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The stability of the ground state of a harmonic oscillator in a monochromatic wave is studied. This
model describes, in particular, the dynamics of a cold ion in a linear ion trap, interacting with two
laser fields with close frequencies. The stability of the “classical ground state”—the vicinity of the
point (x=0,p=0)—is analyzed analytically and numerically. For the quantum case, a method for
studying a stability of the quantum ground state is developed, based on the quasienergy
representation. It is demonstrated that stability of the ground state may be substantially improved by

increasing the resonance numbkr,wherel=Q/w+
frequency and the oscillator frequenty; 1,2,. . .,

S, O and o are, respectively, the wave

8|<1; or by detuning the system from exact

resonance, so tha# 0. The influence of a large-amplitude wafie the presence of chapen the
stability of the ground state is analyzed for different parameters of the model in both the quantum

and classical cases. ®001 American Institute of P

One of the major difficulties in developing quantum tech-
nologies, is the variety of quantum dynamical instabilities
due to interactions between different degrees of freedom
and resonant interactions with the external fields. Insta-
bilities in quantum systems are different from instabili-
ties in classical systems in which dynamical chaos occurs
as the result of exponential divergence of initially close
trajectories. In quantum systems, the notion of a trajec-
tory is not well defined. This is one of the main reasons
why most methods for stability analysis cannot be di-
rectly applied to quantum systems. An important physi-
cal system convenient for investigating quantum dynami-
cal instabilities is a harmonic oscillator perturbed by a
monochromatic wave. We study stability of the ground
state of the harmonic oscillator in the monochromatic
wave field in the classical and quantum models. In the
classical case we investigate stability of trajectories in
phase space near the stable equilibrium point. In the
guantum model the stability of the ground state of the
harmonic oscillator is explored using Floquet formalism.
In patrticular, the stability of the quantum ground state
is characterized by the Floquet state mainly localized in
the ground state of the harmonic oscillator. In the case
when there is no such Floquet state, the harmonic oscil-
lator ground state is unstable. We use the Husimi distri-
bution to demonstrate the correspondence between the
guantum and classical approaches.

I. INTRODUCTION

We study in this paper stability of the ground state of an

hysic§DOI: 10.1063/1.1383786

the form of periodic delta-kicks. In this paper we consider a
different problem. We suppose that the ion is driven by a
monochromatic wave. In Ref. 2 it was shown that this sys-
tem can be realized when a single ion trapped in a linear ion
trap is perturbed by the field of two lasers with close fre-

quencies. We study in this paper the stability of the ground
state of the ion in the latter model.

The classical dynamics of the monochromatically per-
turbed harmonic oscillator has been studied in det&iee
the reviews* and references therejriThe usual approach to
this problem is resonance perturbation theory. However, the
dynamics in the vicinity of the “classical ground state”
(CGS—the vicinity of the point k=0,p=0), wherex is the
coordinate ang is the momentum—was not explored. We
study this problem here in detail because it is related to the
problem of stability of the quantum ground std@GS in
the same model, considered in Sec. IV. The stable regime in
the quantum model is important for understanding the stabil-
ity of a quantum computer based on trapped ions. We show
that near poink=0, p=0 in phase space for definite param-
eters of the model there is a region of stability—the central
resonance cell. It is demonstrated that the resonance pertur-
bation theory fails to describe the dynamics in the vicinity of
the CGS and the character of the motion in this region is
given by the Mathieu equation.

The Mathieu equation is usually used to describe the
dynamics of ions in a Paul trap in the absence of an external
electromagnetic wavésee, for example, Refs. 5%8The
time-dependent perturbation is generated in this case by the
rotating quadrupole field of the trap, which keeps the ions
inside the trap. We study in this paper the dynamics of a
single trapped ion only in the pseudopotential approx-

ion trapped in a linear Paul trap and perturbed by an externgh, a1ion® when the unperturbed motion of the particle can be
electromagnetic field. In Ref. 1 the dynamics of a trapped i0r, 5o ximated by harmonic oscillations. The time-dependent
was studied for the case when the perturbation is chosen iferrhation in the system studied is generated by an electro-
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magnetic wave, not by the ac electric potential of the trap.
All the nonlinear terms describing the dynamics of the
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monochromatically perturbed oscillator near the CGS, oscil-  We show below that resonance perturbation théoan-
late with different frequencies, unlike those studied in Refsnot be used to describe the motion of the particle near the
5-7. We show that the largest effect on the dynamics iSCGS when the resonance numblerjs greater than 2. The
produced by the nonlinear term oscillating with resonant fre-dynamics in this region is defined by the Mathieu equation.
qguency. It is shown that for large wave amplitudes the nonThe influence of nonlinear terms, oscillating with different
linear terms in the classical equations of motion stabilize thdérequencies, on the dynamics given by the Mathieu equation
dynamics near the CGS. is discussed in detail.

