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Motivation

At low/intermediate densities it is possible to calculate,
at some level of detail, the radiative properties which are
needed to describe the atomic processes in a plasma
(e.g. current LANL ATOMIC code)

At high densities more approximate methods must be
used. Plasma effects (e.g. pressure ionization) often
dominate and must be taken into account in a consistent
manner which must also treat the correlations between
the bound and free electrons [Blenski, ApJd 127, 239
(2000)]

Recent and planned intense laser pulse experiments
expect to reach these very high (approaching solid)
densities

Only viable way forward are average-atom type
approaches



Background: Average-Atom
approach

* The AA approximation is where the charge and
excited-state distributions inside a plasma are
replaced by a single fictitious ionic species
which has the average charge of the ions in the
plasma and the average population distribution
of the ions among the various excited states

 Fundamental assumption that the plasma can
be modeled by a finite temperature electron
system in a central potential

* This central potential has contributions from the
nucleus, the bound and free electrons, and from
the other ions and electrons within the plasma



Background

* The work of Csanak and Kilcrease [JQSRT 58,
537 (1997)] discussed the AA model and the
fact that the orbitals calculated by a standard
average atom (AA) approach cannot represent
the “excited orbitals™ of an atom in a plasma
[this was also pointed out by F. Perrot]

« Basically because these “excited orbitals™ are
calculated in the incorrect potential (VN, not the
correct VN-), due to the non-removal of the self
interaction term in the H-F equation for these
orbitals
— [For the ground state, the self interaction term is

removed, as pointed out by H. Kelly, but not for the
excited states]



Background

This may not make a significant difference for
thermodynamic quantities (such as EOS properties), but
for spectral properties, such as photoabsorption, more
accurate schemes are necessary

A promising approach to computing the correct AA
excited orbitals is the temperature-dependent Hartree-
Fock approximation, or Random Phase Approximation
(RPA)
— This introduces important channel-coupling between excited
states into the problem

— This also removes the self-interaction term from the excited
orbitals and so properly describes the “excited states” of an
average atom.

This can be considered a solution to the Latter-tall
correction problem as discussed by, e.g. Salzmann et al
in their work on photoexcitation and photoionization of
hot dense Al plasmas

In the T=0 limit this approach is identical to that
pioneered by Amusia for photoionization



Background

Subsequently, Csanak and Meneses [JQSRT 71, 281
(2001)] developed these RPA equations and
constructed them in a coupled integro-differential form

They then solved these in the single-channel
approximation.

They used the AA orbitals and occupation numbers from
the INFERNO code to compute oscillator strengths for a
He plasma

This includes the ion-ion correlations in a fairly crude
way, where the ion density is presumed to be zero
within the ion (AA) sphere, and constant outside it



Background

« Recently, Csanak and Daughton [JQSRT 83, 83
(2004)] solved the same single-channel RPA
equations for He and Li plasmas.

* |In this case they used an AA model which
included ion correlation, in which the ion density
Is computed from hypernetted chain (HNC)
theory

* They compared oscillator strengths and
transition energies with previous calculations of
Rozsnyal, where fairly good agreement was
found over a range of densities



Background

In this work, we solve the RPA equations using
an improved AA model based on the APATHY
code of Bill Daughton. This incorporates a
pseudo-atom approach which allows a clear
definition of the internal energy of the system.

We solve the RPA equations using a Linear
Algebra (LA) technique pioneered by Lee Collins

This allows us to solve the coupled-channel
equations in a fairly straightforward manner

Preliminary results are presented



Finite temperature RPA

* Will not derive the RPA equations here!

» Suffice to say for now that the derivation
Is based on the work of Csanak and
Kilcrease using the AA orbitals.

