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Stability of the ground state of a harmonic oscillator
in a monochromatic wave

Gennady P. Berman,a) Daniel F. V. James, and Dmitry I. Kamenev
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~Received 14 July 2000; accepted 7 May 2001; published 17 July 2001!

The stability of the ground state of a harmonic oscillator in a monochromatic wave is studied. This
model describes, in particular, the dynamics of a cold ion in a linear ion trap, interacting with two
laser fields with close frequencies. The stability of the ‘‘classical ground state’’—the vicinity of the
point (x50,p50)—is analyzed analytically and numerically. For the quantum case, a method for
studying a stability of the quantum ground state is developed, based on the quasienergy
representation. It is demonstrated that stability of the ground state may be substantially improved by
increasing the resonance number,l , where l 5V/v1d, V and v are, respectively, the wave
frequency and the oscillator frequency,l 51,2,. . . , udu,1; or by detuning the system from exact
resonance, so thatdÞ0. The influence of a large-amplitude wave~in the presence of chaos! on the
stability of the ground state is analyzed for different parameters of the model in both the quantum
and classical cases. ©2001 American Institute of Physics.@DOI: 10.1063/1.1383786#
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One of the major difficulties in developing quantum tech-
nologies, is the variety of quantum dynamical instabilities
due to interactions between different degrees of freedom
and resonant interactions with the external fields. Insta-
bilities in quantum systems are different from instabili-
ties in classical systems in which dynamical chaos occur
as the result of exponential divergence of initially close
trajectories. In quantum systems, the notion of a trajec-
tory is not well defined. This is one of the main reasons
why most methods for stability analysis cannot be di-
rectly applied to quantum systems. An important physi-
cal system convenient for investigating quantum dynami-
cal instabilities is a harmonic oscillator perturbed by a
monochromatic wave. We study stability of the ground
state of the harmonic oscillator in the monochromatic
wave field in the classical and quantum models. In the
classical case we investigate stability of trajectories in
phase space near the stable equilibrium point. In the
quantum model the stability of the ground state of the
harmonic oscillator is explored using Floquet formalism.
In patrticular, the stability of the quantum ground state
is characterized by the Floquet state mainly localized in
the ground state of the harmonic oscillator. In the case
when there is no such Floquet state, the harmonic oscil
lator ground state is unstable. We use the Husimi distri-
bution to demonstrate the correspondence between the
quantum and classical approaches.

I. INTRODUCTION

We study in this paper stability of the ground state of
ion trapped in a linear Paul trap and perturbed by an exte
electromagnetic field. In Ref. 1 the dynamics of a trapped
was studied for the case when the perturbation is chose
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the form of periodic delta-kicks. In this paper we conside
different problem. We suppose that the ion is driven by
monochromatic wave. In Ref. 2 it was shown that this s
tem can be realized when a single ion trapped in a linear
trap is perturbed by the field of two lasers with close fr
quencies. We study in this paper the stability of the grou
state of the ion in the latter model.

The classical dynamics of the monochromatically p
turbed harmonic oscillator has been studied in detail.~See
the reviews3,4 and references therein.! The usual approach to
this problem is resonance perturbation theory. However,
dynamics in the vicinity of the ‘‘classical ground state
~CGS!—the vicinity of the point (x50,p50), wherex is the
coordinate andp is the momentum—was not explored. W
study this problem here in detail because it is related to
problem of stability of the quantum ground state~QGS! in
the same model, considered in Sec. IV. The stable regim
the quantum model is important for understanding the sta
ity of a quantum computer based on trapped ions. We sh
that near pointx50, p50 in phase space for definite param
eters of the model there is a region of stability—the cen
resonance cell. It is demonstrated that the resonance pe
bation theory fails to describe the dynamics in the vicinity
the CGS and the character of the motion in this region
given by the Mathieu equation.

The Mathieu equation is usually used to describe
dynamics of ions in a Paul trap in the absence of an exte
electromagnetic wave~see, for example, Refs. 5–8!. The
time-dependent perturbation is generated in this case by
rotating quadrupole field of the trap, which keeps the io
inside the trap. We study in this paper the dynamics o
single trapped ion only in the pseudopotential appro
imation,9 when the unperturbed motion of the particle can
approximated by harmonic oscillations. The time-depend
perturbation in the system studied is generated by an elec
magnetic wave, not by the ac electric potential of the tr
All the nonlinear terms describing the dynamics of t
© 2001 American Institute of Physics
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450 Chaos, Vol. 11, No. 3, 2001 Berman, James, and Kamenev
monochromatically perturbed oscillator near the CGS, os
late with different frequencies, unlike those studied in Re
5–7. We show that the largest effect on the dynamics
produced by the nonlinear term oscillating with resonant f
quency. It is shown that for large wave amplitudes the n
linear terms in the classical equations of motion stabilize
dynamics near the CGS.

In the exact resonance case and for small enough w
amplitude,e, the CGS is stable forl .2 and unstable for
l 51,2. It is shown that for smalle the area of the central ce
increases with increasing the resonance number,l , and
increasing the perturbation amplitude,e. In the near-
resonance case, whendÞ0, for smalle the classical dynam
ics near the CGS is stable for any value of the resona
number,l . The casesl 51 andl 52 are investigated in detail
It is demonstrated that the CGS in these two cases beco
unstable at much lower values ofe than for the case of large
l ( l 54,5,. . . ).

Because the Hamiltonian is time-periodic, with the p
riod 2p/V, we use Floquet theory to study localization pro
erties of the quantum system in the region of the QGS. In
quantum model an additional parameter, a dimension
Planck constant,h, significantly influences the behavior o
the system. We show that the QGS is stable when the
lowing conditions are satisfied:~a! an existence of the
quasienergy~QE! state mainly localized in the QGS of th
harmonic oscillator,~b! whene!1 and chaos is weak,~c! for
h small enough, so that one can neglect tunneling. Whenh is
larger than the size of the central cell, no QE state locali
in the QGS of the harmonic oscillator was found. We sh
that, for small enough values ofe, the stability of the QGS
can be improved by choosing the nonresonant frequenc
the wave.