In the exact resonance case and for small enough wave Let us perform a transformation from the variablesx)
amplitude, e, the CGS is stable fof>2 and unstable for to the canonically conjugate variableip(, ®),
[=1,2. It is shown that for sma# the area of the central cell _ _
increases with increasing the resonance numberand x=(2J,/Mw)sinp=r(J,)sine, (2
increasing the perturbation amplitude, In the near- — —
resonance case, whei¥ 0, for smalle the classical dynam- Px=(2J,Mw)*cosg=Mar(J,)cose, )

ics near the CGS is stable for any value of the reSOﬂanCﬁ,herer(J_(p):(ZJ_(P/Mw)l/Z is the amplitude of oscillations.

number|. The case$=1 andl =2 are investigated in detail. |t is more convenient to work with the dimensionless coor-
It is demonstrated that the CGS in these two cases becomaﬁ‘]ate’ X=kx, and the dimensionless momentunk
unstable at much lower values ethan for the case of large

(=45, . ) =kp/M w, which are related to the variablei(, ¢) by the

S . ) formulas

Because the Hamiltonian is time-periodic, with the pe- .
riod 277/€), we use Floquet theory to study localization prop- X=p(J,)sine, 4
erties of the quantum system in the region of the QGS. In the _
quantum model an additional parameter, a dimensionless P=p(J,)cose, 5
Planck constanth, significantly influences the behavior of TN N2 P2_ :
the system. We show that the QGS is stable when the foe[!vherep(J¢) . X“+Pi=kr(J,). In prder to treat time on

he same basis as the phagelet us introduce the new pair

lowing conditions are satisfied(a) an existence of the
quasienergyQE) state mainly localized in the QGS of the
harmonic oscillator(b) whene<1 and chaos is weakg) for

h small enough, so that one can neglect tunneling. Whisn
larger than the size of the central cell, no QE state localized H=J,0+JQ+vocogpsing— ). (6)

in the QGS of the harmonic oscillator was found. We show ) _ o

that, for small enough values ef the stability of the QGS H is independent of time and describes the motion in the

can be improved by choosing the nonresonant frequency d¥vo-dimensional space. The _nonlinear perturbation in(BQ.
the wave. can be expressed in the series

of canonically conjugate variables]{, ), where 8= Qt.
The initial Hamiltonian(1) expressed in these new variables
takes the form

The classical dynamics near the CGS is explored in Sec. o
Il for the case of exact resonance. Stability of the CGSinthe vycogpsing—B)=vy >, JIm(p)cogsme—pB), (7)
near-resonance case, whé# 0, is considered in Sec. lll. In m=-=
Sec. IV we investigate the stability of the quantum groundwhere J,,(p) is the Bessel function. Under the resonance
state of the ion under the influence of a monochromaticondition,()=Iw, all terms in the suni7) oscillate rapidly
wave. and can be averaged out, except for the term withl. In

this approximation, the Hamiltonia®) is reduced to
Il. CLASSICAL DYNAMICS NEAR THE CGS IN THE

CASE OF EXACT RESONANCE H=J,0+J33Q+0vd(p)cod] o— ). (8)

The Hamiltonian of the harmonic oscillator in a mono- It is convenient to introduce new resonance variablesg),
chromatic wave is (3, B), by using the generating function

2 242
M w=X ~ ~
H=Zp—M+T+v0cos(kx—0t)=Ho+V(x,t), F=1(le—pB)+IB.
(1) The new Hamiltonian,

whereM is the mass of the particl,is the wave vecton, o H=T(lwo—Q)+Jw+uved(p)cosb, 9

is the amplitude of the perturbation, aht}, is the Hamil- o o

tonian of the harmonic oscillator. In this section we discusgVhere #=I¢— B, is independent of the variabje. Hence,
the case of the resonance, wHerr | . It is known(see, for ~J=const. The resonance Hamiltonian,

example, Ref. #that under the resonance condition, an in- ~

finitesimal small perturbatiory,, is enough to generate an Hi(p, 0)=H—=Jo=voJ(p)cost (10
infinite stochastic web in classical phase space. This web iGvhere we used the resonance condifien= (1) is indepen-
inhomogeneous, and its width decays with decreasing pertudent of time, unlike the initial Hamiltoniafi).

bation amplitudep,, and increasing amplitude of oscilla- The Poincaresurfaces of section of the system described
tions. Inside the cells of the web a particle moves alongoy the Hamiltonian(1) in variables ¥,P) are shown in Figs.
stable closed trajectories. 1(a)-1(e), for the cases=1,2,3,4,5. The phase points are
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|
P
H|:Uoz||_ICOSIQD:E|, (11)

where E; = const(because the resonance Hamiltonian is in-
dependent of time Also, we took into account that fgs
<1 the Bessel function can be expressed in the form

Ji(p)=p'I2I, (12)

and the fact that in the Poincaseirfaces of section the po-
sition of the particle is taken at the momeiids,=2=k, k
=0,1,2,... . It follows from Eq(11) that at the angleg,
=(#/21) (2k—1), k=1,2,...,2, the radius p should
sharply increase or decrease. It is seen from Figm—1(e)
that at anglesp, the particle moves in the radial direction.
The growth ofp is restricted by nonlinear effects.

However, the resonance perturbation theory does not ad-
equately describe the motion of a particle in the vicinity of
the point X=0,P=0) for large values of the resonance
numberl, because the amplitude of the resonance term due
to Eq. (12) quickly decays when the radiup, decreases.
Indeed, at =4 andp=0.1 the amplitude of the resonance
term withm=1=4 in Eq. (7) is 80 times less than the am-
plitude of the nonresonant term with=1—1=3. In order to
describe the motion in the region near the CGS, we consider

