution of the single-particle phase-space distribution function f of the system.
However, being expressed in terms of quantities defined along the closed-time contour, this
formulation lacks physical transparency and does not appeal to intuition. In the next two sec-
tions, we shall re-express these exact results in terms of quantities defined on the real-time
axis, namely the correlation C and response functions x ®#4 and a set of memory functions.
In the following section, Sect. 5, we will recast the overall approach into a form that leads
to the same results directly in terms of physical quantities defined on the real-time axis. In
the present section, we focus on the evolution equations, discuss their physical content, and
make contacts with previous works. The careful derivation of the evolution equations for
C, x®4 done in the next subsection is somewhat lengthy; the reader uninterested in those
details may safely skip ahead to (71a)—(71c) in Sect. 4.2, where the results are given and
then discussed and compared with previous works.

4.1 From Closed-Time to Real-Time Representations

Throughout the section, we will use the (Pauli) matrices defined as

(01 (0 i o (1 0
*=\1 0)° »=\i o) =\o -1)
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4.1.1 Real-Time (Matrix) Representation of x

The most straightforward transcription of the closed-time contour formalism is obtained by
mapping the function x (1, 1’) onto the 2 x 2-matrix [20],

=y o (X)) (1L 1)

defined such that the jk-component, i, j =+, is x(1, 1) with 1 lying on ¢; and 1’ lying on
cj where ¢ (c_) is the upper (lower) part of the closed-time contour (see Fig. 1). Explicitly,
using (37), the matrix components are

x++(1, 1) = ATIND), N(1)]pp) — ;—C(l, 1,

N = N =

x—1,1) = (Ta[N(l),N(l/)]pB)—%C(l,l/),
| .
x+-(1,1) = —5 (N, N(1)1pp) — ;—C(l, 1,

x-+1,1) = <[N(1)7N(1/)]PB>_gc(l,l/)

N =

where 7. and 7, are the chronological and anti-chronological time-ordering operators on
the real-time axis [y, +00]. This matrix representation has, however, the disadvantage that
it does not explicitly take account of the linear dependence of its components; for instance,

Xt T Xem = X=X

It is possible to chose another representation that not only removes this redundancy of infor-
mation but also involves the physically relevant quantities. Indeed we note that simple linear
combinations of the x;’s yield the correlation and response functions of interest,
R _ -
X =X+ = X+==X—+ — X—>
X = K = X = X — X

2
EC = X=Xt = Xt T X

Using these relations, it is straightforward to show that the orthogonal transformation'® de-
fined as ¥ = Qx Q" with the orthogonal matrix Q = (1 — i oy)/ V2 defines the equivalent
real-time representation,

.= (0 x4
X=QXQ'=<XR §C> (65)

which has the remarkable property that it depends on the correlation function C and response
functions x ®4 only.

18This transformation was used in the original article of Keldysh [25] on quantum non-equilibrium Green’s
functions.
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4.1.2 From Closed-Time to Real-Time Integrals

The theory derived in Sect. 3 involves integrals over the closed-time contour of the form
55 d2%(1,2)x(2,1'). Here we provide useful identities to express such quantities in terms
of integrals along the real axis (see e.g. [26]).

We remark that the quantities x and ¥ defined before belong to the class of functions of
two closed-time variables of the form

f@. )= )8 — ) —8.(r —p)]
+ M8t —T)+O0T — ), T)+0G@ —0) f (1, 7)),  (66)

where for simplicity we do not write the possible dependence on phase-space variables. In
matrix form, f can be represented by f as in (64) or by f = Qf Q" as in (65), namely

. A
fz(fo'* %ffc)

where the direct calculation of the retarded (R), advanced (A) and correlation (C) compo-
nents in physical time gives the following expressions,

Rty = frose—1)y+0a—0)f 1) — f(t, )], (67a)
A ) = FPFsa—t) =0 =0l f 1) — f@t,1)], (67b)
%fc(t, 1) =2FOWs( —to) + (f7 (1) + f=(t.1)). (67¢)

In the special case f = x, (67a)—(67¢c) give back f¥4 = x®4 and f€ =C. With f =%,
the retarded and advanced terms X“-® contain the singular part £ that arises from static
correlations, while € contains the part £ due to the initial conditions (see (72)—(73)
below). Finally, for the delta function . defined by (55), we obtain the matrix representation
5.(1,1) = 7=8(1 = 1o

We are interested in integrals of the kind

h(z, 1:/)=fdff(r, 7)g(z, 1)), (68)

where f and g are of the form (66). It is easy to show that i (t, t) also belongs to the class
(66). By splitting the closed-time contour integral into integrals over the forward and back-
ward branches, namely §, dt = ftso dr — ftzo dt, it is straightforward to derive the following
relations,

i@ty = R gt = / dr" fR@, g, 1),

fo

oo
WAty = f4 gt ) = / di" fAe, gt 1), (69)
fo
Rty = fCg" @)+ [ g 1.
In matrix form, those properties can be summarized as

h(1,1) = f(1,2)0.52, 1), h(1,1) = £(1,2)0.8(2, 1),
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with
(e st
fRogh Z(fRgC+fCgM )
4.2 Equations of Motion
With the help of the previous identities, we can easily re-express the evolution equation (60)

of x(I,1’) into equations for the physically relevant quantities C(1,1) and x®4(1,1;) in
real time. In matrix form, (60) writes

A $- - ~ ’ _Emf_EA ~ ’
(G—Emf_z)azx(l,l):<G Zhge G—z'gf—zR>'X(1’1)
={8(1 =1, f(D}ox (70)

where we recall that the phase-space density f(1) evolves according to (18). In (70), we
introduced the short-hand notations,

3
G(1,2) = —a—tzé(l —2) +{ho(2) + ¢0(2), 6(1 — 2)}(2),
= (1, 1) = 5(1,2,3) F ()81 = 3).

Explicitly in terms of the components, we obtain the coupled evolution equations for the
correlation and response functions,'”

a o0
[5 —Ll]C(l, 1/)—/ dtZ/dXzE,§,(1,2)C(2, 1)
fo

=/oodt2/-dX22C(l,2)XA(2, 1Y +8(t —t9)C(1,1"), (71a)
)

a o0
[5 —LI}XR(L 1) —/ drzfdxzz,ﬁ,(l,z)x’*(z, 1)
fo

={8(1 -1, F(H}D), (71b)
[% —L1:|XA(1, 1) —/Oodh/dxzz;t(l,z)xl*(z, 1)
={8(1 - 1), F(H}D). (71c)

Here we have combined the mean-field contribution "/ to R4,

ALy =2 (1, 1) + 204, 1)
=S8t —1)EO(F@—1)(Z7(1,1)=7(1,1))
=8¢t —1)+O(F@—1))=4(1,1) (72)

tot

19The equations for x® and x4 are adjoint (C is symmetric so the adjoint equation is equivalent to (74a)).
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and, according to (67c), € is given by
is
26,1 =isTOX, X081 —10) + £} (Z7 (. 1Y+ =7@. 1))
= 20X X308 — 1) + ECE(, 1), (73)
where in the last expression we introduce notations where is does not appear explicitly since
indeed is =@ and is(X> — X <) are independent of s (see e.g. (43) for a similar property).

With (72)—(73), the evolution equations (71a)—(71c) can be further details as follows: for all
1,1 > t,

|:3 L]C(l 1)
PY )

t
—/dxzz;ixxl,xz;rl)C(Xz,n,1/)—/ drzfdxzzA(l,DC(z,l/)
16}

Z/
=/dxzzc'°(xl,Xz;zl)x*‘(xl,ro; 1/>+/ dzzfdxzzcvrfg(l,zm/*(z, 1)
0]
+8( —1)C(1,1) (74a)

and forall fy <t' <t,

a
[5 - L1}XR(1, 1)

- [axazh, oo st 1) - [ dn [axztaofen
={s(1 =1, F(DH}D) (74b)

and forall ty <t <t?/,

0
[E - L1:|XA(1, 1)

1
—/dxzz;‘m(xl,xz;mxf*(xz,z], 1/)+/ dzz/dxzzm,z)x’*(z, 1)
t/

={s(1 =1, FAO}D). (74¢)

In the remaining of this section, we discuss general properties of (71a)—(71c) and make
contact with previous approaches. The full closure of the set of equations for f, x4 and
C in real-time is completed in Sect. 5, where we transcribe the closure relation (61a)—(61c)
in terms of L ®4-€ and £ x®A C.

4.3 Discussion
4.3.1 Initial Conditions

Equations (18) and (74a)—(74c) specify an initial-value problem for which r = ¢
fo is the initial time. They require initial conditions for f(X, %), x®(X,t; X', 1)
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—x4(X, to; X', o) and C (X, ty; X'ty). Since x ®4 must comply with (116), i.e.
XM 103 X' 10) = FHS(X — X), £ (X, 10)}(X),

their initial value is fixed when f (X, #y) is given. Therefore, the initial conditions are com-
pletely specified by the given of f (X, #y) and C (X, to; X'to).