 The RPA approach produces the
appropriate potential for the excited
electron of the “average-atom” and can
incorporate channel-coupling effects



Average-atom eigen-functions

« The AA orbitals [P,,(r)] are eigenfunctions of the AA one-
electron problem written in the form

H;:IAPUili (7") - 8Uili PUili (7')
 where HA is the AA radial Hamiltonian with:

2

— Z the nuclear charge

— VAA(r) includes the electrostatic plus local exchange potential of
the AA model. It is temperature and density dependent and
depends on the Fermi factor |

n.
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* |n differential form the coupled-channel RPA
equations look like:

Exchange term
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Finite temperature RPA

These RPA equations are the proper one-electron
equations for the orbitals of an “excited electron” in the
plasma

w,, is the transition energy of interest

The 1st and 2"d terms on the RHS remove exactly the
electrostatic and exchange pieces of the potential
necessary to remove the self-interaction.

The amount of charge removed is controlled by n;; the
fractional occupation number of the AA orbital.

The final orthogonality term controls the overlap
between the true excited-states and the AA “excited
states”. Again, its importance depends on the
occupation number of these AA “excited-states”.

Finally, V, (r,,r,) is the multipole component in the
expansion of the Coulomb potential



Average-Atom approach: APATHY

« To solve the AA equations and to generate a self-
consistent set of AA orbitals and potentials we use the
APATHY code

« Developed by Bill Daughton and collaborators at LANL

« Solves non-relativistic Schrodinger equation for
bound/continuum wavefunctions for electron density

« Sophisticated treatment of the ion-ion correlations using
a “pseudo-atom” approach along with hypernetted-chain
theory

« Has been compared in detail with SESAME database
for Al and Si for a range of EOS quantities



Solution of the RPA equations

* Use the Linear Algebra (LA) method [eg: Collins
& Schneider, PRA 24, 2387 (1981)] to solve the
RPA equations

* This has previously been used in many other
scattering problems and has found to be a
robust, reliable method

« Extension of the LA method to treat bound-state
problems also made by Lee Collins

 Problem is recast into an integral equation and
solved using numerical quadrature

« Equation is converted into integral form by using
Green’s functions

« Extension to a coupled-channel problem has
been made and is currently being tested



Results

Preliminary calculations so far

Compare a He plasma at 10 eV at various
densities with previous work of Csanak and
Daughton, as well as older AA results of
Rozsnyai

Good agreement is found for the single-channel
case using the LA method

Found that inclusion of the orthogonality term
makes little difference for these conditions



He plasma oscillator strengths —

SCRPA calculations

T=10¢eV, p=1.5 X 1019/cm3
All quantities in atomic units

We compare with the previous
calculations of Csanak & Daughton

w,, |OS w;, | OS Wy, |OS ws, | OS
C&D 1.58 | 2.70e-2 | 1.84 | 5.30e-3 | 1.94 | 1.93e-3 | 1.98 | 9.00e-4
LA code 1.58 | 2.70e-2 | 1.85 | 5.33e-3 | 1.94 | 1.93e-3 | 1.98 | 9.01e-4
T=10eV, p=1.5X
102%/cm3
W,, | OS w;, | OS Wy, |OS ws, | OS
C&D 1.5110.109 | 1.75 | 2.13e-2 | 1.82 | 7.01e-3 | 1.85 | 2.57e-3
LA code 1.5110.109 | 1.75 | 2.15e-2 | 1.82 | 7.08e-3 | 1.85 | 2.64e-3




He plasma oscillator strengths —

SCRPA calculations

T=10¢eV, p=1.5 X 1020/cm3
All quantities in atomic units

Convergence of calculations with respect
to the number of points in the LA calculation

w,, |OS w;, | OS Wy, |OS ws, | OS
LA code 15110109 |[1.75 | 2.15e-2 |1.82 | 7.08e-3 | 1.85 | 2.64e-3
(60)
LA code 15110109 |[1.75 | 2.15e-2 |1.82 | 7.08e-3 | 1.85 | 2.64e-3
(80)
LA code 15110109 |[1.75 | 2.15e-2 |1.82 | 7.08e-3 | 1.85 | 2.64e-3
(90)




He plasma oscillator strengths —

SCRPA calculations

T=10 eV, p=1.5 X 10"%9/cm?3

Comparing OS divided by
initial occupation number

We compare our calculations with
previous AA calculations of Rozsnyai

w,, |OS w;, | OS Wy, |OS ws, | OS
Rozsnyai 1.56 | 3.50e-11.83 | 7.49e-2 | 1.93 | 2.72e-2 | 1.97 | 1.20e-2
LA code 1.58 | 3.82e-1|1.85 | 7.54e-2 | 1.94 | 2.74e-2 | 1.98 | 1.28e-2
T=10eV, p=1.5X
102%/cm3

