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The NDA reference; Passive Nondestructive Assay of Nuclear Material; Reilly, Ensslin, Smith, and 
Kreiner, was published in 1991 although the major technical writing was completed by 1987.  This book 
has become widely known by the acronym PANDA. Although much of the material contained therein is 
still valid, there has been considerable development in this field during the intervening twenty years. The 
two remaining editors/authors of the original book felt that it would be valuable to produce an Addendum 
to cover some of the more recent developments and some of the measurement technology omitted from 
PANDA. 
 
In 2002, Norbert Ensslin proposed a project to the US Department of Energy that would develop an 
appropriate set of additional chapters to complement the original PANDA. The DOE agreed to fund this 
effort and work began on the Addendum early in 2003, when Doug Reilly returned to Los Alamos from 
the IAEA Safeguards Training Section. 
 
As the writing project neared its conclusion, it was decided that the materials would be issued as Los 
Alamos National Laboratory reports as a compact disk and files available on the internet website of the 
Safeguards Science and Technology Group, N-1, at LANL.  As chapters are concluded, they will be 
added to the website, not necessarily in numerical order.  The initial chapter to appear on the N-1 website 
was written by Phyllis Russo and Duc Vo entitled Gamma-Ray Detectors for Nondestructive Analysis, 
LA-UR-05-3813. 
 
The following provisional Table of Contents shows the intended contents of the Addendum. 
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