4.3.2 Reversibility

Equations (74a)—(74c) form a set of causal equations with time history integrals. The pres-
ence of those memory integrals is a property of the exact statistical dynamics defined in
Sect. 2 and, despite their formal resemblance with (generalized) Langevin equations, they
should be distinguished from phenomenological non-equilibrium equations. Thus the com-
plete information on time reversibility and other symmetries of the microscopic Hamilton
dynamics resides in the time dependent, non-local memory kernels: the equations them-
selves do not single out a direction of time. The transition to irreversible dynamics can be
induced by approximation, e.g., as alluded earlier, when neglecting the dependence on the
initial conditions (Bogolyubov’s condition).

4.3.3 Many-Body Effects

The original non-linearity of the microscopic equations (13) has become separated into sev-
eral effects.’® Given a certain level of fluctuations, C(1, 1'), the term E,ﬁ, can cause them to
grow or decay, and when viewed as a matrix in its momentum indices, transfer fluctuations
from of component of C to another. The singular part " 4+ X% is related to the instanta-
neous effect of the mean-field and of the correlations, respectively, while the regular part 2
describes non-Markovian (i.e. delayed) correlation effects. Another effect contained X, is
the renormalization of the spectrum of fluctuations by the many-body interactions.

The term on the left-hand side of (74a) can be interpreted as follows (a more complete
discussion is given in Sect. 4.6). Given a fluctuation 6 N of the density around its average f,

let 8¢ (1) be the potential defined such as
SN(1) = x"(1,2)8¢(2).

In other words, we imagine that § N can be created by disturbing the system by the external
potential §¢p. From (71a)—(71c), we have

(G —=" —£f(1,2) - 8N©@) = {¢(1), fF(1)}.

Multiplying the previous equation by 8N (1) = x®(1",3)8¢(3) = x*(3,1)8¢(3) and en-
semble averaging yields

(G -2 —£5(1,2)-C(1,1) = {(¢(Hp3)), F(D}- x* 3, 1).

Comparing this with (71a)—(71c), we may interpret € as an effective random source of
potential fluctuations. Since, as we shall find later, £¢ includes terms which are quadratic in
C, this term can be interpreted as a source of non-linear noise which drives the fluctuations
C, and couples modes of different wave numbers.

20The analysis here follows closely that given by Rose [16].
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More on those properties will be discussed in Sect. 4.6. In the next two subsections, we
compare the results derived so far with previous works, starting with fluids at equilibrium
and then with non-equilibrium kinetic theories. The comparison with those previous works
is not thorough and would certainly deserve a more detailed analysis.

4.3.4 Conservation Laws

Remarkably, at every level of approximation of the memory functions %4:C consistent
with our approximation procedure outlined in Sect. 3.7.2 and further discussed below in
Sect. 5.2, the kinetic equations automatically agree for all times with the differential and
global laws of conservation of mass, momentum and energy. This property is essential to
predict the long-wavelength, low-frequency transport phenomena characteristic of the hy-
drodynamic regime and so well accounted for by the Boltzmann equation in the case of
dilutes gases.

The local mass and momentum conservation laws follow directly (18) for the distribution
function f(r, p, 1), which is the well-known lowest-order equation of the BBGKY hierarchy
(see, e.g., [32, 33]).

The evolution of the energy density pg(r, t) is determined by not only by the evolution
of f(r,p,1) for the but also by the evolution of ff dpdp'C(1, 1) since (e.g., [33]),

pi(r.) = / dp[ho(r. p) + do(r.p. 0] £ (.. 1)

1 1
+ 5//dpdp//dr’/ daw(r') o+ A =0, p;r+ar,p) (75
0

where f is the two-body distribution function (114). Since, as we shall see in Sect. 5, the
expressions for any approximation of the memory functions ¥, and %€ have a leading
factor given by the bare interaction vertex y3(1, 2, 3) and hence by the divergence % -, itis
straightforward to show that the evolution equation of pg(r, t) obtained combining (75) and
(71a) is guaranteed to be a conservation equation, independently of the approximation used
for the memory functions.

At that stage, we have not been able to rigorously prove something like an H-theorem

that is satisfied at every level of approximation.
4.4 Equilibrium Limit, Fluctuation-Dissipation Theorem and Detailed Balance

When considering a system at equilibrium, we generally implicitly set the initial time
o = —00. As a consequence, statistical averages like the correlation and response functions
are invariant under time translation, e.g. (see footnote 6)

Clti,t)=C(ti+s,t;+5), VseR,
and are functions of the time difference r =, — ¢, i.e.
C(, 1) =Co (X1, X3ty — 1)), V11,1,

As recalled in Sect. 2, a fundamental property of equilibrium fluids is the fluctuation-
dissipation theorem, which simply relates C,, and " as

/ ! 3 !
Xeg X X500 = X (X, X5 1) = =B Coy (X, X'31), (76)
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with the inverse temperature 8 = 1/K T . By rewriting the evolution equations (74a)—(74c)
in terms of t =#; — 1], it is straightforward to show that these equations are consistent with
the fluctuation-dissipation theorem if and only if the equilibrium memory function kernels
satisfy a relation similar to (76)*!

TaX X =24 (X, X = —ﬂ%ﬁffg(x, X';1). (77)
This relation describes detailed balance of the collision mechanisms that control the occur-
rence of spontaneous fluctuations and their damping.

It turns out that the evolution equations obtained by setting fp = —oo and t =¢#; =1{ in
(74a)—(74c) are rather cumbersome to manipulate. In the study of the dynamics of equilib-
rium correlation functions, it is more customary to rather work with the following explicit
expression of the correlation function,

Cu(X,X';1) =C(X,1; X',0) = (SN(X, )sN (X', 0)). (78)

This expression is one possible representation of C,, (X, X', t) (corresponding to s = 0 in
C(t+s5,5) = C,y(1)); contrary to C,,, Cy favors an initial time, 7, = ¢’ = 0. Previous works
on the equilibrium kinetic theory of fluids and particular Mazenko’s theory [13] discussed
in the introduction are theories for Cy,(¢). In our approach, the evolution equation for Cy,
can simply be obtained by setting both the initial time #, and the time ¢’ to zero in (74a). We
immediately obtain V¢ > 0,

d
[5 _LI(X)]CM(Xa X/Qf)—/dxzzfm(X;Xz;l‘)CM(Xz,X/J)
t
_f df/dxzxﬂ(x,t;Xz,t')CM(Xz,X’;t')=0-
0

This evolution equation has the well-known form of memory function equations in the equi-
librium theories (see footnote 6). In particular, it corresponds to Mazenko’s memory function
¢ defined in [13] with the identification,

¥ (X, X;t) = —¢* (X, X),
SAX, X )= —¢°(X, X5t —1).

4.5 Contact with Other Non-equilibrium Kinetic Theories

In this section, we explore the correspondence with previous non-equilibrium kinetic theo-
ries. First we make contact with some of the most popular closures of the BBGKY hierarchy.
We shall see that those closures neglect the effects of the memory function kernels £4+€.
Then we compare our results to the theory of Rose [16] mentioned in the introduction.

2170 obtain (77) from (74a)—(74c), we set to zero the first term in the rhs of (74a), i.e. we assume that after
the infinite duration separating —oo and the observation times, the initial correlations are fully damped.
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Table 2 Left side: terms kept (x) and dropped (0) in the second BBGKY equation (79) for the Landau,
Boltzmann, Lenard-Balescu-Guernsey and Book-Frieman closures. The latter, which was proposed to im-
prove the close collisions in the Lenard-Balescu-Guernsey equation, simply amounts to setting the three-body
correlation g3 equal to zero. The same closures are expressed in terms of the cumulants C () in Table 1. Right
side: in the approach developed in this paper, the approximations for C and D correspond to the approxima-
tions for the memory functions =84, given in the last three columns

Closure A B C D »d =4 =€
Landau X 0 0 0 0 0 0
LBG X X 0 0 0 0 0
Boltzmann X 0 X 0 81) 0 0
Book-Frieman [36] X X X 0 (81) 0 0

4.5.1 Reduction to Popular BBGKY Closures

The BBGKY hierarchy is a hierarchy for the equal-time correlation functions g, (for con-
venience, we give a short reminder of the BBGKY hierarchy in Appendix A). Traditional
closures of the BBGKY hierarchy are performed at the level of the evolution equation for
g2, which reads

a

[— — (L + Ll/)}gz(l, =Ly f(DHfA)

ot —
A

+/d2L12f(1)gz(1/, 2)+Linf(1)8:(1,2) +[Li2 + Lin]f(2)g2(1, 1)

B

+ Lirg(1,1) +/d2(L12 + Lin)gs(1,1,2), (79)
—— —
c

D

where, throughout this sub-section, we write 1 = (r, p) and all quantities are evaluated at
the same time t =t; = - - - = t,,. They rely, among other hypothesis, on an assumed ordering
of the correlations g, in terms of an adequately chosen small parameter A [8],

&= 0.