The classical dynamics near the CGS is explored in S
II for the case of exact resonance. Stability of the CGS in
near-resonance case, whendÞ0, is considered in Sec. III. In
Sec. IV we investigate the stability of the quantum grou
state of the ion under the influence of a monochroma
wave.

II. CLASSICAL DYNAMICS NEAR THE CGS IN THE
CASE OF EXACT RESONANCE

The Hamiltonian of the harmonic oscillator in a mon
chromatic wave is

H5
p2

2M
1

Mv2x2

2
1v0 cos~kx2Vt !5H01V~x,t !,

~1!

whereM is the mass of the particle,k is the wave vector,v0

is the amplitude of the perturbation, andH0 is the Hamil-
tonian of the harmonic oscillator. In this section we discu
the case of the resonance, whenV5 lv. It is known~see, for
example, Ref. 4! that under the resonance condition, an
finitesimal small perturbation,v0 , is enough to generate a
infinite stochastic web in classical phase space. This we
inhomogeneous, and its width decays with decreasing pe
bation amplitude,v0 , and increasing amplitude of oscilla
tions. Inside the cells of the web a particle moves alo
stable closed trajectories.
Downloaded 11 Dec 2001 to 128.165.156.80. Redistribution subject to AI
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We show below that resonance perturbation theory3 can-
not be used to describe the motion of the particle near
CGS when the resonance number,l , is greater than 2. The
dynamics in this region is defined by the Mathieu equati
The influence of nonlinear terms, oscillating with differe
frequencies, on the dynamics given by the Mathieu equa
is discussed in detail.

Let us perform a transformation from the variables (p,x)
to the canonically conjugate variables (J̄w , w),

x5~2J̄w /Mv!1/2sinw5r ~ J̄w!sinw, ~2!

px5~2J̄wMv!1/2cosw5Mvr ~ J̄w!cosw, ~3!

wherer ( J̄w)5(2J̄w /Mv)1/2 is the amplitude of oscillations
It is more convenient to work with the dimensionless co
dinate, X5kx, and the dimensionless momentum,P
5kp/Mv, which are related to the variables (J̄w , w) by the
formulas

X5r~ J̄w!sinw, ~4!

P5r~ J̄w!cosw, ~5!

wherer( J̄w)5AX21P25kr(Jw). In order to treat time on
the same basis as the phase,w, let us introduce the new pai
of canonically conjugate variables, (J̄b , b), whereb5Vt.
The initial Hamiltonian~1! expressed in these new variabl
takes the form

H5 J̄wv1 J̄bV1v0 cos~r sinw2b!. ~6!

H is independent of time and describes the motion in
two-dimensional space. The nonlinear perturbation in Eq.~6!
can be expressed in the series

v0 cos~r sinw2b!5v0 (
m52`

`

Jm~r!cos~mw2b!, ~7!

where Jm(r) is the Bessel function. Under the resonan
condition,V5 lv, all terms in the sum~7! oscillate rapidly
and can be averaged out, except for the term withm5 l . In
this approximation, the Hamiltonian~6! is reduced to

H5 J̄wv1 J̄bV1v0Jl~r!cos~ lw2b!. ~8!

It is convenient to introduce new resonance variables, (Ĩ , u),
( J̃, b̃), by using the generating function

F5 Ĩ ~ lw2b!1 J̃b.

The new Hamiltonian,

H5 Ĩ ~ lv2V!1 J̃v1v0Jl~r!cosu, ~9!

whereu5 lw2b, is independent of the variableb̃. Hence,
J̃5const. The resonance Hamiltonian,

Hl~r,u!5H2 J̃v5v0Jl~r!cosu ~10!

~where we used the resonance conditionlv5V! is indepen-
dent of time, unlike the initial Hamiltonian~1!.

The Poincare´ surfaces of section of the system describ
by the Hamiltonian~1! in variables (X,P) are shown in Figs.
1~a!–1~e!, for the casesl 51,2,3,4,5. The phase points a
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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451Chaos, Vol. 11, No. 3, 2001 Stability of the ground state
plotted at times,t j52p j /V, where j 50, 1, 2, . . . . One can
see that the phase space has an axial symmetry of the ordl .
The phase space is divided into the cells. A particle mo
along closed trajectories inside the cells.@In Figs. 1~a!–1~e!
only the boundaries of the cells are shown.# For small values
of v0 , the motion inside the resonant cells, illustrated
Figs. 1~a!–1~e!, can be considered in the resonance appro
mation. The next order approximation is only needed to a
lyze the motion inside the exponentially small chaotic r
gions near the separatrices. It is also shown below that
resonance approximation fails to describe the motion in
region near the point (X50,P50).

It is easy to see that the resonance Hamiltonian~10!
yields unstable solution near the CGS@the point (X50,P
50)#. To show this, we present the Hamiltonian~10! in the
form

FIG. 1. The resonance cells in phase space fore5v0k2/Mv250.05, d
50, and~a! l 51, ~b! l 52, ~c! l 53, ~d! l 54, ~e! l 55.
Downloaded 11 Dec 2001 to 128.165.156.80. Redistribution subject to AI
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Hl5v0

r l

2l l !
coslw5El , ~11!

whereEl5const ~because the resonance Hamiltonian is
dependent of time!. Also, we took into account that forr
!1 the Bessel function can be expressed in the form

Jl~r!'r l /2l l !, ~12!

and the fact that in the Poincare´ surfaces of section the po
sition of the particle is taken at the momentsVtk52pk, k
50,1,2, . . . . It follows from Eq.~11! that at the angleswk

5(p/2l ) (2k21), k51, 2, . . . , 2l , the radius r should
sharply increase or decrease. It is seen from Figs. 1~a!–1~e!
that at angleswk the particle moves in the radial direction
The growth ofr is restricted by nonlinear effects.

However, the resonance perturbation theory does not
equately describe the motion of a particle in the vicinity
the point (X50,P50) for large values of the resonanc
numberl , because the amplitude of the resonance term
to Eq. ~12! quickly decays when the radius,r, decreases
Indeed, atl 54 andr50.1 the amplitude of the resonanc
term with m5 l 54 in Eq. ~7! is 80 times less than the am
plitude of the nonresonant term withm5 l 2153. In order to
describe the motion in the region near the CGS, we cons
the initial Hamiltonian~1! under the conditionX!1. The
exact classical equation of motion reads as

d2

dt2
X1v2X5

v0k2

M
sin~X2Vt !. ~13!