-5

7 8 the initial Hamiltonian(1) under the conditionX<1. The
et s 7 864202468 exact classical equation of motion reads as
9 d? 5 vok?
7 WX'F(O XZVSIH(X—QU. (13
: Up to first order inX, Eq.(13) is
1 d—2X+w2(1—ecos{Qt))X= Uo—kzsin(m) (14
P dt? M :

where e=vk?’/Mw? is the dimensionless perturbation am-
plitude. If we introduce a new dimensionless timer 2
=Ot, then from Eq.(14) we obtain the Mathieu equation
with the additional right-hand side term in the form

d2

d—T_5X+a|(1—ecos(27-))X=a|esm(27-), (15

V5 ETS —1X1 3 5 7 9

FIG. 1. The resonance cells in phase space€ow ok’ M w?=0.05, & ) o
=0, and@ =1, (b) I=2,(c) I=3, (d) | =4, (¢) | =5. wherea,=(2/1)2. From the theory of Mathieu functiotsit

is known that for smalk, Eqg. (15) has unstable general so-

lutions ata;=1 anda,=4, which correspond to the reso-
plotted at timest;=2mj/(}, wherej=0,1,2,... . One can nance numberd,=2 andl=1. The additional term on the
see that the phase space has an axial symmetry of thelorderight-hand side of Eg(15) does not influence the stability of
The phase space is divided into the cells. A particle movegrajectories.(See Ref. 10, Sec. 6.22At a;<1 and small
along closed trajectories inside the cells Figs. 1a)—-1(e)  enough values o€, the Mathieu equation has periodic solu-
only the boundaries of the cells are shojMPor small values tions which correspond to stable dynamics for resonance
of vy, the motion inside the resonant cells, illustrated innumbersl>2. In Fig. 2 stable trajectories in the system de-
Figs. Xa)—1(e), can be considered in the resonance approxiscribed by the Hamiltoniafl) are shown fol =3, 4,5. The
mation. The next order approximation is only needed to anastable region in the vicinity of the CGS can be considered as
lyze the motion inside the exponentially small chaotic re-additional “central cells” to those resonance cells shown in
gions near the separatrices. It is also shown below that thEigs. 1c)—1(e).
resonance approximation fails to describe the motion in the As follows from Figs. 2a)—2(c) the trajectories in the
region near the point{=0,P=0). cell have an axial symmetry of ordér This feature can be

It is easy to see that the resonance Hamiltonia®  explained by the influence of the resonance t€td) in the

yields unstable solution near the CG®e point X=0,P perturbation(7) on the dynamics since this term is invariant
=0)]. To show this, we present the Hamiltoniét0) in the  under the substitutiop— 27/l [see Eq(11)]. The substan-
form tial influence of the nonlinear resonant term on the linear
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(©) FIG. 3. Trajectories in the central resonance cell-a#, =0 with a per-
turbation amplitude(a) e=0.5, (b) e=2, (c) e=5, (d) e=10.
Po . . . . .
Figs. 4a)—4(c) as € increases in comparison with the case
shown in Fig. 2b), when the value ok is very small. The
cell shrinks as increases, as shown in Figdd for e=10. A
further increase o€ destroys the central cell entirely.
Similar features were observed for the dependence of the
03,2 5 03 dynamics in the central cell oafor the casd =5 in Figs.

X 4(a)—4(d). A comparison of the data fdr=5 in Figs. 4a)—
4(d) with those forl =4 in Figs. 3a)—3(d) allows us to con-
clude that the area of the central cell increases with increas-
ing |, and that chaotization of the motion in the central cell
for larger values ofl requires larger values of. In other
dynamics given by the approximate equatidrd) follows  words, the motion in the central cell becomes more stable as
also from a comparison of different trajectories in each ofthe resonance numbér, increases.
Figs. 2a)—2(c). Indeed, the internal trajectories with small In order to understand the observed dynamics, we in-
values ofp have a circular form because the amplitude of thecluded in our consideration only the first order termsxin
resonance terrill) is small for smallp. The outer trajecto- [see Eq.15)] and compared the dynamics in the linear ap-
ries in Figs. 2a)—-2(c) have axial symmetry of orddr be-  proximation with that given by the exact equati8). The
cause the amplitude of the resonant tefth), which pro-  trajectories described by the approximate equatids) for
duces this symmetry, increases whenncreases. In Figs. €=5,1=4 and fore=9.5,1=5 are shown in Figs.(® and
2(a)—2(c) one can see that the size of the central cell in-5(b). The following features can be observéid.As follows
creases with increasing resonance numhesince the am- from our calculations, the phase portrait shifts up from the
plitude of the resonant terr(iil), which causes instability point (X=0,P=0) under the influence of the term on the
near the CGSat p<1), decreases dsincreases. right-hand side of the approximate equatids). (ii) A com-
Next, we shall analyze the dynamics in the central cell agparison of Fig. %) with Fig. 3(c) and Fig. %b) with Fig.
a function ofe. The change of trajectories when wave am-4(b) allows us to conclude that the terms of higher ordeXin
plitude increases is shown in FigsaB-3(d) for I=4. Two in Eq. (13) change the shape of trajectories and restrict the
features in the structure of the trajectories of the central celtegion of stable motion(The dynamics given by the Mathieu
can be observedi) An increase ine shifts the central cell equation is stable or unstable in the global phase space since
upwards.(ii) The size of the cell increases considerably inthis equation is linear irX.) (iii) The motion described by

FIG. 2. The trajectories in the central resonance cell in phase spac for
=0 and(a) 1=3, e=5Xx10"4, (b) I=4, e=0.05, (c) I=5, e=0.05.
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FIG. 4. Trajectories in the central resonance cell a5, =0 for the  FIG. 5. The phase trajectories given by the approximate equétinfor
following perturbation amplitudesta) e=5, (b) =10, (c) e=15, (d) € 6=0 and(a) I=4, e=5, (b) =5, e=9.5.
=109.