The Landau, Boltzmann and Lenard-Balescu-Guernsey closures give evolution equations
for f that are second order in A. The Landau closure is valid for so-called weakly cou-
pled systems and A is the dimensionless strength of the potential (v(r) = Av(r) in (4)). The
perturbation parameter in the Boltzmann equation is the density parameter A = nl}. where
n is the particle density and Ic is the correlation length. The Lenard-Balescu-Guernsey
equation is an equation for weakly-coupled plasmas and A is the so-called plasma param-
eter , = q*/akpT (q is the particles charge, a = n~'/? is the interparticle spacing). In the
Lenard-Balescu-Guernsey equation, the plasma is represented as a weakly coupled system
in which the collisions are due to the interactions via an effective, dynamically screened
potential. For those popular closures, Table 2 shows the terms that are kept (x) and dropped
(0) in the evolution equation (79).
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In our approach, the equation for g,(1,1") = C(1, 1) — (1 — 1) (1) can be easily ob-
tained from (74a) as

d
[5 — (L1 + Ll/)]gz(l, 1)

=Ly f(HfA) (80a)

+ / d2Li f(Dga(1',2) + Lin f(11)g2(1,2)

+[Liz+ Linlf2)g(1,1) (80b)
+/d225(12)g2(2, 1)+ 2°(12)g,(2, 1) (80c)
+/d22A(12)gz(2, 1) +g:(1,2) 2421 (80d)
+/d2>:c(12)XA(2, 1)+ x®1,2)=¢@21), (80e)

where 1 = t' =, is implied. We note that in the rhs, the terms on lines (80a) and (80b),
which are just the A and B terms of (79), come from the mean-field term >/ while all the
other terms come from memory functions £%-4-C_ The term C 4+ D of (79) are replaced by
the last three lines in (80a)—(80e).

In order to appreciate better the physics contained in those memory function terms, we
translate the traditional closures discussed before in terms of approximations of (80a)—(80e);
the results are summarized in Table 2.

Both the Landau and Lenard-Balescu-Guernsey closures discard all the terms involving
the memory functions, which amounts to setting £%4:€ = ( (Landau retains (80a) only and
Landau-Balescu-Guernsey discards the terms (80c) through (80e)). This simply tells us that
memory functions will account for effects not accounted in those closures, for instance by
adding the effects of static (£?) and dynamic (£%) correlations on the effective, dynamically
screened interparticle potential through which particles mutually interact.

The Boltzmann and Book-Frieman equations are recovered by (i) discarding (80b),
(ii) setting =2 = £ =0, and (iii) using the following approximation for %?,

_ap—1) 35(1—1)

(1) = y3(123)8(1' —2)8(1' —3)
ar op

81)

which, together with (80c) yields the term C of the second BBGKY equation (79) that
describes bare two-particle interactions (uncorrelated binary collisions). The approximation
(81) can be obtained using (63) together with the approximation C(11") =~ §(1 — 1) f(1)
(see Table 1). Indeed, we obtain

{21, 1), AN = y3(123)(8(1" = 3),8(1" = 2) F(1)}(1)
= y3(123){8(1"' = 3)8(1' = 2), F(1)}(1Y,

which implies (81).

In summary, this quick comparison reveals that inclusion of any coherent approxima-
tion for the memory functions % %4:€ will bring in physics information that is neglected in
traditional closures.
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4.5.2 Connection with MSR and Rose’s Theories

General Remarks The present theory retains two main imprints of quantum mechanics,
namely the classical amplitude e with the action parameter s and the closed-time contour
idea of Schwinger. In contrast, MSR [15] is based on the concepts of canonical quantization
using field doubling via conjugate response field and, in Rose [16], on the second quanti-
zation using the occupation number representation in phase-space. Thus, MSR and Rose’s
theories recast the classical problem in a form identical to quantum mechanics, while our
approach should be seen as a classical limit of the quantum theory.

Another difference is in the nature of the external coupling. In MSR and Rose, as usu-
ally is the case in quantum field theory [29], the coupling corresponds to a source term
in the evolution equation of the field, while here the coupling is an additional term in the
Hamiltonian. The response function in MSR and Rose thus describes the response to an
infinitesimal source of particles while in the present theory it describes the response to a dis-
turbance produced by an externally applied force field. Since all three theories use similar
renormalization techniques based on a generating functional and a Legendre transform, the
equations obtained look alike. As we shall see, our results encompass the results of Rose’s
renormalized kinetic theory [16] for any initial conditions. The ingenious formal devices
introduced by MSR and Rose naturally arise in the present formalism.

Technical Comparison Briefly speaking, Rose’s theory is a theory for the correlation func-
tion C and the response function R that measures the linear response of the phase-space
density to an infinitesimal source term 7 in the field equation (18), i.e.

0 . 1
[a_z, - Ll]f(l) —{u™ ), f(D}— 57/3(1,2, 3)C(2,3)=n() (82)
and
R(.1) = 3f (1) .
sn1) |,

The function R can also be regarded as the Green’s function of the linearized version of
(18).

On the other hand, in our theory x® describes the linear response to a variation ¢ + 8¢
of the external potential. In the presence of ¢, the evolution equation (18) can be regarded
as (82) with the source term

n(1) = {8¢o(D), f(D}

which has the particularity of conserving the number of particles (since the momentum
integral vanishes). In the linear regime, we can write

8f (1) = x*(1,2)8¢0(2)
= R(1,2)n(2) = —{R(1,2), f(2)}(2)540(2)

and therefore,
x*(, 1)y =—{RA, 1), FAH}). (83)
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When introduced into the evolution equations (71a)—(71c) for x %4 and C, we find

[% - L|(1)]R(l, 1) — /d22£,(1, 2)R(2,1N=6(1-1) (84)
and

[% - L](l)]C(l, 1) — /dzE,’i,(LZ)C(Z, 1)

=/d2{2c(1,2), FOIYRA',2)+68(r —t9)C(1,1). (85)

These equations are equivalent to the (Dyson) equations (63) and (64) of [16] derived by
H. Rose, with the correspondence

T (1,2 =2k 1,2),
(1,2 ={=9%(1,2), )} ), (86)
0=x9,

The last equation is the consequence of the fact that Rose assumes Gaussian initial condi-
tions. Although as noted by Rose in his Appendix A, formalisms developed by Deker [37]
and more recently by Andersen [38] exist to extend their validity to general initial conditions,
we have not performed the extension ourself yet. The closure relations, i.e. the functional
equations for the memory functions, in Rose and our formalism (see Sect. 5) look quite dif-
ferent (simply because they involve different starting points and ingredients) and are thus
difficult to compare. Moreover, Rose points out that the closure relations (52)—(62) of his
paper are “exact if and only if the initial conditions satisfy a Wick-type theorem”, i.e. are
Gaussian. Nevertheless, assuming Gaussian initial correlations in our formalism, the lowest
order approximations in both approaches are the same (see Sect. 5). At this point, it is not
clear which approach is more handy when it comes to practical calculations.

4.6 Formal Solution for C(1, 1"). Dependence on Initial Conditions

In this paragraph, we show that it is possible to solve at least formally the evolution equa-
tion (71a) for the correlation function C (1, 1') in terms of the response functions x ®4 and
Green’s function R, respectively. When introduced in the collision integral (18), this solu-
tion may be used to build a kinetic equation for the distribution function f. In its simplest
approximation, this approach corresponds to the quasi-linear theory used for instance in
plasma physics to derive the Lenard-Balescu equation [39]. The solution given below is
exact and takes care of the initial conditions.

General Expression  Using the definitions of Sect. 4.1, it is straightforward to show that the
inverse I' of the closed-time response function x defined by (56) can be represented as,??