Up to first order inX, Eq. ~13! is

d2

dt2
X1v2

„12e cos~Vt !…X5
v0k2

M
sin~Vt !, ~14!

wheree5v0k2/Mv2 is the dimensionless perturbation am
plitude. If we introduce a new dimensionless time, 2t
5Vt, then from Eq.~14! we obtain the Mathieu equatio
with the additional right-hand side term in the form

d2

dt2 X1al„12e cos~2t!…X5ale sin~2t!, ~15!

whereal5(2/l )2. From the theory of Mathieu functions10 it
is known that for smalle, Eq. ~15! has unstable general so
lutions at al51 and al54, which correspond to the reso
nance numbers,l 52 and l 51. The additional term on the
right-hand side of Eq.~15! does not influence the stability o
trajectories.~See Ref. 10, Sec. 6.22.! At al,1 and small
enough values ofe, the Mathieu equation has periodic sol
tions which correspond to stable dynamics for resona
numbersl .2. In Fig. 2 stable trajectories in the system d
scribed by the Hamiltonian~1! are shown forl 53, 4, 5. The
stable region in the vicinity of the CGS can be considered
additional ‘‘central cells’’ to those resonance cells shown
Figs. 1~c!–1~e!.

As follows from Figs. 2~a!–2~c! the trajectories in the
cell have an axial symmetry of orderl . This feature can be
explained by the influence of the resonance term~11! in the
perturbation~7! on the dynamics since this term is invaria
under the substitutionw→2p/ l @see Eq.~11!#. The substan-
tial influence of the nonlinear resonant term on the line
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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452 Chaos, Vol. 11, No. 3, 2001 Berman, James, and Kamenev
dynamics given by the approximate equation~15! follows
also from a comparison of different trajectories in each
Figs. 2~a!–2~c!. Indeed, the internal trajectories with sma
values ofr have a circular form because the amplitude of
resonance term~11! is small for smallr. The outer trajecto-
ries in Figs. 2~a!–2~c! have axial symmetry of orderl be-
cause the amplitude of the resonant term~11!, which pro-
duces this symmetry, increases whenr increases. In Figs
2~a!–2~c! one can see that the size of the central cell
creases with increasing resonance number,l , since the am-
plitude of the resonant term~11!, which causes instability
near the CGS~at r!1!, decreases asl increases.

Next, we shall analyze the dynamics in the central cel
a function ofe. The change of trajectories when wave a
plitude increases is shown in Figs. 3~a!–3~d! for l 54. Two
features in the structure of the trajectories of the central
can be observed.~i! An increase ine shifts the central cell
upwards.~ii ! The size of the cell increases considerably

FIG. 2. The trajectories in the central resonance cell in phase spaced
50 and~a! l 53, e5531024, ~b! l 54, e50.05, ~c! l 55, e50.05.
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f

e

-

s
-

ll

Figs. 4~a!–4~c! as e increases in comparison with the cas
shown in Fig. 2~b!, when the value ofe is very small. The
cell shrinks ase increases, as shown in Fig. 4~d! for e510. A
further increase ofe destroys the central cell entirely.

Similar features were observed for the dependence of
dynamics in the central cell one for the casel 55 in Figs.
4~a!–4~d!. A comparison of the data forl 55 in Figs. 4~a!–
4~d! with those forl 54 in Figs. 3~a!–3~d! allows us to con-
clude that the area of the central cell increases with incre
ing l , and that chaotization of the motion in the central c
for larger values ofl requires larger values ofe. In other
words, the motion in the central cell becomes more stable
the resonance number,l , increases.

In order to understand the observed dynamics, we
cluded in our consideration only the first order terms inX
@see Eq.~15!# and compared the dynamics in the linear a
proximation with that given by the exact equation~13!. The
trajectories described by the approximate equation~15! for
e55, l 54 and fore59.5, l 55 are shown in Figs. 5~a! and
5~b!. The following features can be observed.~i! As follows
from our calculations, the phase portrait shifts up from t
point (X50,P50) under the influence of the term on th
right-hand side of the approximate equation~15!. ~ii ! A com-
parison of Fig. 5~a! with Fig. 3~c! and Fig. 5~b! with Fig.
4~b! allows us to conclude that the terms of higher order inX
in Eq. ~13! change the shape of trajectories and restrict
region of stable motion.~The dynamics given by the Mathieu
equation is stable or unstable in the global phase space s
this equation is linear inX.! ~iii ! The motion described by

FIG. 3. Trajectories in the central resonance cell atl 54, d50 with a per-
turbation amplitude:~a! e50.5, ~b! e52, ~c! e55, ~d! e510.
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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453Chaos, Vol. 11, No. 3, 2001 Stability of the ground state
the approximate equation~15! becomes unstable for value
of e.e l where e l lies in the interval 2.3,e3,2.4 for l
53; 5.5,e4,5.6 for l 54; and 9.6,e5,9.7 for l 55. One
can see from Fig. 3~d! and Figs. 4~c! and 4~d! that the motion
described by the exact equation~13! in the regione.e l re-
mains stable. Thus, the higher order terms inX in Eq. ~13!
stabilize the dynamics in the central cell for large values
the perturbation amplitude,e.

Let us compare the classical dynamics in the central
with the dynamics in other cells when the perturbation p
rametere is not small. The results of calculation of the dy
namics in several cells are shown in Figs. 6~a!–6~d!. From a
comparison of Fig. 6~b! with Figs. 3~c! and 3~d! and Fig.
6~d! with Figs. 4~a!–4~d! one can see that the trajectories
the central cell remain stable, while other neighboring ce
are completely destroyed by chaos. The extremely high
bility of trajectories in the central cell can be explained
the relatively small influence on the dynamics of the terms
high order inX, oscillating with different frequencies, be
cause their amplitudes are small for smallr.