The stationary points for the dynamics generated by the

the approximate equatiofi5) becomes unstable for values Hamiltonian(16) are defined by the conditions

of e>¢, where ¢ lies in the interval 2.3 e3<2.4 for |
=3; 5. e4<5_.6 forl=4; _and 9.6<€e5<<9.7 forl=5. O_ne £9=(9H, /d1=0, = —9H,/96=0.
can see from Fig.@l) and Figs. 4c) and 4d) that the motion
described by the exact equatiétd) in the regione>¢, re-  The positions of the elliptic stationary points are given by the
mains stable. Thus, the higher order termsXinn Eq. (13 expressions
stabilize the dynamics in the central cell for large values of -
the perturbation amplitude, aqifkr(le)] S, 6.—0 a7

Let us compare the classical dynamics in the central cell vo il T rOes YT N
with the dynamics in other cells when the perturbation pa-
rametere is not small. The results of calculation of the dy- where the sign *-” corresponds to the stable point, with the
namics in several cells are shown in Figé)é6(d). Froma anglef.=0 with the P-axis, and the sign +” corresponds
comparison of Fig. @) with Figs. 3c) and 3d) and Fig. to the stable point with the anglé.= . In dimensionless
6(d) with Figs. 4a)—4(d) one can see that the trajectories in form, Eq.(17) is
the central cell remain stable, while other neighboring cells 1 03,(pe) s
are completely destroyed by chaos. The extremely high sta- — ! Pe) _ F—,
bility of trajectories in the central cell can be explained by  Pe op le
the relatively small influence on the dynamics of the terms O(Nherep —kr(T
high order inX, oscillating with different frequencies, be- °
cause their amplitudes are small for small

(18

o). For the positions of the hyperbolic sta-
tionary points, one has

~ a

J|[kr(|h)]:0, 0h: iE (19)
I1l. CLASSICAL DYNAMICS NEAR THE CGS IN THE
NEAR-RESONANCE CASE As one can see from Ed18), the number of the elliptic
gtable points in the near-resonance case, wie0, is finite
because the right-hand side of Ef8) is constant while the
left-hand side oscillates, and decreases on average. As a con-
H,=T(8w)+vyJdi(p)cosb. (16 sequence, there is a finite number of resonance cells.

Now, let us consider the CGS in the near-resonance cas
when 6# 0. The resonant Hamiltoniaf®) takes the form
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FIG. 6. The influence of chaos on different resonant celtsQ, (a) =4,
e=1; (b)|=4,€=5; (c)|=5,€e=1; (d) |=5, e=5.

The motion near the CGS can be described by the ap-
proximate equatior{15) with the parametern, equal toa,
=[2/(1-6)]%. It is knownt? that for smalle and 5#0 the
Mathieu equation has stable solutions for &ngcluding the
cased =1 andl=2.

Let us consider the casés-1 and|=2 for 6#0 in
detail. Forl=1, one may use the results of the resonance
theory for arbitrary smalK andP, because the term of low- X
est order inX (proportional toX) in the Hamiltonian(1) is
resonant. Let us Suppose that the dimensiorﬂess rmu_rs FIG. 7. Phase space for the near-resonance ¢&s6,1, =1, and(a) €
Eq. (18) is small, pe<1. Thend}(pe)~1/2. [See Eq(12).] ~04® e=07.(0 =12
Equation(18) then yields

pe=TFe€l(26]). (20 left-hand side of Eq(18) is positive and we should take the
Thus, the shift of the stable elliptic point from the CGS is sign “+” on the right-hand side, which corresponds to the
small, p.<1, when the conditiore<2| 4|l is satisfied. For shift in the directiond= .
small values of the wave amplitude,the shift of the elliptic As e increasesgsee Figs. {b) and 7c)], dynamical chaos
stable point from the poink=0,P=0 is proportional toe. = appears, and the area of the central cell decreases. As before,
One can see from Eq20) that forl=1 one elliptic stable we have considered the influence of high order terms in
point exists for arbitrary small value ef (This also follows the exact equation of motiof13) on the dynamics described
from the theory of Mathieu functions. by the approximate equatiq5). Equation(15) has unstable
When € is small, the phase trajectories are circles withsolutions whene>e;, where|e;|=+245|/5 if 5>0, and
center located near the CGS. Figuratively speaking,&or e;=+246] if <0 The parameter§=0.1 yields €,
#0 ande<1 there is only one resonaftentra) cell withan ~ =0.69. As one can see from Figgby and 7c), the central
infinite area, because for a small enough value,dq.(18)  cell remains undestroyed. Thus, the nonlinear terms stabilize
has no other solutions, except for Eg0). Hence, in phase the dynamics in the near-resonance case, similar to the case
space there are no other cells, except for the central onef exact resonance. Ad=1.2, in Fig. 1c) one more cell is
When € increaseqwe supposes>0) and >0, the stable generated, because conditii8) is satisfied for two values
point shifts downwards, as shown in Figay, because the of p.
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FIG. 8. Phase space for the near-resonance ¢&sé,1, =2, and(a) e
=0.17, (b) e=0.22.

Unlike the casd =1, whenl=2 ande is small enough

Stability of the ground state 455

points, formed after bifurcation, diverge at a larger distance
from each other, the chaotic area increases, and additional
cells appear because the conditid®) is satisfied for addi-
tional values ofp,.