~_(0 T4
r= <FR %FC>’

22Using the identity Qo QT = oy, we find the matrix representation of (56),

6281 =1)=6,8(1—1), (87)
where I' = QT Q" and T is defined as in (64).
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where the components T'® and I'* merely are the inverse of the retarded (advanced) response
function x® and x4, respectively, i.e.

rf(1,2) - x @2, 1) =x"(1,2) - T*2, 1) =8(1 = 1",

(83)
r(1,2) - x4, 1) = x*(1,2) - T2, 1) =5(1 - 1),
and I'C is related to the correlation function as,
rea, 1y =-rk&a1,2)ce,3)r4@a3,1). (89)

Equation (89) implies the following formal solution of its evolution equation (71a)

C(1, 1) =—x"1,2T2,3)x" 3, 1) = —x*(1,2x*(1",3)rc,3) (90)

in terms of x®4 and of the quantity I'C. Another expression can be obtained using the

relation (83) between x ® and the Green’s function R in (90) and yields
C(1,1Y=R(1,2)R(1',3)8(2,3), 1)
where we introduce the symmetric kernel,
S, 1) =={{rea, 1), f(y}, faH}. 92)

Equation (89) can easily be verified by substitution into the evolution equation (71a), while
(91) is solution of

a o0
[E —LI}C(I,I/)—/ dzzdeZZ,’f,,(l,Z)C(Z, 1)
1

= /oodtz/dXzS(l,Z)R(l/,Z) +8(t —1)C,1), (93)
fo

obtained by rewritting the rhs of (71a) with (83).23 They may be considered as a generalized
form of the fluctuation-dissipation theorem in the sense that they express the overall level
of density fluctuations C as balance between forcing (through I'C or S) and dissipation
(encapsulated in x %4 or R) [14]. In the next paragraph we show how (89)—(91) can be
further split into more fundamental components.

Detailed expression Introducing (89) into (71a) leads to the following relation between
I'¢ and €,

T, 1), FYA) =1, 1) + 80 —10)C(1, T2, 1), (94)
which, as proved in details in Appendix G, imply the following structure for I'C (1, 1),

CE ) =T, 1) + 8(8 — )T (X 1, X5 0) +8(t — 1) TP (X, X15 1)
+8(t —10)8(t' — 1)1V (X1, X7, (95)

231n the approximation £© = 0 (Gaussian initial conditions), S correspond to ¥__ in Rose’s paper dis-
cussed in Sect. 4.5.2.
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where 790 are given by
{r=a, 1), fmla = %S(Z>(1, 1N+%=(1,1)) (96a)
[MX1 X0, FD}A) = isZO (X1, X[3 1) (96b)
and

{{F(O)(XI,XD,f(Xl»IO)}7f(X/’t0)} = Co(X1,X/1),

where Co(X,, X|) = C(X\, to; X}, 1) is the initial value of the correlation function. Simi-
larly, (92) implies

S, 1) =81, 1)+ 8t —1)S* (X1, X1; 1) +8(t —19)S* (X, X13 1)
+8(t —1)8(t' — 19)S°(X1, X))

with

S(1,1) = %{?(1, 1)+ (1, 1), AN},
SX, X3 ) = i[O, X0, FUHHA),
(X1, X)) = Co(X1, X)).

Substituting those expressions into (89)—-(91), we obtain expressions that describe the
temporal evolution of the correlation function from its initial value C (X, f; X, ) to
C(Xy,t; X,t') attimes ¢, ' > 1o,

c(1,1)= // dXod X5 x®(1; Xa, t)T O (X2, X3)x* (X3, 103 1)

t
+/ dt //dxde3XR(1,2)F6(X2,X3;l‘2)XA(X3,t0; 1)

fo

y
+/ dl3//dX2dX3XR(1;Xz,lo)FS(XzyXa;l3)XA(3; 1)

1

t t
+/ dtzf dis //dxde3XR(1,2)1“’%'(23)XA(3, 1) (97a)
fo fo
= // dX>,dX3R(1; X5, 1)) R(1"; X3, 1) Co (X2, X3)

t
+/ di» //dxzdst(l,z)Ra’; X3, 10)S* (X2, Xa: 12)
1o
]
+/ dt3//dX2dX3R(1;Xz,fo)R(lla3)58(X2,X3;l3)
10

t t
+f dtzf dt; //ddeX3R(1,2)R(1/,3)Sr€g(23). (97b)
fo 1o

@ Springer



J. Daligault

We can shed light on the different components of (97a)—(97b) by considering the dynamics
of the density fluctuations AN (1). An equation of motion for AN(1) = N(1) — f(1) is
easily obtained by substracting (18) from (16). By substracting the quantity =% (1,2)§N (2)
on both sides of the resulting equation, we find

(% - L1>8N(1) — 2™ (1,2)8N(2) — TR(1,2)8N (2)
1

= %;@(1, 2,3)(NQN@B) - C(2,3)) — =X(1,2)8N(2) =87 (1),

which can formally be integrated in terms of the Green’s function R(1, 1’) (recall (84)) as
t
SN (1) :/dXzR(l; X, 19)0N(X>, ty) —i—/ dt2/dX2R(1, 2)6F(2). (98)
fo

Thus the microscopic phase-space density fluctuation is written as the sum of two terms.
The first term represents the propagation in the fluid of the density fluctuation that would be
caused by a small initial perturbation § N (X3, fo) in f. Roughly speaking, it describes how a
microscopic fluctuation propagates in the fluid on average and neglecting non-linear effects.
The second term in (98) describes the corrections to this interpretation that manifest in the
equation of motion in the source term § F and in the solution (98) through non-local effects in
both space and time. Using (98) to build the correlation function C(1, 1) = (8N (1) N (1))
lead to the four contributions in (97b) with

S™(1,1) = (sF(1)sF(1"),
S(X1, X1 1) = (8F(DHSN(X], 10))- (99)

Thus, the first term in (97b) describes the contribution obtained when propagating the initial
fluctuations as if they were small, independent perturbations on the fluid. The three other
terms represent the corrections to this picture, which allows us to express the components of
the spectral function S in terms of correlation functions between the noise term §F and the
initial fluctuations S N: S™8(1, 1) is the autocorrelation function of the noise term § F while
S’ describes the influence the initial conditions.

Equation (97b) exhibits the influence of initial correlations in the initial state; the latter
can be important when considering ultrafast relaxation processes when ¢, ¢ approach t,.
The influence of initial correlations is often neglected in kinetic theory by invoking the con-
dition of complete suppression of initial correlations (a.k.a. Bogolyubov’s condition [31])
according to which all initial correlations existing at ¢, are damped at a sufficiently large
time t — ty > f.,,. Inspection of (97b) suggests that 7., is determined by the decorrelation
time of S*(Xy, X/; t) in (99) and by the properties of R(1, 1’). Then for times ¢ — #y 3> tcors
we set S® =0 and

Co(X1, X}) = Co“! (X1, X)) = fox,p)3(r —)s(p — p)

where fo(r,p) = (Zj\;l 8(r —r;)8(p — p;)) is the initial single-particle distribution func-
tion such that

cC(1,1)= // dX>dX3R(1; X, to) R(1'; X3, 1) Ci“! (X5, X3)
t v
+/ dl‘z/ dt; /dedeg,R(l,Z)R(l/,3)8'.eg(23).
fo fo
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When dynamical correlations are altogether discarded (£%4-C = 0), then
c 1) = f / dXodXsR™ (1; Xa, 1) R™ (1; X, 19)Cide0 (X5, X3)

with [£ — Li(D]R(1,1) — £/ (1,2)R(2,1") = 8(1 — 1') corresponding to the linearized
Vlasov equation, which in plasma physics is known as the quasi-linear theory and leads to
the Lenard-Balescu-Guernsey equation.

5 Real-Time Formalism (IT)

The previous section focused on the derivation of the coupled evolution equations for the
correlation and response functions in terms of the £%:4-C. Here we concentrate on translat-
ing to real time the closure relations (58) and (61a)—(61c) to obtain the equivalent relations
for the real-time components £%-4:C_ Although it is possible to directly translate (59) in
terms of the matrix components x%-4-C ¥ &-4.C and of the components of the tensor ob-
tained from the different components of the three-point vertex T'® [40, 41], the manipula-
tions are not trivial and we prefer the approach described below. A considerable advantage
of this alternative approach is that it allows us to introduce an equivalent formulation of
the closed-time contour approach, which directly generates the correlation C and response
functions y %4,

5.1 Real-Time Representation of the Generating Functional

Given a potential ¢ (7) on the closed-time contour, we define the physical component ¢, (t)
and non-physical ¢, (#) on the real-time axis as

{(P,;(X, N =3lpX, 1) + (X, )], (100)

PaX.)=¢X, 1y) — (X, ),

where t = t(ty) = ¢ (7). In this representation, physical potentials are simply characterized
by ¢ = 0. Similarly, we define the ‘physical’ and ‘non-physical’ components of the phase-
space density as,**

{N,,(X, N =3iNX, 1)+ NX, )], (101)

NaX, ) =N(X, 1) —NX, ).
For a physical potential, the phase-space density is equal on both sides of the contour and
therefore Na (X, t) =0 and N, (X, t) equals the phase-space density of the system under

investigation in the external potential ¢,. With these definitions, the coupling term in the
action (30) writes

fdi/\/d)as(i):/ fdxl¢p<1m<1)+¢A<1>N,,<1), (102)

which shows that ¢, linearly couples N/, while ¢ couples to N; accordingly, variations
with respect to ¢» will generate the physical phase-space distribution under investigation.