III. CLASSICAL DYNAMICS NEAR THE CGS IN THE
NEAR-RESONANCE CASE

Now, let us consider the CGS in the near-resonance c
whendÞ0. The resonant Hamiltonian~9! takes the form

Hl5 Ĩ ~dv!1v0Jl~r!cosu. ~16!

FIG. 4. Trajectories in the central resonance cell atl 55, d50 for the
following perturbation amplitudes:~a! e55, ~b! e510, ~c! e515, ~d! e
519.
Downloaded 11 Dec 2001 to 128.165.156.80. Redistribution subject to AI
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The stationary points for the dynamics generated by
Hamiltonian~16! are defined by the conditions

u̇5]Hl /] Ĩ 50, I852]Hl /]u50.

The positions of the elliptic stationary points are given by t
expressions

v0

]Jl@kr~ Ĩ e!#

] Ĩ
57dv, ue50,p, ~17!

where the sign ‘‘2’’ corresponds to the stable point, with th
angleue50 with theP-axis, and the sign ‘‘1’’ corresponds
to the stable point with the angleue5p. In dimensionless
form, Eq. ~17! is

1

re

]Jl~re!

]r
57

d

l e
, ~18!

wherere5kr( Ĩ e). For the positions of the hyperbolic sta
tionary points, one has

Jl@kr~ Ĩ h!#50, uh56
p

2
. ~19!

As one can see from Eq.~18!, the number of the elliptic
stable points in the near-resonance case, whendÞ0, is finite
because the right-hand side of Eq.~18! is constant while the
left-hand side oscillates, and decreases on average. As a
sequence, there is a finite number of resonance cells.

FIG. 5. The phase trajectories given by the approximate equation~15! for
d50 and~a! l 54, e55, ~b! l 55, e59.5.
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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454 Chaos, Vol. 11, No. 3, 2001 Berman, James, and Kamenev
The motion near the CGS can be described by the
proximate equation~15! with the parameteral equal toal

5@2/(l 2d)#2. It is known10 that for smalle and dÞ0 the
Mathieu equation has stable solutions for anyl including the
casesl 51 andl 52.

Let us consider the casesl 51 and l 52 for dÞ0 in
detail. For l 51, one may use the results of the resonan
theory for arbitrary smallX andP, because the term of low
est order inX ~proportional toX! in the Hamiltonian~1! is
resonant. Let us suppose that the dimensionless radiusre in
Eq. ~18! is small,re!1. ThenJ18(re)'1/2. @See Eq.~12!.#
Equation~18! then yields

re57e/~2d l !. ~20!

Thus, the shift of the stable elliptic point from the CGS
small, re!1, when the conditione!2udu l is satisfied. For
small values of the wave amplitude,e, the shift of the elliptic
stable point from the pointX50,P50 is proportional toe.
One can see from Eq.~20! that for l 51 one elliptic stable
point exists for arbitrary small value ofe. ~This also follows
from the theory of Mathieu functions.!

When e is small, the phase trajectories are circles w
center located near the CGS. Figuratively speaking, fod
Þ0 ande!1 there is only one resonant~central! cell with an
infinite area, because for a small enough value ofe, Eq. ~18!
has no other solutions, except for Eq.~20!. Hence, in phase
space there are no other cells, except for the central o
When e increases~we supposee.0! and d.0, the stable
point shifts downwards, as shown in Fig. 7~a!, because the

FIG. 6. The influence of chaos on different resonant cells,d50, ~a! l 54,
e51; ~b! l 54, e55; ~c! l 55, e51; ~d! l 55, e55.
Downloaded 11 Dec 2001 to 128.165.156.80. Redistribution subject to AI
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left-hand side of Eq.~18! is positive and we should take th
sign ‘‘1’’ on the right-hand side, which corresponds to th
shift in the directionu5p.

As e increases@see Figs. 7~b! and 7~c!#, dynamical chaos
appears, and the area of the central cell decreases. As be
we have considered the influence of high order terms inX in
the exact equation of motion~13! on the dynamics describe
by the approximate equation~15!. Equation~15! has unstable
solutions whene.e1 , where ue1u5A24udu/5 if d.0, and
e15A24udu if d,0.11 The parameterd50.1 yields e1

50.69. As one can see from Figs. 7~b! and 7~c!, the central
cell remains undestroyed. Thus, the nonlinear terms stab
the dynamics in the near-resonance case, similar to the
of exact resonance. Ate51.2, in Fig. 7~c! one more cell is
generated, because condition~18! is satisfied for two values
of r.

FIG. 7. Phase space for the near-resonance case,d50.1, l 51, and ~a! e
50.4, ~b! e50.7, ~c! e51.2.
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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455Chaos, Vol. 11, No. 3, 2001 Stability of the ground state
Unlike the casel 51, whenl 52 ande is small enough
@see Fig. 8~a!#, the stable point does not shift from the poi
(X50,P50). Instead, in Fig. 8~b! we observe bifurcation a
the valuee5e2 , wheree2 can be estimated from the solu
tion of the approximate equation~15!. Namely, up to the
second order ind, the dynamics becomes unstable ate2

52d2d2/2.11 Our computed value ofe2 lies in the interval
0.185,e2,0.186 which is slightly less than the estimat
quantity due to the influence of nonlinear terms which
neglected in the approximate equation~15!.

As shown in Fig. 9 for further increase ofe, two stable

FIG. 8. Phase space for the near-resonance case,d50.1, l 52, and~a! e
50.17, ~b! e50.22.

FIG. 9. The same as in Figs. 9~a! and 9~b! but for e50.8.
Downloaded 11 Dec 2001 to 128.165.156.80. Redistribution subject to AI
e

points, formed after bifurcation, diverge at a larger distan
from each other, the chaotic area increases, and additi
cells appear because the condition~18! is satisfied for addi-
tional values ofre .