IV. STABILITY OF THE QUANTUM GROUND STATE

Now we consider stability of the ground state of the
quantum harmonic oscillatdiQGS under the same condi-
tions as in the classical model. The quantum Hamiltonian is

f:\)Z sz

o 2 _ — \/
H om T X +vgcogkx—Qt)=Hp+V(x,t),
(21)

wherep=—i%dldx, and the same notation as in Ha) is
used. Since the Hamiltonig21) is periodic in time, we can
use the Floquet theorem and write the solution of the Schro
dinger equation in the form

Ug(x,t) =exp(—igqt/h)uq(X,t), (22

where ¢, is the quasienergyi/y(x,t) is the quasienergy
eigenfunction, and the function,(x,t) is periodic in time,
Ug(X,t) =Uuq(X,t+T), whereT=27/(). We expandiy(X,t)
in the basis states of the unperturbed harmonic oscillator,

uq(x,t>=n§O CAt) (), (23)

where the coefficientsCl(t), are periodic in time CJ(t)
=CJ(t+T). Due to the periodicity ofc](t), the approach
based on Floquet states is very useful for investigating the
localization properties of the quantum system. Namely, if
some initial state coincides with the quasienergy function

[see Fig. 8], the stable point does not shift from the point localized in some region of the Hilbert spac€,(0)
(X=0,P=0). Instead, in Fig. &) we observe bifurcation at _:Cﬂ(O), then it will remain localized in this region for all
the valuee=¢€,, wheree, can be estimated from the solu- time.

tion of the approximate equatiofl5). Namely, up to the
second order ins, the dynamics becomes unstable 3t
=26— 6%2.11 Our computed value of, lies in the interval

We used the following numerical procedure to calculate
the QE state¥’ ** The QE states are the eigenstates of the

evolution operator for one period of the wave figli((T). In

0.185<¢€,<0.186 which is slightly less than the estimated order to construct the matriW,,,, of the operatotJ(T), we
quantity due to the influence of nonlinear terms which are;pggse the representation of the Hamiltonidg Let us act

neglected in the approximate equatidrb).
As shown in Fig. 9 for further increase ef two stable

FIG. 9. The same as in Figs(é and 9b) but for e=0.8.

with the evolution operator on the wave functigiix,0),
O(T)y(x,0 = p(x,T), (24

and choose the initial state in the foi@(0)= Snng- IN this
way we obtain a column in the evolution operator matrix,

Unn,=Co(T), (25)

where the coeﬁicients(;ﬁ”O)(T), can be obtained by a nu-
merical solution of the Schdinger equation(For a more
detailed discussion, see Ref.)1Bfter the diagonalization of
Uo,m, we obtain the QE functionsCl=C}(mT), m
=0,1,2,..., and the quasienergies,. The values of the
matrix elementsyJ, ,, depend on three dimensionless pa-
rameters: the wave amplitude, the quantum parametdr,
=k?#/Mw, which can be treated as a dimensionless Planck
constant, and the rati/w=1- 4.

When §=0 and the amplitude of the wave is smail,
<1, most of the QE states are divided into almost indepen-
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Berman, James, and Kamenev

classical cells in the phase spa¢e P).'8 There are also QE
states which do not belong to a particular resonance cell, but
instead belong to the stochastic web. These QE states have a
“separatrix” ° structure, i.e., they are delocalized over sev-
eral resonance cells and have large varianeg, These
states are represented by scattered points on the diagrams
ng=nNg(0og) in Figs. 1Ga)-10e). The structure of these QE
states was discussed in detail in Refs. 15, 16, 19.

In this paper, we focus on the QE states which belong to
the central resonance cell, because these states are mainly
responsible for the stability properties of the QGS. Such
states are characterized by small meap, and are located
in the low part of the plotspy(og), in Figs. 1Qd) and 1@e).
For1=1,2 in Figs. 10a) and 1@b) these states are absent,
which corresponds to unstable dynamics near the CGS in
classical phase space, shown, respectively, in Fig@—1
1(b). For =3, the area of the stable island in FigaRis
much less than the value of the dimensionless Planck con-
stanth (h=0.5). So, in this case, the QE states localized in
the central resonance cell are absent, too.

The plots of the probability distribution for the QE state
g’ with the smallest meam,, [marked in Figs. 1@) and
10(e) by arrowq are shown in Figs. 1a) and 11b), for the
cased =4 andl =5. On a logarithmic scale, these states are
illustrated in Figs. 1@) and 12b). The Husimi functions of
these states are shown in Figs.(@3(I=4) and 13b) (I
=5). As one can see from Figs. (Bl and 11b), the QE
states with smallest mean are mainly localized on the QGS
of the harmonic oscillatoBelow we refer to such states as
the QGS QE statesFrom Figs. 11a) and 11b) and 12a)
and 12b), it follows that the small part of the probability
distribution is located at the levels with the numbers
=Im, wherem=1,2,.... This can be explained by the in-
fluence of the resonance terms in the quantum equations of
motion28 In the resonance approximation, the QE states can
be defined from a set of algebraic equations which in dimen-
sionless form can be written ‘8<°

e

whereE,=¢,k? M w? is the dimensionless quasienergy.
The matrix elements fon>1 can be approximated by

€
anz(vn,nﬂcﬁﬂ+Vn,n—lcﬁ—|)a (26)

dent groups, each located in one resonance cell of the Hilbefhe Bessel functiong,,,
space'® In order to show this let us characterize each QE
and a variance,o

state by its meann,==,n|CJ?,

=[Z,(n— nq)2|Cq|2]1/2 and plotn, vs oy. (See also Ref.

imnmlzef h/4

J(n+1)...(n+m)

In(v2nh). 27

Vn,n+m:

17) These plots for different values of the resonance num-

ber, |,

and for a small value of the wave amplitude,are

For a more precise form of these matrix elements, see Refs.

shown in Figs. 1(8)—10(e). The boundaries of the cells are 16, 20.

marked by arrows. The radius of the external boundary of

As one can see from E@26), in the resonance approxi-

classical cells in Figs.(&)—1(e) corresponds to the position mation the QE functions have the for@l=Cl with m

of the boundary of the first quantum cell, respectively, in=1,2,... . In this case, the particle is allowed to move only
Figs. 1Ga)—10e) with the quantized radiug,,= v2nh. One  between the states which satigiy=Im. As shown in Ref.