2“Interestingly, in quantum field theory, this splitting defines the classical and quantum components of the
field, where the latter describes quantum fluctuations around the classical trajectory.
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Equation (100) defines a one-to-one mapping between the potentials ¢ and the vector of
potentials (¢, $a). As a consequence, the generating functional 2[¢] can be replaced by
the action functional Q[¢,,, ¢ ] defined as

QUp,, pal = Q). (103)

In terms of the new variables, the Taylor expansion (34) around the external potential ¢y
becomes,

Qo + 8¢ 5¢]—iifd1 d'/dl/ K
0 ps A _]kZOJ!kl ...aj e

X Q1 2. 2. n 1. 0"8¢,(1)...8¢,()Ppa(l’)...8¢a(K)
—— ——

j times & times

(104)

where

§ItkQ
Q 1...5:1 ... k)= .
Lotz ol )= 507D 50, (00a (1) 502 ) oy —tsba0

j times K times

Explicit expressions for these derivatives can be obtained either from the Q™[¢] or from a
systematic perturbation expansion in the bare interaction as shown in Appendix C.?
The first derivatives generate the phase-space density f(r, p, ) under investigation,
582 0 Q2
8¢p(1) dp=00.6Ar=0 6¢A(1) bp=h0.¢a=0

=f(.

B Ieis possible to derive explicit expressions for the higher-order derivatives €21 12.. 2 as ensemble average
of combinations of products and Poisson brackets of the fundamental field N (r, p,t), which exhaust all
possible n-points functions [40]. In addition, we can also obtain the following properties. Firstly, from the
normalization fdeFO(xo) =1, Q[¢p,0] =1 and therefore, from (104),

Q.1,...,n)=0, Vn>1.
Secondly, from fA (1) =8/8¢p(1)|p, =0 =0, we find I'[ ), 0] = 0 and

ryad,...,n)=0, Vn>1.
Third, it can be shown the causality property,

Q1. 201K =0,
—_——
J times k times

Fp12.. 201 k) =0
—_————
J times k times

. . . L .. . . ;.
provided any unprimed time #;, i =1, ..., j, is greater than a primed time S 1,...,k.

@ Springer



Renormalized Kinetic Theory of Classical Fluids

Most remarkably, the second (partial) derivatives directly generate the retarded and ad-
vanced response functions and correlation functions,

Q11(1,2) =0,

Qn(1,2)=x"(1,2),
Qu(1,2) = x*(1,2),
Qn(1,2)=+cC(1,2).

(105)

We therefore obtain the noteworthy result that a generating functional defined in terms of
real-time quantities exists that generates the phase-space distribution, the correlation func-
tion C and response functions x %4,

We now continue the closure procedure by adapting the steps of Sect. 3 to the new action
functional (103). We define the effective potential as the Legendre transform,

Clfp, fal=—Ql¢p, ¢al +/d1fp(1)¢A(1)+fA(1)¢p(1)- (106)

Its derivatives at f, = f, fa = 0 define the vertex functions

stk
8, (1) 8y (DfA () . 8fa(K) f,,:f,fA:o'

Pia2. 20 1K)
| N —]

Jj times k& times

The first derivative generates the external potential ¢,

8T 0 T
8f,(1) T 8faD)

= ¢o(1),
fp=1.fa=0

fp=11a=0

while, as shown in the Appendix H.1, the second-order derivatives directly yield the T'®-4-C,
ie?®
Mn,1)=0,
Ta(1, 1) =TA(1L, 1),
Ly (1,1) =Tk, 1),
Ty(l, 1) = £TC(1, 1).

(107)

Higher order vertex functions can be obtained by taking the successive derivatives with
respect to the potentials with the chain rule of differentiation. The direct calculations become
rapidly cumbersome with the growing number of indices and variables and, in Appendix H,
we present a graphical method that allows their calculation in a much more economical
manner. We just give here the results for those derivatives of importance in the present
work, namely

— Q01 (123) = Qo (11)221(22)212(33) 121 (123)

26We thus find that the matrix representations X and [" defined in Sect. 4.1 are simply given by
)A(:(O Q]z) l:‘:<O F12>.
Q1 29 )7 a1 20
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+ Q1 (11220 (22)212(33)(123)

+ Q1 (11922 (22)212(33) M (123), (108a)
—Q2,(123) = [Q1 (11D22(22)Q22(33)T211(123) + ¢.p.]

+ [ Q21 (11221 (22)22(33)T221 (123) + c.p.]

+ Q01 (11)922(22)22 (33) M0 (123) (108b)

where c.p. stands for cyclic permutation of the triplet (11,22, 33). These equations are the
transcription in terms of real-time quantities of (57) derived before.

5.2 Real-Time Representation of the Closure

The same steps described in Sects. 3.6-3.7 to derive the closure can be followed with the
evolution equations for \V,, o as a starting point. The main steps are given in Appendix I and
can be summarized as follows. From the evolution equation for \V,, 5, we first obtain the evo-
lution equation for f, o by averaging and for x ®# and C by functional differentiation using
(105). The collision operators in those equations involve the third order derivatives €;;; and
are reexpressed in terms of memory function X %4-C using (1082)—(108b). The overall pro-
cedure directly leads to the evolution equations (71a)—(71c) for x®4 and C together with
the following closure relations

1 8C(2,3
=R(1,1) = =y3(123) ( /) , (109a)
2 8fp (M) i pa=o
sxk@2,3
$A1, 1) = isy3(123)L,) , (109b)
8fal) s =0
j 8C(2,3
=¢1,1) = E)/3(123) ( /) (109¢)
2 8fa(l) |4, pa=0
or, after performing the functional differentiations,
’ is A 2 A" 21/
=R, = —§V3(123)[921(22)921(33)F221(2, 3,1)
+292,(22)Q1 (33T (2,3, 19], (110a)
AL 1) = —isy3(123)[R122D) 2 B3T3, 3, 1)
+Q12(22)Q(33)M1(2,3, 1], (110b)
co v (is)? 5 2 55 g
251, 1) = —TV3(123)[922(22)sz(33)rl12(2, 3,1)

+ 2921 (22)2:(33)T212(2, 3, 1) + 251 (22)21(33) T2 (2,3, 1)), (110¢)

These equations for X%4-C are the transcription in real-time of the closed-time contour
formulas (59) and (58). The set of equations consisting of the evolution equations (18) and
(71a)—(71c) together with (109a)—(109c¢) is formally closed.

As in Sect. 3.7, the evolution equations (71a)—(71c) can be used to derive additional
relations between the memory and vertex functions to derive functional equations for the
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memory functions L ®4:C. The details of the calculations are given in Appendix 1. The
resulting closure relations can be expressed in a variety of equivalent forms in terms of the
quantities C, x®4, R, Z®4:€ and S encountered before, and we choose to give them in the
following form (which is most directly comparable with previous works, e.g. [16]):

o e = = 02R(23)
»R(1,1) = y3(123)y5(231)R(22)C(33) + y3(123)R(22)C(33)W
p
1 S _88(23)
+ =y3(123)R(22)R(33 111
51312 RQDR( )Sf,,(l/) (111)
and (see Sect. 4.6),
S8(1 1’)—l (123) (1’2§)C(22)C(33)+l (123)C(2§)C(3§)w
, = 2)’3 V3 2)/3 Sf,,(i)
) - - 8TR3) - - 82C(1’3)
+ 123)x®(22)c(33) ——= + 123)xR22)x R (33)———=
isy3(123)x"(22)C(33) TRG) isy3(123) x " (22) x " (33) TRG)
(112)

and

S'(x X’-t)—l 123) xR (22)x R (33)| i 6 C(X!, t; 9 (42
1, A _2]/3( )X ( )X ( ) lssz(:-,’) ( 17t07 ) ( ) .

In the lowest order approximation,
SR, 1) = y3(123)y3(231)R(22)C(33),
S(1,1) = %J/s(123)1/3(1/25)(:(22)(3(35),
S' =0,

we recover the famous Direct Interaction Approximation (DIA) derived by Kraichnan [42] in
the context of fluid turbulence and later extended to the Klimontovich equations by Dubois
and Espedal [14, 43]. Further discussions on the application of those closure relations to
physical problems would certainly require substantial additional work, which is beyond the
scope of the present paper.