IV. STABILITY OF THE QUANTUM GROUND STATE

Now we consider stability of the ground state of th
quantum harmonic oscillator~QGS! under the same condi
tions as in the classical model. The quantum Hamiltonian

Ĥ5
p̂2

2M
1

Mv2

2
x21v0 cos~kx2Vt !5Ĥ01V̂~x,t !,

~21!

where p̂52 i\]/]x, and the same notation as in Eq.~1! is
used. Since the Hamiltonian~21! is periodic in time, we can
use the Floquet theorem and write the solution of the Sch¨-
dinger equation in the form

cq~x,t !5exp~2 i«qt/\!uq~x,t !, ~22!

where «q is the quasienergy,cq(x,t) is the quasienergy
eigenfunction, and the functionuq(x,t) is periodic in time,
uq(x,t)5uq(x,t1T), whereT52p/V. We expanduq(x,t)
in the basis states of the unperturbed harmonic oscillato

uq~x,t !5 (
n50

`

Cn
q~ t !cn~x!, ~23!

where the coefficients,Cn
q(t), are periodic in time,Cn

q(t)
5Cn

q(t1T). Due to the periodicity ofCn
q(t), the approach

based on Floquet states is very useful for investigating
localization properties of the quantum system. Namely
some initial state coincides with the quasienergy funct
localized in some region of the Hilbert space,Cn(0)
5Cn

q(0), then it will remain localized in this region for al
time.

We used the following numerical procedure to calcula
the QE states.12–14 The QE states are the eigenstates of
evolution operator for one period of the wave field,Û(T). In
order to construct the matrixUnm of the operatorÛ(T), we
choose the representation of the HamiltonianĤ0 . Let us act
with the evolution operator on the wave functionc(x,0),

Û~T!c~x,0!5c~x,T!, ~24!

and choose the initial state in the formCn(0)5dn,n0
. In this

way we obtain a column in the evolution operator matrix

Un,n0
5Cn

(n0)
~T!, ~25!

where the coefficients,Cn
(n0)(T), can be obtained by a nu

merical solution of the Schro¨dinger equation.~For a more
detailed discussion, see Ref. 15!. After the diagonalization of
Un,m , we obtain the QE functions,Cn

q[Cn
q(mT), m

50, 1, 2, . . ., and the quasienergies,«q . The values of the
matrix elements,Un,m , depend on three dimensionless p
rameters: the wave amplitude,e, the quantum parameter,h
5k2\/Mv, which can be treated as a dimensionless Pla
constant, and the ratioV/v5 l 2d.

When d50 and the amplitude of the wave is small,e
!1, most of the QE states are divided into almost indep
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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dent groups, each located in one resonance cell of the Hil
space.16 In order to show this let us characterize each Q
state by its mean,nq5(nnuCn

qu2, and a variance,sq

5@(n(n2nq)2uCn
qu2#1/2 and plot nq vs sq . ~See also Ref.

17.! These plots for different values of the resonance nu
ber, l , and for a small value of the wave amplitude,e, are
shown in Figs. 10~a!–10~e!. The boundaries of the cells ar
marked by arrows. The radius of the external boundary
classical cells in Figs. 1~a!–1~e! corresponds to the position
of the boundary of the first quantum cell, respectively,
Figs. 10~a!–10~e! with the quantized radius,rn5A2nh. One
can see from Figs. 10~a!–10~e! that the QE states are mostl
located within the quantum resonance cells, because t
means,nq , are situated inside the cells, and their widths,sq ,
do not exceed the width of the corresponding resonance
Such states form rows in Figs. 10~a!–10~e!. Each cell in the
Hilbert space in the quasiclassical limit corresponds tol

FIG. 10. Plots of means versus variances forh50.5, d50 and~a! l 51, e
50.05, ~b! l 52, e50.05, ~c! l 53, e5531024, ~d! l 54, e50.05, ~e! l
55, e50.05.
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classical cells in the phase space (X, P).18 There are also QE
states which do not belong to a particular resonance cell,
instead belong to the stochastic web. These QE states ha
‘‘separatrix’’ 15 structure, i.e., they are delocalized over se
eral resonance cells and have large variance,sq . These
states are represented by scattered points on the diag
nq5nq(sq) in Figs. 10~a!–10~e!. The structure of these QE
states was discussed in detail in Refs. 15, 16, 19.

In this paper, we focus on the QE states which belong
the central resonance cell, because these states are m
responsible for the stability properties of the QGS. Su
states are characterized by small mean,nq , and are located
in the low part of the plots,nq(sq), in Figs. 10~d! and 10~e!.
For l 51,2 in Figs. 10~a! and 10~b! these states are absen
which corresponds to unstable dynamics near the CGS
classical phase space, shown, respectively, in Figs. 1~a!–
1~b!. For l 53, the area of the stable island in Fig. 2~a! is
much less than the value of the dimensionless Planck c
stanth (h50.5). So, in this case, the QE states localized
the central resonance cell are absent, too.

The plots of the probability distribution for the QE sta
q8 with the smallest mean,nq8 @marked in Figs. 10~d! and
10~e! by arrows# are shown in Figs. 11~a! and 11~b!, for the
casesl 54 andl 55. On a logarithmic scale, these states a
illustrated in Figs. 12~a! and 12~b!. The Husimi functions of
these states are shown in Figs. 13~a! ( l 54) and 13~b! ( l
55). As one can see from Figs. 11~a! and 11~b!, the QE
states with smallest mean are mainly localized on the Q
of the harmonic oscillator.~Below we refer to such states a
the QGS QE states.! From Figs. 11~a! and 11~b! and 12~a!
and 12~b!, it follows that the small part of the probability
distribution is located at the levels with the numbersn
5 lm, wherem51, 2, . . . . This can be explained by the in
fluence of the resonance terms in the quantum equation
motion.18 In the resonance approximation, the QE states
be defined from a set of algebraic equations which in dim
sionless form can be written as16,20

S Eq2
hdn

l DCn
q5

e

2
~Vn,n1 lCn1 l

q 1Vn,n2 lCn2 l
q !, ~26!

whereEq5«qk2/Mv2 is the dimensionless quasienergy.
The matrix elements forn@1 can be approximated b

the Bessel functionsJm ,

Vn,n1m5
i mnm/2e2 h/4

A~n11! . . . ~n1m!
Jm~A2nh!. ~27!

For a more precise form of these matrix elements, see R
16, 20.