can see from Figs. 18-10(e) that the QE states are mostly 18, a particular form of the QE functioG=C/,, makes
located within the quantum resonance cells, because thetine Husimi functions, illustrated in Figs. 8 and 13b),
meanspn,, are situated inside the cells, and their widihg, approximately symmetric with axial symmetry of order

do not exceed the width of the corresponding resonance cell. Now, let us consider the structure of the QE stateg as
Such states form rows in Figs. (H)-10(e). Each cell in the increases. There are several QE states localized near the
Hilbert space in the quasiclassical limit corresponds ko 2 QGS of the harmonic oscillator. Some of them are shifted
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FIG. 13. (a) The Husimi functions of the QGS QE state shown in Figall1

| =4. (b) The Husimi functions of the QGS QE state shown in Figib},1

I =5. The cross-sections are plotted from the level 0.047 with the increment
0.042,h=0.5, e=0.05.

from the level with the number= 0. They can be associated
with the classical central resonance cell, shifted upwards as
increases. In this case, the Husimi function in Fig(al4f

the QE state with the probability distribution illustrated in
Fig. 14b) (for =5 ande=5) has a form similar to the form

of the trajectories in classical phase space shown in F&. 4
At large enough values of the wave amplityde=5 in Fig.
14(a)], there are no QE states localized in the neighboring
quantum cells, except for the QE states localized in the cen-
tral cell. This corresponds to the chaotic classical dynamics
shown in Figs. &) and Gd) with the stable island in the
center of phase space.

The QE state, mostly localized at the QGS of the har-
monic oscillator, is of the most interest for us, because it
mainly defines the dynamics of the quantum state initially
located at the level witm=0. The time-evolution of the
system with the initial stat€,(0)= Sn.n, is defined by the

equation
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C,(mT)=, Ci*Cl exp(—ieqmT/4), (28)
q
wherem=0,1,2,... . The amplitude of probability to find
the system in the initial statey, is
Cn (M= |Ch |2 exp(—ieqmT/h). (29)
q

Suppose that some QE state with the numidpeiis mostly
localized at the leveh=n,, i.e., |Cﬁ(;|2>|CﬂO|2 for all g

#q'. Then, the term witly=q’ dominates in the sum on the
right-hand side of Eq(29), and we can write

cno(mn~|cﬁc’]|2exp(—isq,mT/h). (30)

The probability, P, (mT), to find the system at time,
=mT in the state witm=n, is given by
Pn,(MT)=|Cp (mT)|2=~|C |*. (31)

The value ofP, (mT) in this approximation is independent
of the number of periods passeﬁiﬂo(m'l')E Pny- IN the next
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FIG. 15. The probability to find the system in the QGS of the harmonic

oscillator, defined by the valu¢€9_,|* of the QE state’ mostly localized
at the state wittn=0, versus the wave amplitude, for three values of the
effective Planck constanh; |=5.

approximation, the neglected terms in HEQ9) cause the
probability Pp, t0 oscillate slightly with time.

In Fig. 15, we present a plot of the probabiliti
=|CqO:0|4, of finding the system in the QGS as a function of
the wave amplitudeg, if the initial state is the QGS of the
harmonic oscillator. One can see that dynamical cH#os
range of large enoug$ decreases this probability. However,
the process of delocalization of the QGS QE state is ex-
tremely slow ase increases, in comparison with that in
neighboring cells. For example, a5 all QE states in the
nearest cells are chaoticlelocalized, while the QE state
located at the QGS remains localized with the probability
Po~0.56 wherh=0.5, andP,~0.6 whenh=1.0. This cor-
responds to the classical chaotic dynamics with the stable
island in the center of phase space shown in Fid).6

From a comparison of the three different curves, for
=0.1,h=0.5, andh=1.0 in Fig. 15, one can note the fol-
lowing features(i) For small values ok, an increase oh
leads, on average, to a decrease in the stability of the QGS.
(i) The QGS for large values df (h=1) is more stable
under the influence of chadthe range of sufficiently large
€) than that for small values df (h=0.1). We should note
that oscillations of Po(mT) in time should increase as
Po(mT) decreases. This happens in the region of sufficiently
large € in Fig. 15, because in this case the influence of ne-
glected terms in Eq29) becomes significant.

More information about the stability of the QGS can be
extracted from an analysis of the structure of QE states lo-
cated at the QGS for different values of the wave amplitude,
€, shown in Figs. 1@)—16f) (for h=0.5. The QGS QE
state shown in Fig. 1@) for small value ofe (e=0.05) is
similar to the separatrix QE statEshecause it has a regular
structure[Compare, for example, with Fig. (& where this
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the one hand, the system remains mainly localized in the
QGS, but on the other hand, a small part of the probability
distribution can tunnel to harmonic oscillator states with
large n, located in other resonant cells. As we increase the

(Compare the different curves in the region of snall

10° 107
2 10 5104 parameteh, the separatrix QE states become more delocal-
§ . i § . ized, and the probability to tunnel to other cells increases.
09_10 E 09_10 This explains the decrease B with increasingh in Fig. 15.

10| 107

| % ﬂ“ Ly

0 oo | 200 | 300 |400
n
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[too [ 200 | 300 [400 |
n
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foo | 200 | 300 [400
n

T

(d)

foo | 200 | 300 [400
n

T

(f)

For intermediate values @& when 1<e<7, the stability
of the QGS increases with increasihg However, one can
improve the stability of the QGS by increasihgonly up to
a limiting value,h, . Whenh becomes larger than the area of
the central cell in phase space, the QGS becomes unstable.
Thus, ath=5, | =4, e=2 [see the classical phase space in
Fig. 3(b)] and ath=5, I=5, €=5 [Fig. 4@] no localized
QGS exists.