W,, | OS w;, | OS Wy, |OS ws, | OS
Rozsnyai 1.7310.288 | 1.93 |6.00e-2 |1.99 |2.14e-2 | - -
LA code 1.561]0.337 | 1.75 | 6.64e-2 | 1.82 |2.18e-2 | 1.85 | 8.12e-3




He plasma oscillator strengths —
SCRPA calculations

T=10 eV, p=1.5 X 1020/cm3

Effect of including orthogonality term in RPA

All quantities in atomic units equations

Wy, |0OS Wy, | OS Wy, | OS ws, | OS
LA code (no 1.51 |0.109 |1.75 |2.15e-2 |1.82 | 7.08e-3 | 1.85 | 2.64e-3
orthogonality)
LA code 1.51 |0.109 |1.75 |2.16e-2 |1.82 | 7.12e-3 | 1.85 | 2.65e-3
(orthogonality
to 3 orbitals)

Orthogonality term has a small effect for this system




Conclusions & future directions

Formulated an RPA approach to properly
describe spectral properties of atoms in dense
plasmas

Used the APATHY code to solve the AA
equations

Used the Linear Algebra code to solve the RPA
equations

We are now in a position to solve the coupled-
channel RPA equations and apply them to
systems of interest



* |n differential form the single-channel RPA
equations look like:

Exchange term
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APATHY: outline

The AA approximation is where the charge and excited-
state distributions inside a plasma are replaced by a
single fictitious ionic species which has the average
charge of the ions in the plasma and the average
population distribution of the ions among the various
excited states

Fundamental assumption that the plasma can be
modeled by a finite temperature electron system in a
central potential

This central potential has contributions from the
nucleus, the bound and free electrons, and from the
other ions and electrons within the plasma

A local exchange potential is used which is a function of
the electron density [we use a finite-temperature
exchange-correlation potential of Perrot and Dharma-
wardana]



Several different AA approaches have been used

Standard approach is “ion cell” model:
— Confine each ion to a cell
— Each cell contains Z electrons and is neutral
— One solves for a self-consistent potential (for the electrons):

V2V (#) = 4nZed () — 4men, (v)

More recent approach is ion correlation model

Statistical distributions of both ions and electrons are
computed around the test ion

ViV (r) = 4nZeS(r) - 4me[Z n.(r) —n (r)]

Properly adding up the various energy terms is still
ambiguous



APATHY: AA model

 Decompose plasma into N identical charge clouds

* One has a central “pseudo-atom” with a statistical
distribution of other pseudo-atoms

« Energy of a single pseudo-atom is clearly defined, as is
the interaction energy between the pseudo-atom and
the rest of the plasma

« Allows the total internal energy of the system to be
easily written

* Results in a self-consistent potential for system of the
form

V() =V (1)1, [ Q0 W (=Y, (1)



APATHY: AA model

In this equation V_, ., IS defined as

n(r)

atom

atom(r) = __+f

Where the bound and free electron densmes are given as

2020 +1) u’ (r)
4 ’

My (1) = 2]’(8”1,#)

r
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Where fis the usual Fermi factor and u(r) are the radial atomic
wavefunctions for a given state

A local exchange potential is used which is a function of the
electron density [we use a finite-temperature exchange-
correlation potential of Perrot and Dharma-wardana]



APATHY: lon-ion correlation

Hypernetted Chain Theory (HNC) to compute ion density

Non-perturbative method, well suited to modeling the long-range
interactions

Uses the Ornstein-Zernike relation to compute the pair
correlation function h(r):

h(r)=c(r)+n, fc(\ r—r'Yh(r")d’r

The radial distribution function g(r) is then simply given from the
closure relation:

o(r)=1+h(r)=exp|-Pu(r)+h(r)-c(r)+ B(r)]

The ion density is then given as n,(r)=n,,g(r) with n,, the
macroscopic ion density for a given canonical ensemble.