As one can see from Eq.~26!, in the resonance approxi
mation the QE functions have the formCn

q5Clm
q with m

51, 2, . . . . In this case, the particle is allowed to move on
between the states which satisfyn5 lm. As shown in Ref.
18, a particular form of the QE function,Cn

q5Clm
q , makes

the Husimi functions, illustrated in Figs. 13~a! and 13~b!,
approximately symmetric with axial symmetry of orderl .

Now, let us consider the structure of the QE states ae
increases. There are several QE states localized nea
QGS of the harmonic oscillator. Some of them are shif
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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457Chaos, Vol. 11, No. 3, 2001 Stability of the ground state
FIG. 11. The probability distribution for the QGS QE states with the sm
est mean,nq , for the cases~a! l 54, ~b! l 55; e50.05, h50.5, d50.

FIG. 12. The same as in Figs. 11~a! and 11~b! but in the logarithmic scale.
Downloaded 11 Dec 2001 to 128.165.156.80. Redistribution subject to AI
from the level with the numbern50. They can be associate
with the classical central resonance cell, shifted upwardse
increases. In this case, the Husimi function in Fig. 14~a! of
the QE state with the probability distribution illustrated
Fig. 14~b! ~for l 55 ande55! has a form similar to the form
of the trajectories in classical phase space shown in Fig. 4~a!.
At large enough values of the wave amplitude@e55 in Fig.
14~a!#, there are no QE states localized in the neighbor
quantum cells, except for the QE states localized in the c
tral cell. This corresponds to the chaotic classical dynam
shown in Figs. 6~b! and 6~d! with the stable island in the
center of phase space.

The QE state, mostly localized at the QGS of the h
monic oscillator, is of the most interest for us, because
mainly defines the dynamics of the quantum state initia
located at the level withn50. The time-evolution of the
system with the initial stateCn(0)5dn,n0

is defined by the
equation

-

FIG. 13. ~a! The Husimi functions of the QGS QE state shown in Fig. 11~a!,
l 54. ~b! The Husimi functions of the QGS QE state shown in Fig. 11~b!,
l 55. The cross-sections are plotted from the level 0.047 with the increm
0.042,h50.5, e50.05.
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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458 Chaos, Vol. 11, No. 3, 2001 Berman, James, and Kamenev
Cn~mT!5(
q

Cn
q* Cn0

q exp~2 i«qmT/\!, ~28!

wherem50, 1, 2, . . . . The amplitude of probability to fin
the system in the initial state,n0 , is

Cn0
~mT!5(

q
uCn0

q u2 exp~2 i«qmT/\!. ~29!

Suppose that some QE state with the numberq8 is mostly

localized at the leveln5n0 , i.e., uCn0

q8u2@uCn0

q u2 for all q

Þq8. Then, the term withq5q8 dominates in the sum on th
right-hand side of Eq.~29!, and we can write

Cn0
~mT!'uCn0

q8u2 exp~2 i«q8mT/\!. ~30!

The probability, Pn0
(mT), to find the system at timetm

5mT in the state withn5n0 is given by

Pn0
~mT!5uCn0

~mT!u2'uCn0

q8u4. ~31!

The value ofPn0
(mT) in this approximation is independen

of the number of periods passed,Pn0
(mT)[Pn0

. In the next

FIG. 14. ~a! The Husimi distribution of the QE function shifted from th
ground state, shown in~b!. The iso-level contours are plotted from the lev
0.047 with the increment 0.042,e55.0, h50.5, l 55.
Downloaded 11 Dec 2001 to 128.165.156.80. Redistribution subject to AI
approximation, the neglected terms in Eq.~29! cause the
probability Pn0

to oscillate slightly with time.
In Fig. 15, we present a plot of the probability,P0

5uCn050
q u4, of finding the system in the QGS as a function

the wave amplitude,e, if the initial state is the QGS of the
harmonic oscillator. One can see that dynamical chaos~the
range of large enoughe! decreases this probability. Howeve
the process of delocalization of the QGS QE state is
tremely slow ase increases, in comparison with that i
neighboring cells. For example, ate55 all QE states in the
nearest cells are chaotic~delocalized!, while the QE state
located at the QGS remains localized with the probabi
P0'0.56 whenh50.5, andP0'0.6 whenh51.0. This cor-
responds to the classical chaotic dynamics with the sta
island in the center of phase space shown in Fig. 6~d!.

From a comparison of the three different curves, forh
50.1, h50.5, andh51.0 in Fig. 15, one can note the fo
lowing features.~i! For small values ofe, an increase ofh
leads, on average, to a decrease in the stability of the Q
~ii ! The QGS for large values ofh (h51) is more stable
under the influence of chaos~the range of sufficiently large
e! than that for small values ofh (h50.1). We should note
that oscillations of P0(mT) in time should increase a
P0(mT) decreases. This happens in the region of sufficien
large e in Fig. 15, because in this case the influence of
glected terms in Eq.~29! becomes significant.

More information about the stability of the QGS can
extracted from an analysis of the structure of QE states
cated at the QGS for different values of the wave amplitu
e, shown in Figs. 16~a!–16~f! ~for h50.5!. The QGS QE
state shown in Fig. 16~a! for small value ofe (e50.05) is
similar to the separatrix QE states,15 because it has a regula
structure.@Compare, for example, with Fig. 16~c! where this

FIG. 15. The probability to find the system in the QGS of the harmo

oscillator, defined by the valuesuCn50
q8 u4 of the QE stateq8 mostly localized

at the state withn50, versus the wave amplitude,e, for three values of the
effective Planck constant,h; l 55.
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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459Chaos, Vol. 11, No. 3, 2001 Stability of the ground state
structure is destroyed.# It is spread over several resonan
cells, and the maxima of this function are located near
quantum separatrices indicated in Fig. 16~a! by arrows.