6 Summary

We have presented the foundations of a theory to derive closed, self-consistent approxima-
tions for calculating the statistical dynamics of classical Hamiltonian systems, which can
describe both equilibrium and non-equilibrium states. The theory, which unifies and encom-
passes previous results for classical Hamiltonian systems with any initial conditions, can be
regarded (i) as the classical mechanical counterpart of the theory of non-equilibrium Green’s
functions in quantum field theory and (ii) as a generalization to dynamical problems of the
density functional theory of fluids in equilibrium. The present approach avoids many of the
complications inherent to previous works [38]; in particular the theory is valid for any initial
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state and treats equilibrium and non-equilibrium states in a unified manner. Interestingly,
several of the key ideas and tricks of the previous theories (e.g., the need for both corre-
lation and response functions, operator doubling, imposed commutation relations and other
causality constraints. . .) arise naturally here albeit in a different form (e.g., the operator dou-
bling in MSR is replaced by the coupling to physical and non-physical phase-space densities
N, a, which generate both response and correlation functions. . .)

The main ingredients of the present approach are the following. Given a Hamiltonian
system in an external potential ¢y and in the statistical state described by Fj at initial time
1y, the effective action functional (103) defined as

Qlop, pal=—sInZ[¢,, Pal,

where s is a fixed parameter with the dimension of an action, contains all information about
the dynamical properties of the system at times ¢ > #,. In particular, its first derivative at
¢p = Po, ¢a = 0 gives the single-particle phase-space distribution function,

52
Spa(l)

=f(,

with 1 = (r, p, t), and its second derivatives generate the correlation function and retarded
and advanced response functions,

520 .
spa(Dog, 0 % 2
820 A
5o, (0oga) X (02
e c(1,2)/is.
5a (13 (2)

Higher-order derivatives systematically generate combinations of products and Poisson
brackets of the fundamental field N(1). Using traditional renormalization techniques in-
volving the Legendre transform of the action function Q[¢,, ¢4 ], a closed, self-consistent
set of equations of motion is derived for the single-particle phase-space distribution func-
tion f, the correlation function C = (§f§f), the retarded and advanced density response
functions x %4 to external potentials, and the associated memory functions % AL

a 1
[_8 - Ll]f(l) — ™ (1), F(H} = 573(1,2,3)C(2,3),
hn 2

and
a o0
[5 _LI]XR(la 1’)—/ /dzz,ﬁ,(l,z)XR(z, 1) = {81 -1, F(D}D),
fo
a o0
[5 —Ll]x*‘(l, 1’)—/ fdzz;g,(l,z)xf‘(z, 1) ={s(1 -1, F(D}D),
lo

[%—LI]C(I, 1’)_/00/5122;(1,2)0(2, 1) :fmdeEC(l,Z)XA(Z, 1),
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with the memory function kernels satisfying

1 5CQ2
SR 1) = (123 252
2 8fp () ;=0
5x k(2,3
EAU,V):im@aza—ﬁ—L%l , (113)
8fal) 1y, pa=0
' 5C(2,3
SC 1) = D123 26E
2 ‘SfA(ll) fpifa=0

Moreover, the memory functions satisfy functional differential equations, e.g. (111), that
may be used to obtain systematic renormalized approximations in powers of the bare inter-
particle interaction. The kinetic equations thus obtained automatically agree with the laws
of conservation of mass, momentum and energy.

In conclusion, the purpose of the present paper was to lay down the foundations of a
theory for the construction of renormalized kinetic equations of classical systems of particles
in and out of equilibrium. We hope that these results will serve to (re)stimulate further
research on this challenging topic. Of course further works calls for applications of the
approach to realistic problems; work along those lines is under way.

Acknowledgements The author wishes to thank H. Rose for stimulating discussions and encouragements.
This work was performed for the U.S. Department of Energy by Los Alamos National Laboratory under
contract DE-AC52-06NA25396.

Appendix A: BBGKY Hierarchy

The BBGKY hierarchy [8] is an hierarchy of equations coupling the equal-time reduced
distribution function f,,
N!

fn(Xh"'aXn):m

./an+1...dXNF(Xl,...,XN;I).

The latter can also be expression as ensemble average of microscopic fields, e.g.

N
fiX 0= <Za(x —xj(z)>>,

j=1
N N
HX.X'0) = <226(x —x; ()8 — xk(r>)> (114)
j=1 k#j
and
N N N
S, x' X" =<ZZ D8 —x; ()8 — X (1)8(x” —xl<z)>>,
J=1k#j I#j.k
and so forth.
The equations of the BBGKY hierarchy can be obtained by direct integration of the
Liouville equation (2). The n-particle reduced distribution f, (X1, ..., X,) represents—up
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to the factor N!/(N — s)!—the probability density of finding simultaneously n particles in
the specified phase-space positions X1, ..., X,. In practice, those equations are often recast
in terms of the correlation functions defined from the cluster representation of the reduced
distribution functions for n > 2,

L, x5 1) = g, x', 1) + filx, 1) fi(x', 1),
f3(x7x/»x”; t) = gy,(X,.X,,.X”, [) + [fl(x7 t)gz(x/’x”; t) +CP]
+ fl(-x7 t)fl(x,a t)fl(-x”’ t)

and so on, where c.p. means cyclic permutation. In terms of the standard notations (13) and
(15), the first two equations are

a
[5 _Ll]fl(l) = /d2L12f1(1)f1(2)+L1282(12)

and

0

[E — (L + L1/)i|82(1, 1)y =Lyy () A1)
+ / 2L fi(Dga(1.2) + Lya fi(1)ga(1, )]
+ f 2Ly + L) i) ga(1, 1)

+ Lirg(1,1) +/d2(L|2 + Lin)gs(1,1,2).

Appendix B: Useful Properties

We gather here some basic properties that are often used in the remainder of the paper:

e Equal-time Poisson bracket:

[N(X7 t)v N(X/’ t)]PB

_ ( 9.9 9 i>[5(X—X’)N(X,t)]
ap

ar ap  or
={8(X - X)), NX,H}(X). (115)
Therefore,
XXX ) =F(X = X)), f(X, D}X). (116)

e From rotational symmetry,
/dXzLuS(X] —X,)=0. 117)

o Unlike their quantum counterparts, the n-point correlation functions C™ are fully sym-
metric with respect to there arguments.
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Appendix C: First and Second Derivatives of fl[qﬁ]

In this section, we present the main steps leading to (35) and (37). Since fZ[qb] depends on ¢
through S[¢; x¢], its functional derivatives are combinations of the total action’s derivatives.
For instance, we easily find,

8Q < 5S >
— === ) (118)
sp(1) 0 do(1) 90
and
e __< 825 >
8¢ (18 (1) lgy 8p(Dsp (1) |4,

A Gec ) )l
_! d il . (119)
sA\ép(1) ¢l / N3¢ (1) ¢o

When S is linear in the external potential, the term in §2S /8¢ (i)&;& (i’) vanishes and (119)
equals the two-point correlation of 8S/8¢(1); this is the typical situation in field theory as
discussed before. In the present theory, the action is non-linear in ¢, §°S /8(]5(1)8(]5(1/) is
nonzero and generates, in addition to the correlation function, the term R (1, 1") related to
the response functions x ®.

The derivatives of S[¢; x¢] at a given potential ¢y can be obtained by a systematic per-
turbation expansion in powers of the variations §¢ around ¢. To this end, we introduce the
following notations. With ¢ = ¢y + §¢, we write the total Hamiltonian as

_< 58S _< 58S
s \80(1) s \p(1)

Hy =Hy, + 6K,
with 6H = deN(X,‘L’)(Sd)(X, 7). We denote by x(t) = (¢q(1), p(r)) and xo(r) =
(qo(7), po(7)) the closed-time trajectories starting at xo and governed by the Hamiltonian
Hy and Hg,, respectively. Given a dynamical variable A, we denote by A = Ag + 6A =

Ao+ Ay + A, + - - - its expansion in power of §¢, where A, is the term of order n in 6¢. For
instance, §H = §H; + 6 H, + - - - with

oM, :t’(t)/dXNo(X, )80 (X, T),

SHo Zt/(f)/dXNl(X, )60 (X, 1) (120)
=gq1-9,0H:(q0, po, T) + p1 - 3,6 Hi(qo, po, T).

