Theoretical, T

Fluid Dynamics and Solid Mechanics, T-3

Conducts basic and applied research in theoretical continuum dynamics, modern hydrodynamic theory, materials modeling, global climate modeling, numerical algorithm development, and large-scale computational simulations. There is an emphasis on developing advanced numerical methods for continuum dynamics at all flow velocities and strain rates, and coupling these methods to constitutive models for solid material response and other physical processes such as turbulence, chemical reactions, combustion, phase change, heat and mass transfer, and plasma behavior. The Fluid Dynamics Group’s portfolio of research activities represents fundamental science conducted in support of nuclear weapons design, performance, and safety; nuclear reactor design and fuel performance; conventional weapons design and performance; global climate modeling; internal combustion engine design and performance; process chemistry for the oil and chemical industries; and casting and materials fabrication.


Contact Us | Careers | Bradbury Science Museum | Emergencies | Inside LANL | Maps | Site Feedback | SSL Portal | Training

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA © Copyright 2014 LANS, LLC All rights reserved | Terms of Use | Privacy Policy