The increase oP, with increasing wave amplitude,
when e is small (e<0.5 forh=0.5 ande<1.0 forh=1.0),
shown in Fig. 15, is a consequence of the partial localization
of the separatrix QE stafsee Fig. 16b)] under the influence
of chaos. This was explored in Ref. 15. In this case, the QGS
QE function, shown in Fig. 1®), loses its “separatrix” fea-
tures. A further increase of causes the QGS QE state to
become more delocalized. However, as one can see from
Figs. 16¢c) (e=5.5,h=0.5), and 1€d) (e=6.0,h=0.5) de-
localization takes place mainly over the nearest oscillator
states with small numbers, Fore>5.5 (h=0.5) the oscil-
lations appear irPy(€), as seen in Fig. 15. Thus, the QE
function ate=6 in Fig. 16c) is less localized than the QE

510_4 EW function ate=7.6 shown in Fig. 1@l). For large values o

3 3 (e>7.6), practically all QE states are delocalized. This is the

2 10° Ko BT . . . . .

ns_’ 02_ guantum manifestation of chaotization of the classical central
10 10 cell in phase space.
107 107 In order to illustrate the honmonotonic character of lo-
10° 10° calization of the QGS as a function of the wave amplitude at
107 10° small ¢, we computed the dynamics of the quantum state

o oo [200 ] 300 [400 |
n

0

foo | 200 | 300 |400
n

T

initially concentrated on the ground state of the harmonic
oscillator, C,,(0)= &, ¢, using Eq.(28). The time-evolution

FIG. 16. (a) The QE states mostly localized at the QGS of the harmonicqf the variance
oscillator (QGS QE statesh=0.5, (a) €=0.05, (b) €e=0.5, (c) e=5.5(d) '

€=6.0, (e) e=7.6, (f) €=9.2. The boundaries of the quantum cell are
marked by arrows.

o(mT)= \/2 |Co(mT)A(n—R(mT))?, (32

structure is destroyefllt is spread over several resonance
cells, and the maxima of this function are located near the
quantum separatrices indicated in Fig(aéoy arrows. wheren(mT)=X,|C,(mT)|?n is the mean, is presented in
The separatrix QE states are of quantum nature becau§dgs. 14a)—17(c) for three values ot. When the wave am-
they are delocalized over several resonance cells. These Qiitude, €, is small[Fig. 17@)], a small part of the wave
states provide tunneling between the délf§ when chaotic ~ packet can propagate to large valuesiafue to diffusion via
regions in the phase space are negligibly small, and the claghe separatrices as shown in Fig.(a8A similar tunneling
sical particle cannot practically penetrate from one resonanceffect of the wave packet between the resonance cells via the
cell to another. The separatrix QE function mostly localizedseparatrices was explored in Ref. 15. In spite of the small
in the QGS s different from other separatrix states studiedrobability of tunneling to other cells, the contribution of this
before® On the one hand, it is delocalized over several resopart to the varianceg, is significant because it is propor-
nance cellfsee Fig. 163)] as are the other separatrix QE tional to (n—N)?, where|n—n|>1. At e=0.5, the separatrix
functions. On the other hand, this particular QE function isQE states are destroyed by chaos, as shown in Fig),16
mostly concentrated on the QGS of the harmonic oscillatorand QGS becomes more localiz¢see Fig. 18)]. This
unlike the other separatrix QE functions. These “contradicleads to a significant decrease®fn Fig. 17b) in compari-
tory” features of the QGS QE state define the dynamics: orson with the case of smadl, shown in Fig. 17a). A further
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h=0.5,1=5, §=0.

FIG. 18. Probability distribution in the system with initial condition
Cn(0)=6y,n, and (8) €=0.05, mT=3X10°T; here [Co|’=0.746, (b) €
=0.5, mT=10'T; |Co|?=0.982, (c) e=7.6, mT=5000T; |C,|?>=0.137,
|C4|?=0.423. The boundaries of quantum celigiantum separatricesre
marked by arrowsh=0.5, =5, §=0.
increase ofe up to the valuee=7.6 results in delocalization
of the QGS, as shown in Fig. (@, and the varianceg
=o(mT) in Fig. 17c) becomes large again. A plot of the varianceg, versus time foh=0.1 is presented

A comparison of Fig. 1&) with Fig. 18c) allows us to  in Fig. 19a@). By comparing Fig. 1@) with Fig. 17a) one
conclude that delocalization of the QGS at very small and atan see that decreasing the effective Planck congtant-
large values ot is different. In the former case, the diffusion sults in a noticable decrease of the variance. The system
is caused by the separatrix QE states. These states are quagmains in the ground state with the probabilRy=0.996.
tum objects because they are delocalized, enabling tunnelingowever the variance is still large because the particle can
between the resonant celfsAs a consequence of the quan- propagate with small probability to levels with large>1,
tum nature of the separatrix QE states, an increase of th@ue to the diffusion via the separatrices which can be seen in
dimensionless Planck constaht, leads to delocalization of the plot of the probability distribution presented in Fig.
the separatrix QE states and a decreasBoét smalle, as  19(b).
shown in Fig. 15. On the other hand, wheris large we Another way to increase the stability of the ground state
observe delocalization caused by chaos, which is manifesteat smalle is to destroy the separatrix QE functions by choos-
in the irregular form of the probability distribution in Fig. ing the nonresonant value of the wave frequency so #hat
18(c). =1-Q/w+#0. For a nonresonant casé=t 0.01), the plot of