With these notations, we rewrite the Lagrangian as

Ly(q.G.7) =[po-Go—He(x0) ]+ [8p - Go — Po - 8q + Hg(x0) — Hy(x)]
+[po- 8¢+ po-8q]+dp-84

so that by time integration and integrations by parts of the last line, we obtain
SI81 = So+ P deip o~ o+ Sq + Hoxw) — Ho()
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1
+§?€dr8p~84—8[7-8q
1
+P0(Tf)'SCI(Tf)'f‘ESP(Tf)'SQ(Tf)_Sb((z’)' (121)
The boundary term is
1
Splpo + 8¢, x0] = po(zy) - 8q(Tr) + ESP(Tf) -3q(ty) (122)
so that, with ¢ = ¢¢ + §¢, the last line of (121) vanishes
. . 1 . .
55 = § dr(op-do— pu-8q — Ho(oo) = Ho) + 5 dvop -84 —3p 3. (123)

Using the Hamilton equations for the unperturbed trajectories, the Taylor expansion of the
Hamiltonian around the unperturbed trajectory gives

Hgy () — Hy (x0) = —po - 8¢ + 8p - Go + Hy (8x) + -+, (124)
and where the second order term is

2 5 2

dq p
My (8x) = =+ dag gy (X0) + 8 -8 + 0y Hyy (x0) + == - Dpp M (¥0). (125)

Using (124) and (125) in (123), the total variation of the action writes

S= fdr[%(ap-aq —8p-8q) — Hy (5x) — SH(x):| 4o

At this stage, we have removed all the terms that cancel irrespective of §¢p. We now proceed
with the expansion in orders of §¢. To third order in §¢, the integral in the last expression is

1 . .
?gdf[i(lh “4y = Prq)) — Mg (a) — 8Hy — 5H2] +0(8°).

The first order variation (q;(t), p; (7)) of the trajectory satisfies

{41 =41 aqu¢0(x0) + P1- 3ppH¢)0(x0) + 8[181_]1 (xO)a (126)
D1 =—q1 - 0gq Hy, (x0) — p1 - 0pg Hyy (x0) — 046 Hy (x0)
and therefore

1 ) . © 1

5 Pdrlpi-gi—aqi- pil= P drHy (x) + 5 P 6Ha. 127)

Combining (127) and (126), to second-order in 8¢, the total variation of the action is
§S = —%drt'(t)/dX./\fo(X, )6 (X, T)
1 , N
) dtt'(z) | dXN (X, 1)6¢(X, 1) + O(8¢°). (128)
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In order to express the second term in (128), we first note that, using the results of linear
response theory recalled Sect. 2, the density variation N can be written as

M) = 7§ d1'R(1, 1)8¢(1"),
in terms of the response function over the closed-time contour,

R(I, 1) =0(t — ) {No (D), Np(1))}.

Therefore
%di/\/] (Dsp(1) = fdidi/n(i, 118 (18 (1)
= % ?gdi % dU'[RA, 1)+ R, D1sp(1)8¢ (1)
= fdi%di/xd, 8¢ (1sg (1), (129)
with

a1 - -
x(1,1)= i(Tc{No(l),No(l’)k

The power expansion of the total action (128) becomes

S | s -
Slpo +5¢1 = Slgol - jgdl/\fo(l)&ﬁ(l) —3 f%dldl/x(l, 1186 (1)s¢ (1) + 0(5¢").

Therefore the first two functional derivatives of the action are

sS ~
(qu—(i) oo =—No(1),
and
88
Sp(1)dep (1)

which, combined with (118) and (119), yield the desired results.

1 ~ ~
= _EZ.{No(l),No(l/)},

$=¢o

Appendix D: On the Differentiability of the Action Functional

Although it is not at all the purpose of this paper to be concerned with mathematical details,
we feel that a word of caution regarding the differentiability of Q[¢] and the derivatives Q™
is in order. Strictly speaking, the effective action functional Q[¢] is not (Fréchet) differen-
tiable everywhere. It is however infinitely differentiable at any physical potentials ¢, In that
case, the term S, in (30) cancels the boundary terms resulting from the variations of x(ty)
in the first term f:_f dtL4(q(t),v(r), T), which allows for the definition of the functional
derivatives. For a ﬁon-physical potential, the cancellation does not necessarily occur and the
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definition of the functional derivatives is not always possible. As a consequence, the quan-
tities ) can not be regarded as functional of ¢ and expressions like QU+D =£ §Q™ /§¢
are not correct, and therefore using it could give wrong results. This is unfortunate since
such recurrence relation is very useful to derive by simple differentiation the hierarchy of
properties satisfied by all the successive derivatives from a single starting relation.

To regain the benefits of such recurrence properties, we define the following formal de-
vice. Given the ensemble average (A(X, t)) of a dynamical variable A, we define the gener-
alized ensemble average as

~ 1 i -
(AN = Z[¢]<€F8[¢JA(1)>’ (130)

for any potential ¢. At ¢ = ¢, the generalized average reduces to the physical ensemble
average (6),

(A, DN g=gy = (A(X, 1(1))).

The generalized average is a functional of ¢, which, like S, is differentiable at any physical
potential ¢,. Using results of the previous sections, we find its functional derivative at ¢,

>, (131)
%0

in terms of the fluctuations §A = A — (A). Since, using the results of linear response theory,

SA(1)
sp(1")

(A

= —£<8A(1)8./\/(1/)>+<

5 (1) o

SA() 1 :
se) =27 (AN} (132)

we find

S(AM))y

1
—— =2 = (T{A), N (I
so1) |, 5 (A, NN

(SA(DSN(1)). (133)

i
s
For instance, with A = A/, we shall write

fo(D) = (N D).
The phase-space distribution is

F X 1(1) = fo=gy (X, T)

and from (133) and (37)
fd’(i) 1 7 ' i T T
| = ATAN D), NAH}) — = (BN (1SN (1
56 L 2( N, N s( (DN (1))

=Q?1,1).
Therefore we can obtain the successive derivatives of Q[cj)] by writing the n-th derivative as

Q" = (™) (134)
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in terms of the dynamical variable », and obtain the (n + 1)-th derivative by functional
derivative of its generalized average at ¢ = ¢,

QW+U(L.”,ﬁiFi)=:S«wM)d’Z"ﬁ»“ .
(1) o

This scheme can be used to systematically generate explicit expressions of the derivatives
of the effective action [40] as combinations of products and Poisson brackets of the funda-
mental field. The steps (134) and (135) can be schematically written as

(135)

- — 8 =
Q(n+l)(1’ n+ 1) — TQ”(I, ...,;l),
Sp(n+1)

with the understanding of the caveats discussed before. In this work, successive functional
derivatives are obtained according to the scheme just defined.

Appendix E: On the Occurrence of the Linear Combination of Correlation and
Response Functions

As shown in Appendix D, for any dynamical variable A(X, t) we have

s(Aly| 1
S¢p(1') |, 2

(TAA), NI} — é(ﬁA(l)SN(l'))- (136)

From the expression emerges a fundamental operation between dynamical variables, which
we find interesting to highlight. For any dynamical variables A and B defined on the closed-
time contour, we define with square brackets [-,-] the symmetric operation,

1 .
[A(7), B(T)] = E(TC{A(T), B(th}) - g(SA(f)SB(T/))
= [B(7), A(7)]. (137)
In term of this operation, (136) reads
)
A(l =[A(), N 138
5¢(1/)« ()»% [A(D, N (1] (138)

and
x(1L 1) =[N (1), N(1)].

The operation (137) combines two fundamental quantities of classical statistical mechan-
ics, namely the Poisson bracket [-,-]pp and the product of dynamical variables, which are
intimately related to the response and correlation functions. It obviously respects the dimen-
sions thanks to the action parameter s (the Poisson bracket [A, B]pp has the dimension of
the product AB divided by the product of a length times a momentum, i.e. by an action).
The Poisson bracket carries the dynamical information on how fluctuations are propagated
in time, while the correlation function gives information about the likelihood of fluctuations
(occupation number). At equilibrium, both quantities are simply related by the fluctuation-
dissipation theorem and only one is useful (one usually works with the phase-space density
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correlation functions). The emergence of the linear combination provides a justification of
the fact recognized by MSR and others [15] that a time-dependent theory of classical dynam-
ics should be expanded to involve not only correlation functions but also response functions
in order to be amenable to a systematic renormalization.

We can shed some light on the occurrence of that particular combination by regard-
ing the action function as the classical limit discussed above (see discussion after (32)).
In a quantum system, both fluctuation statistics (correlation) and response effects can be
characterized by products of the same quantum field operator; the intensity of fluctua-
tions involve the anti-commutator [-,-]; and the response is related to the commutator
[-,-]1-. In practice, both properties are contained in the time-ordered Green’s functions, say
G(t,7)= (T\iJ(T)\iJ(I’)), where \iJ(t) is the field operator (for simplicity, we do not write
the other degrees of freedom). We can re-express the Green’s function in terms of the aver-
aged commutator and anti-commutator of the field,

Gz, ) = (BN ) + (I @)oE - 1)
g \f 1ra N
= S([¥@. ¥ @] Jsign(r — ) + S {[¥(0). ¥ (@], ).

From the correspondence relations, in the classical limit, the anti-commutator [-,-]; becomes
a product, the commutator becomes the Poisson bracket i i{W(t), ¥ (t')} and therefore

G(r,7) — %(T[‘P(f), W()lpp) + (V(DW (7))

) .
= iS(E(T[‘IJ(T), Y (t)]pp) — é(‘l‘(f)‘l’(f')))

where we recognize the bracket (137) introduced earlier.