The separatrix QE states are of quantum nature beca
they are delocalized over several resonance cells. These
states provide tunneling between the cells15,19 when chaotic
regions in the phase space are negligibly small, and the c
sical particle cannot practically penetrate from one resona
cell to another. The separatrix QE function mostly localiz
in the QGS is different from other separatrix states stud
before.15 On the one hand, it is delocalized over several re
nance cells@see Fig. 16~a!# as are the other separatrix Q
functions. On the other hand, this particular QE function
mostly concentrated on the QGS of the harmonic oscilla
unlike the other separatrix QE functions. These ‘‘contrad
tory’’ features of the QGS QE state define the dynamics:

FIG. 16. ~a! The QE states mostly localized at the QGS of the harmo
oscillator ~QGS QE states!, h50.5, ~a! e50.05, ~b! e50.5, ~c! e55.5 ~d!
e56.0, ~e! e57.6, ~f! e59.2. The boundaries of the quantum cell a
marked by arrows.
Downloaded 11 Dec 2001 to 128.165.156.80. Redistribution subject to AI
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the one hand, the system remains mainly localized in
QGS, but on the other hand, a small part of the probabi
distribution can tunnel to harmonic oscillator states w
large n, located in other resonant cells. As we increase
parameterh, the separatrix QE states become more deloc
ized, and the probability to tunnel to other cells increas
This explains the decrease ofP0 with increasingh in Fig. 15.
~Compare the different curves in the region of smalle.!

For intermediate values ofe, when 1,e,7, the stability
of the QGS increases with increasingh. However, one can
improve the stability of the QGS by increasingh only up to
a limiting value,hl . Whenh becomes larger than the area
the central cell in phase space, the QGS becomes unst
Thus, ath55, l 54, e52 @see the classical phase space
Fig. 3~b!# and ath55, l 55, e55 @Fig. 4~a!# no localized
QGS exists.

The increase ofP0 with increasing wave amplitude,e,
when e is small ~e,0.5 for h50.5 ande,1.0 for h51.0!,
shown in Fig. 15, is a consequence of the partial localizat
of the separatrix QE state@see Fig. 16~b!# under the influence
of chaos. This was explored in Ref. 15. In this case, the Q
QE function, shown in Fig. 16~b!, loses its ‘‘separatrix’’ fea-
tures. A further increase ofe causes the QGS QE state
become more delocalized. However, as one can see f
Figs. 16~c! (e55.5,h50.5), and 16~d! (e56.0,h50.5) de-
localization takes place mainly over the nearest oscilla
states with small numbers,n. For e.5.5 (h50.5) the oscil-
lations appear inP0(e), as seen in Fig. 15. Thus, the Q
function ate56 in Fig. 16~c! is less localized than the QE
function ate57.6 shown in Fig. 16~d!. For large values ofe
(e.7.6), practically all QE states are delocalized. This is
quantum manifestation of chaotization of the classical cen
cell in phase space.

In order to illustrate the nonmonotonic character of
calization of the QGS as a function of the wave amplitude
small e, we computed the dynamics of the quantum st
initially concentrated on the ground state of the harmo
oscillator,Cn(0)5dn,0 , using Eq.~28!. The time-evolution
of the variance,

s~mT!5A(
n

uCn~mT!u2~n2n̄~mT!!2, ~32!

where n̄(mT)5(nuCn(mT)u2n is the mean, is presented i
Figs. 17~a!–17~c! for three values ofe. When the wave am-
plitude, e, is small @Fig. 17~a!#, a small part of the wave
packet can propagate to large values ofn due to diffusion via
the separatrices as shown in Fig. 18~a!. A similar tunneling
effect of the wave packet between the resonance cells via
separatrices was explored in Ref. 15. In spite of the sm
probability of tunneling to other cells, the contribution of th
part to the variance,s, is significant because it is propor
tional to (n2n̄)2, whereun2n̄u@1. At e50.5, the separatrix
QE states are destroyed by chaos, as shown in Fig. 16~b!,
and QGS becomes more localized@see Fig. 18~b!#. This
leads to a significant decrease ofs in Fig. 17~b! in compari-
son with the case of smalle, shown in Fig. 17~a!. A further

c

P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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460 Chaos, Vol. 11, No. 3, 2001 Berman, James, and Kamenev
increase ofe up to the valuee57.6 results in delocalization
of the QGS, as shown in Fig. 18~c!, and the variance,s
5s(mT) in Fig. 17~c! becomes large again.

A comparison of Fig. 18~a! with Fig. 18~c! allows us to
conclude that delocalization of the QGS at very small and
large values ofe is different. In the former case, the diffusio
is caused by the separatrix QE states. These states are
tum objects because they are delocalized, enabling tunne
between the resonant cells.15 As a consequence of the qua
tum nature of the separatrix QE states, an increase of
dimensionless Planck constant,h, leads to delocalization o
the separatrix QE states and a decrease ofP0 at smalle, as
shown in Fig. 15. On the other hand, whene is large we
observe delocalization caused by chaos, which is manife
in the irregular form of the probability distribution in Fig
18~c!.

As follows from Fig. 15, in order to make the QGS mo
stable at smalle, one should decrease the Planck constanth.

FIG. 17. Time-evolution of the variances5s(m), wherem5t/T, for three
values of the wave amplitudes:~a! e50.05, ~b! e50.5, ~c! e57.6, and for
h50.5, l 55, d50.
Downloaded 11 Dec 2001 to 128.165.156.80. Redistribution subject to AI
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A plot of the variance,s, versus time forh50.1 is presented
in Fig. 19~a!. By comparing Fig. 19~a! with Fig. 17~a! one
can see that decreasing the effective Planck constant,h, re-
sults in a noticable decrease of the variance. The sys
remains in the ground state with the probabilityP050.996.
However the variance is still large because the particle
propagate with small probability to levels with largen@1,
due to the diffusion via the separatrices which can be see
the plot of the probability distribution presented in Fi
19~b!.

