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THE USE OF CALIBRATION STANDARDS AND
THE CORRECTION FOR SAMPLE SELF-ATTENUATION IN
GAMMA-RAY NONDESTRUCTIVE ASSAY

by

J. L, Parker

ABSTRACT

The efficient use of appropriate calibration standards and the correction for the
attenuation of the gamma rays within an assay sample by the sample itself are two
important and closely related subjects in gamma-ray nondestructive assay. Much
research relating to those subjects has been done in the Nuclear Safeguards Research
and Development program at the Los Alamos National Laboratory since 1970. This
report brings together most of the significant results of that research. Also discussed
are the nature of appropriate calibration standards and the necessary conditions on the
composition, size, and shape of the samples to allow accurate assays. Procedures for
determining the correction for the sample self-attenuation are described at length
including both general principles and several specific useful cases. The most useful
concept is that knowing the linear attenuation coefficient of the sample (which can
usually be determined) and the size and shape of the sample and its position relative to
the detector permits the computation of the correction factor for the self-attenuation. A
major objective of the report is to explain how the procedures for determining the self-
attenuation correction factor can be applied so that calibration standards can be
entirely appropriate without being particularly similar, either physically or chemically,
to the items to be assayed. This permits minimization of the number of standards

required to assay items with a wide range of size, shape, and chemical composition.

I. INTRODUCTION

The proper use of calibration standards and the cor-
rection for the attenuation of the gamma rays emitted
within an assay sample by the sample itself are two
important and closely related subjects in gamma-ray
nondestructive assay (NDA). In principle, calibration
standards are not needed if the detector efficiency is
accurately known as a function of source position and
energy, if the counting geometry and the sample size and
shape are accurately known, and if the gamma-ray
emission rates are accurately known for the isotope(s)
being assayed. However, it is tedious to characterize a
detector efficiency with sufficient accuracy, and there
are still significant uncertainties in the values of the
specific activities for many gamma rays from many
isotopes. Use of calibration standards reduces or

eliminates the need to exactly characterize the detector
efficiency, to know the counting geometry accurately, or
to know well the specific activities of the isotopes of
interest.* Thus, the calibration of a gamma-ray NDA
system is more quickly and accurately determined with
appropriate standards than is now possible without
them, making the use of calibration standards highly
desirable when appropriate ones are available.
However, whether or not calibration standards are
used, sample self-attenuation corrections must be made

*Rather rough values for efficiencies and emission rates are
usually readily available and serve a useful purpose in estimat-
ing counting rates and assay precisions when setting up an
appropriate assay geometry. However, they are not usually
good enough to create a calibration that will produce accurate
assays.



for both the calibration standards and the unknown
samples to be assayed.

In the early days of gamma-ray assay for safeguards
purposes (roughly the late 1960s), the problems of de-
tector response per unit activity and of sample self-
attenuation were often addressed by the use of “repre-
sentative” standards, which were both chemically and
physically similar to the samples being assayed. Such a
procedure was probably wise considering the rudimen-
tary state of NDA equipment and the general lack of
careful analysis of the many assay problems. However,
both equipment and the analysis of the problems have
improved greatly so that, for gamma-ray assay at least,
the requirement for physical and chemical similarity
between standards and unknowns can be greatly re-
laxed. Unfortunately, the most authoritative currently
available guide for calibrating NDA systems (ANSI
N15.20-1975)! was written about 1974, before it was
realized how nearly unnecessary the representative stan-
dard is for gamma-ray assay. As a result, that document
rather firmly insists that for all NDA methods a calibra-
tion standard is “an item physically and chemically
similar to the items to be assayed,” a restriction no
longer necessary for gamma-ray assay.

ANSI N15.20-1975 also insists that calibration stan-
dards “must be chosen so that their contained masses of
the nuclide(s) of interest span the mass range expected
for the items to be assayed.” However, this restriction
too may now be considerably relaxed, again because of
advancements in both equipment and the physical anal-
ysis of assay problems.

If both these restrictions were strictly interpreted,
many standards would be needed because of the many
classes of materials for which NDA measurements are
wanted and the numerous types of containers used for
those materials. The objective of this report is to explain
procedures whereby calibration standards for gamma-
ray assay can be entirely appropriate without being
particularly similar, either physically or chemically, to
the items to be assayed. The obvious advantage is that
relatively few standards can usually be used to calibrate
gamma-ray assay systems for the accurate assay of items
covering a wide range of size, shape, chemical compo-
sition, and mass of the nuclide(s) to be assayed with
large consequent savings of time, material, effort, and
expense. The procedures, though recognized and ap-
plied in several facilities, will be described primarily as
they have developed in the Nuclear Safeguards Re-
search and Development program at the Los Alamos
National Laboratory. Several staff members have con-
tnibuted significantly to that development. The
procedures to be described and their applications are
documented as they developed in many reports and
papers. An effort will be made to give a sufficiently

comprehensive treatment that it alone will be useful to
NDA practitioners.