Appendix F: Closed vs Unclosed Expressions for X 1,1)

The previous closed expression for {Z(I, i’ ), f (i/ )}, (61a)—(61c), should be compared to
its “unclosed” version, which can straightforwardly obtained by using the equations of evo-
lution (48) and (50) for x and Q® on both sides of (58) for . We obtain,

(A, 1), FaANa) = %m(izs)ss(zsi’) (139a)
. 2
+ (%) (23 (23[9 (23273
— %x(22/>x<33’) —xD@34) ' @HxP(523)]  (139b)

’ 1 T A 2 J T AN —1/A7 A
+ A )Em(lza)x(z,2)x<3,3>%[0(1 2)x7'2.2)]

(139¢)
thus establishing the correspondence between (61b) and (139b).
In his “fully renormalized” kinetic theory of equilibrium liquids, Mazenko [13] uses as a

starting point an expression for the memory function equivalent to the equilibrium limit of
(1392)—(139c¢).
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Appendix G: Derivation of (95)
Equation (94), namely
{rea, 1, ranlah = %S(E>(t,t/) + 25, 1)) +isTOX1, X308 — 1)
+8(t —19)C(1,2)T4(2,1')
implies that I'C is of the form
FE, 1) =T, 1) + 8t — to)T°(Xy, X5 8) + 8@t — o) TV (X1, X5 1) (140)

where I'"¢ and I'? are given by (96a)—(96a) and I'" is a regular function of time variables
satisfying,

[TOX L, X350, f(X1,10)) = C(X, 10; T2, 1), (141)

' can be related to I'? and the initial correlation function Cy as follows. Introducing (140)
into (90) yields

t t
C(l,l’):/ dt2/ dt //ddexng(l,2)1‘"’g(23)xA(3, 1)
101} 101}
t
+/ dn, // dX2d X3 xR (1, 2T (X, X3 1) (X, 102 1)
0]

+/dXz/d3XR(1;Xz,to)l"(”(Xz,Xs;ts)XA(3; 1.

Setting ¢’ = f, in the previous expression, the resulting expression is used to calculate the
rhs of (141), which gives

{POX, X)), f(X1.10))
={°(X), X151, £(1, 1)} +3(l‘/—l‘o)/dZXR(Xl,fo;2)['(1)(X/,X2,f2)~

Using xB(X1, to; Xa, t0) = [ f (X)), (X, — X,)}, the previous relation implies the following
expression for 'V

1420V (X, X5 6) =T (X, X5 1) + 82" — )T O(X,, X7, (142)

with '@ given by (97). Combining (142) and (140) yield the desired result (95).

Appendix H: Diagrammatic Representation
H.1 Derivation of (107)

From the chain rule of differentiation, we have

§f,(3

JZEl; =3s=3) =/d2F‘2(12)912(23) +T11(12)22,(23),
8fa(3

5;251; :0:/d2F22(12)912(23)+F21(12)922(23)
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Fig. 3 Representation of
derivatives of the effective action
2 and effective potential I". An
inward (outward) arrow indicates
derivative with respect to the
physical (non-physical)

component

and
8fa(3)
8fp(1)
8fa(3)
8fa(l)

where we used €2;; = 0. We deduce I';; = 0, and therefore

1 z n’
3 5 Q)
T (1) .. 80 (n)pa (1) ... dpa(n)
L, n
=0 12, 2001 0)
o2 o
B 6n+n'1"
= 6f,(1) .. 0f,(n)ofa(1). . 6 fa(n)
T n
=T1. .12 . .200...n51"...0))
n n'!
:O:/d2F11(12)S221(23), (143)
=41 —3):/d2F2,(12)Q,2(21) (144)
5(1—3) :[d2F12(12)912(23), (1452)
5(1—3) =/d2F21(12)Qu(21), (145b)
0:/d21"22(12)§2]2(23)+1“2,(12)922(23). (145¢)

Combining (145a)—(145c) with (105) leads to (107).

H.2 Higher-Order Derivatives with Diagrams

We define here an economical graphical representation for deriving relations between the
correlation and response functions with the vertex functions. We define the graphical nota-

tions as shown in Fig. 3.

Using the chain rule, the functional derivative §/6f, and §/5fa of €y 1. add an ad-
ditional two-point vertex to the diagram as illustrated in Figs. 4 and 5. Using I';; =0 and
the rules in Fig. 4, we can evaluate the successive derivatives by letting §/5f, a act of the
diagrams of Fig. 5. We illustrate the calculations leading to the third-order derivatives (108a)
used in the body of the paper. /51, of the first diagram in Fig. 5 yields the diagram in Fig. 6,
and 6/8f), of last diagram in Fig. 5 yields the diagram in Fig. 7. Combining the diagrams in

Figs. 6 and 7 yields the diagrammatic representation of (108a) shown in Fig. 8.
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1 2 n' o2
n/
1
= 1
Ofp(n+1) (n+1)
n
n
Ly L 2
1 2 .. n' 1 2’ e, 1 2 s,
n n
0 _ ’ 1 ’ 1
TACESY = (n'+1) + (' +1)
n Sn S
1 9 - 1 2 1 2

Fig. 4 Graphical representation of chain rule

Fig. 5 Graphical representations 1 —» ®I @ > 3 = 6(1-3)
of (145a), (145b) and (145¢)
| <+(D(Q= 3 = 5(1-3)
1 <O+ 3 + 1 <D+ 3=0

Fig. 6 §/5f) of the first diagram
in Fig. 5
()
- (D@
(2)

Appendix I: Details on the Derivation of the Real-Time Formalism

By considering the equation of motion (44) for N'(t) in an external potential ¢ on both
sides on the closed-time consider, it is straightforward to extract the evolution equation for
the classical and non-classical components AV, o as

[i - L{’]Np(l) v = Laas <Np<2)1vp(3> + lNA(2>NA<3)),
oty 4 2 4

a
[a—tl - Lf]NA(l) —LYN,(1) = y3(1,2,3)N,(2)Na(3)

with the single particle Liouville operators,

LYo ={ho(1) + ¢,(1), e},
Lie={¢a(1),}.
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-

Fig.7 §/8fp of last diagram in Fig. 5

-

Fig. 8 Figures 6 and 7 can be combined to lead to this diagram

By averaging these equations over the initial conditions, we obtain the evolution equation of
for the averaged densities f, o = (N} a),

d 1
[a—tl - L1|)i|fp(l) - ZLlAfA(])

1 1 ]
=5n(.2, 3)(fp(2)fp(3) + ZfA(z)fAG)) + %V3(123)sz(23) +8(t —10) (1)
(146)

and

a
|:8_t1 - Lf]fA(l) — LY f,(1) = 13(1,2,3) £, (2) faB)is y3(123)221(23).  (147)

As in Sect. 3.6, equations of evolutions for the second-order derivatives €2;;, i.e. for C and
x &4, can be obtained by differentiation of (146)—(147). The terms involving the third-order
derivatives €2;j; in the resulting equations (not shown here) can be expressed in terms of
memory function kernels £ %-4:C such as

is 0 2Q:1,(231)
—y3(123
R 2 (szm (231) 29222@31/))

_ 0 4. Qi (1,1)
T\ ZR.Qy %(isER-sz-i-ZC'le) ’

=( i’ =Xt 1.1)
= ZR'XR %(ZR'C-FEC-XA) s P
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which leads to (109a)—(109c¢) and (110a)—(110c). Following the same steps as in Sect. 3.7,

using (88)—(89), the evolution equations for x

R4 and C yield the following (non-trivial)

relations between £ ®4:C and ['R4.C,
STR12
(Fan(123), F(1)) = [T1232). 801 = 2)} — {T21(12),5(1 = 3)} — iz — 202
57,3)
§3A(12
(L1 (123), F(1D) = (T1232).8(1 = D)} = [F12(12). 8(1 = 3)} — 1o — 2 02
57,03)
1 82(12)
(F21(129), (D) = ~{F2(12),50 =3)] = -2
—8(ty — 1)) ———[Qa2(14)T'12(42) ],

5f p(3)

1 1 1
(P22123), F (D} = 2 {F2(32).8(1 =2)} = £ {[1212).8(1 = 3)} = 27

1 6%¢(12) 5
Cis 8fa(3) 8fa(3) — o - )5f 3) [922(14)F12(42)]
§TA(12
(F122(123), F(D)] = [F(32),50 = D)} = [[n(12), 8(1 = 3)} =y — o0
8fa(3)
sTR(12
{T212(123), fF(} = {T(32),8(1 = 2)} = 123 — W&))

Those relations are then combined with (110a)—(110c) to close the hierarchy through the
functional differential equations (111) and (112) for the memory function kernels.
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