Another way to increase the stability of the ground st
at smalle is to destroy the separatrix QE functions by choo
ing the nonresonant value of the wave frequency so thad
5 l 2V/vÞ0. For a nonresonant case (d50.01), the plot of
the variance as a function of time is presented in Fig. 20~a!.
The probability distribution at timem5t/T533106 is illus-

FIG. 18. Probability distribution in the system with initial conditio
Cn(0)5dn,n0

and ~a! e50.05, mT533105T; here uC0u250.746, ~b! e
50.5, mT5104T; uC0u250.982, ~c! e57.6, mT55000T; uC0u250.137,
uC1u250.423. The boundaries of quantum cells~quantum separatrices! are
marked by arrows;h50.5, l 55, d50.
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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461Chaos, Vol. 11, No. 3, 2001 Stability of the ground state
trated in Fig. 20~b!. One can see from Fig. 20~a! that intro-
ducing a detuning,dÞ0, results in considerable improve
ment of the stability of the QGS in comparison with the ca
of exact resonance, illustrated in Fig. 17~a!. Thus, in order to
make the ground state more stable at small values ofe, one
must detune the system away from exact resonance.

If e is small, the minimal value of detuning,d, required
to destroy the separatrix structure and to make the gro
state more stable, can be estimated from the quantum e
tions of motions in the resonance approximation~26!. The
term proportional tohdn/ l destroys the separatrix QE stat
as shown in Refs. 16, 19. This term becomes signific
when it becomes of the order ofe. On the other hand, the
separatrix QE function must, at least, occupy two sepa
trices. Thus, we can estimate the number,n5nd , of the os-
cillator state at which the separatrix structure is destroy
namelynd5 l e/dh. The separatrix QE functions decay exp
nentially with increasingn for n.nd .19 For the parameters
in Fig. 20, nd5250, which is less than the position of th
first separatrixn15385 shown in Fig. 19~b! by the arrow. So,
the separatrix QE states at these parameters do not exist
we do not observe tunneling from the QGS to other re
nance cells.

Decreasing the value ofe, in the near-resonance cas
makes the QGS more stable. Unlike the near-resonance
in the case of the exact resonance, the stability of the Q
for e!1 is independent of the wave amplitude, because
this case the localization properties of the QGS are defi
by the structure of separatrix QE function, which in the re
nance approximation~whene is small! is independent ofe.16

FIG. 19. ~a! Time-evolution of the variance,s5s(m), wherem5t/T, and
~b! probability distribution at timem533106 for small value ofh, d50,
h50.1, e50.05, l 55.
Downloaded 11 Dec 2001 to 128.165.156.80. Redistribution subject to AI
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One can see from a comparison of Fig. 20~a! with Fig. 19~a!
~h50.1, e50.05, l 55! that the variance in the near
resonance case@Fig. 20~a!# is much less than that in the exa
resonance case@Fig. 19~a!#, in spite of the fact that the prob
ability of remaining in the ground state,P0 , for these two

FIG. 20. ~a! Time-evolution of the variances5s(m), wherem5t/T, and
~b! the probability distribution at timem533106 for the near-resonance
case,d50.01; h50.1, e50.05, l 55.

FIG. 21. The same as in Fig. 15, but for the near-resonance casd
50.01.
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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462 Chaos, Vol. 11, No. 3, 2001 Berman, James, and Kamenev
cases does not differ significantly~P050.99897 atd50.01
andP050.996 atd50!. The reason is that the dynamics
the exact resonance case is mainly determined by the s
ratrix QE function, and in this case there is a small proba
ity for particle to tunnel to the high oscillator levels withn
@1, as shown in Fig. 19~b!.

When the wave amplitudee increases, the conditiond
Þ0 becomes less significant. This can be explained by
reduced influence of the term proportional tod on the dy-
namics in comparison with influence of the wave with t
amplitudee in the region where the value ofr is relatively
small. @See the classical Hamiltonian in Eqs.~6!, ~7!, ~16!
and quantum equation~26!.# In Fig. 21 we plot the function
P05P0(e) for the near-resonance case. In Figs. 22~a!–22~c!
we compare the results for the exact resonance case (d50)
with those for the near-resonance case, whend50.01 and
d50.1. One can see from these figures that the dynamic

FIG. 22. Plot ofP0 versuse for the exact resonance case, whend50 ~solid
line and open circles!, and two curves for the near-resonance casesd
50.01 ~dashed line and filled squares!, d50.1 ~dot–dashed line and
crosses!; l 55, ~a! h51, ~b! h50.5, ~c! h50.1.
Downloaded 11 Dec 2001 to 128.165.156.80. Redistribution subject to AI
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the vicinity of the QGS in the near-resonance case is sim
to that in the exact resonance case, except for the regio
small e, which was discussed above.

In the quantum case, as in the classical one, at very s
e and finited, there always exists a QGS QE state for anyl ,
including the casesl 51 and l 52. In Fig. 23 we present a
plot P0(e) for the casesl 51 and l 52 whend50.1 andh
50.5. As one can see from Fig. 23, the QGS in these
cases becomes unstable at considerably lower valuese
than in the casel 55 in Fig. 21, which corresponds to th
classical dynamics in Figs. 7–9. In the casel 51, the stable
point shifts down from the regionX50,P50 in Figs. 7~a!–
7~c!. In the casel 52, the stable point near the CGS ate
'0.2 becomes unstable as shown in Figs. 8~a!, 8~b!, and 9.
The quantum manifestation of this process is a rapid de
of the value ofP0 in the regione>0.2 in Fig. 23.

In conclusion, the classical dynamics in the vicinity
the point (X50,P50) in classical phase space and quant
dynamics in the vicinity of the ground state of the harmon
oscillator in a field of a monochromatic wave, are explore
Both resonance and near-resonance cases are analyzed
shown that at smalle and finite detuning from the resonanc
d, the quantum ground state is always stable. In the casd
50 and for smalle, the dynamics is unstable for the res
nance numbersl 51,2. The stability of the classical dynam
ics in the central cell and the stability of the quantum dyna
ics near the ground state of the harmonic oscillator in
presence of chaos in the classical phase space is analyz
is shown that under certain conditions (l .2,d50,e!1,h
;1) increasing the wave amplitude,e, makes the quantum
ground state more localized. Increasing the quantum par
eter,h, for intermediate values ofe, enhances localization o
the QGS considerably. Experimental confirmation of our p
dicted stability properties of the ground state of an i

FIG. 23. PlotP05P0(e) for the resonance numbersl 51 ~open circles and
solid line! and l 52 ~filled squares and dashed line! in the near-resonance
case,d50.1; h50.5.
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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computer based on trapped ions.
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