As follows from Fig. 15, in order to make the QGS more the variance as a function of time is presented in FigaR0
stable at smalk, one should decrease the Planck constant, The probability distribution at timen=t/T=3x 1 is illus-
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trated in Fig. 20b). One can see from Fig. 28 that intro-
ducing a detunings#0, results in considerable improve-

461

FIG. 20. (a) Time-evolution of the variance = o(m), wherem=t/T, and
(b) the probability distribution at timen=3x10° for the near-resonance

One can see from a comparison of Fig(&0with Fig. 19a)

ment of the stability of the QGS in comparison with the case(hzo'l’ =005, 1=5) that the variance in the near-

of exact resonance, illustrated in Fig.(&7 Thus, in order to
make the ground state more stable at small values ohe
must detune the system away from exact resonance.

If €is small, the minimal value of detuning, required
to destroy the separatrix structure and to make the ground
state more stable, can be estimated from the quantum equa-
tions of motions in the resonance approximati@é). The
term proportional tdhén/l destroys the separatrix QE states
as shown in Refs. 16, 19. This term becomes significant
when it becomes of the order ef On the other hand, the
separatrix QE function must, at least, occupy two separa-
trices. Thus, we can estimate the numiver,n, of the os-
cillator state at which the separatrix structure is destroyed,
namelyns=Ie/ sh. The separatrix QE functions decay expo-
nentially with increasinq for n>n;.° For the parameters
in Fig. 20, ns=250, which is less than the position of the
first separatrixn; = 385 shown in Fig. 1&) by the arrow. So,
the separatrix QE states at these parameters do not exist, and
we do not observe tunneling from the QGS to other reso-
nance cells.

Decreasing the value of, in the near-resonance case,
makes the QGS more stable. Unlike the near-resonance case,
in the case of the exact resonance, the stability of the QGS
for e<1 is independent of the wave amplitude, because in
this case the localization properties of the QGS are defined

by the structure of separatrix QE function, which in the resot|c. 21. The same
=0.01.

nance approximatiofwhene is smal) is independent o&.*
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resonance cag€ig. 20(a)] is much less than that in the exact
resonance cag€&ig. 19a)], in spite of the fact that the prob-
ability of remaining in the ground stat®,,, for these two

as in Fig. 15, but for the near-resonance @éase,
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wave amplitude
|
(©) the vicinity of the QGS in the near-resonance case is similar
08 to that in the exact resonance case, except for the region of
. small ¢, which was discussed above.
% 06 In the quantum case, as in the classical one, at very small
g e and finite 8, there always exists a QGS QE state for &ny
09_ 04 including the cases=1 andl=2. In Fig. 23 we present a
plot Py(e€) for the cases=1 andl=2 when§=0.1 andh
0.2 =0.5. As one can see from Fig. 23, the QGS in these two
heO 1 % cases becomes unstable at considerably lower values of
0O PRV RRPE ST than in the casé=5 in Fig. 21, which corresponds to the

wave amplitude classical dynamics in Figs. 7-9. In the cdsel, the stable
point shifts down from the regiok=0,P=0 in Figs. 1a)—
FIG. 22. Plot ofP9 versuse for the exact resonance case, whn0 (solid 7(c). In the casd =2, the stable point near the CGS at
line and open CI!’ClSS and Fwo curves for the near-resonance cages: ~0.2 becomes unstable as shown in Figa) 83(b), and 9.
=0.01 (dashed line and filled squajesé=0.1 (dot—dashed line and - . ] ™ v
crossek 1 =5, (@) h=1, (b) h=0.5, (c) h=0.1. The quantum manifestation of this process is a rapid decay
of the value ofP in the regione=0.2 in Fig. 23.

In conclusion, the classical dynamics in the vicinity of
cases does not differ significant({?,=0.99897 at5=0.01  the point X=0,P=0) in classical phase space and quantum
andP,=0.996 até=0). The reason is that the dynamics in dynamics in the vicinity of the ground state of the harmonic
the exact resonance case is mainly determined by the sepascillator in a field of a monochromatic wave, are explored.
ratrix QE function, and in this case there is a small probabil-Both resonance and near-resonance cases are analyzed. It is
ity for particle to tunnel to the high oscillator levels with ~ shown that at smak and finite detuning from the resonance,
>1, as shown in Fig. 1®). 6, the quantum ground state is always stable. In the éase

When the wave amplitude increases, the conditiodA =0 and for smalle, the dynamics is unstable for the reso-
#0 becomes less significant. This can be explained by thaance numberk=1,2. The stability of the classical dynam-
reduced influence of the term proportional doon the dy- ics in the central cell and the stability of the quantum dynam-
namics in comparison with influence of the wave with theics near the ground state of the harmonic oscillator in the
amplitudee in the region where the value @fis relatively  presence of chaos in the classical phase space is analyzed. It
small. [See the classical Hamiltonian in Eq$), (7), (16) is shown that under certain conditions>2,5=0,e<1,h
and guantum equatiof26).] In Fig. 21 we plot the function ~1) increasing the wave amplitude, makes the quantum
Po=Py(¢€) for the near-resonance case. In Figdap222c)  ground state more localized. Increasing the quantum param-
we compare the results for the exact resonance c&s®)  eter,h, for intermediate values af enhances localization of
with those for the near-resonance case, wher0.01 and the QGS considerably. Experimental confirmation of our pre-
6=0.1. One can see from these figures that the dynamics idicted stability properties of the ground state of an ion
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