Most of the examples considered concern the assay of
isotopes of uranium and plutonium in various chemical
forms and sample shapes. There are two reasons for that
empbhasis. First, the Nuclear Safeguards Research and
Development program is primarily concerned with
NDA of those elements. Second, because of the re-
latively high gamma-ray mass attenuation coefficients
of the high-Z elements, they represent the most difficult
problems for gamma-ray NDA methods. The
procedures to be described are equally applicable to the
NDA of any gamma-ray-emitting isotopes.

II. PROCEDURES
A. Preliminary Remarks

The procedures and methods described herein are
most cleanly and usefully applied with high-resolution
gamma-ray detectors. Germanium detectors are most
frequently employed for high-accuracy assays using
photon energies greater than about 50 keV, and silicon
detectors are most frequently used for applications em-
ploying photons of energies less than about 50 keV. The
methods and correction factors may be used for assays
with low-resolution detectors such as Nal(Tl) scin-
tillators, but additional care must be exercised to avoid
unnecessary error, and the ultimate accuracy will be not
be as good. The reason for the preference for high-
resolution detectors lies partially in the effects of small-
angle Compton scattering, partially in the difficulties of
background subtraction, and partially in the complica-
tions caused by overlapping peaks in complex spectra.
With Nal(T1) detectors, for example, whose full-energy
peaks are 10-20 times as wide for a given energy as those
of germanium detectors, a significant fraction of emitted
photons can suffer a small-angle Compton scattering,
lose a few kilovolts of energy, and still be counted in the
full-energy peak. This condition makes it difficult to
compute the fraction of photons emitted by a sample
that will undergo interactions, which will give pulses
that can be stored in the full-energy peaks. It is also more
difficult with low-resolution detectors to estimate the
magnitude of the Compton background continuum,
which is subtracted from under the full-energy peaks.
Finally, it is much easier to extract the information from
a spectrum when the full-energy peaks (which carry the
necessary information) do not overlap, and clearly the
possibility of overlap is much less for a high-resolution
detector. All three of these problems are 10-20 times less



severe in germanium detectors than in Nal(TI) detect-
ors, hence the general preference for germanium or
other high-resolution detectors.

Of course, there are situations in which low-reso-
lution detectors will be and sometimes must be chosen.
Both germanium and silicon high-resolution detectors
are generally more expensive and less efficient than the
lower resolution scintillators. When the best accuracy is
not required and a low-resolution detector can get ade-
quate results, budgetary common sense suggests their
use. Often the necessity for high sensitivity, even at the
expense of accuracy, demands the use of a high-effi-
ciency but low-resolution detector. High-resolution
germanium and silicon detectors must, in general, be
cooled when used and are thus not as easily used in
portable assay systems as are the more compact but
lower resolution detectors. Hence, the low-resolution
units will often be used for the sake of portability, even
at the sacrifice of some accuracy.

However, in spite of all these valid reasons, and more,
for the use of low-resolution detectors when ap-
propriate, it is still true that the most accurate (least
biased) gamma-ray assays will be obtained with high-
resolution detectors when it is possible to use them.

The most unpleasant and important fact in applying
gamma-ray spectroscopy to NDA is that the raw rate at
which data are collected for a given gamma ray emitted
by the sample is not usually proportional to the amount
of nuclide emitting the gamma ray. Two reasons for this
lack of proportionality are the rate-dependent electronic
processes of deadtime and pulse pileup and the self-
attenuation of the sample. Accurate gamma-ray assays
demand accurate corrections for both the electronic
losses and the losses caused by sample self-attenuation.
Though correction for both kinds of loss is important,
correction for the self-attenuation losses is more dif-
ficult. The emphasis of this report will be on the correc-
tion for self-attenuation in connection with appropriate
physical standards to obtain accurate gamma-ray as-
says.

However, a few comments about the correction for
electronic losses as it applies to high- and low-resolution
detectors will be given here, and a short discussion will
be given later on how this correction fits into the overall
assay scheme. In general, the lower resolution detectors
(certainly the various scintillators) are faster and the
correction for electronic losses is so small that it can
often be ignored or estimated with accuracy com-
mensurate with the overall possibilities for accuracy in a
given situation. For equal count rates, the high-reso-
lution detectors will require a greater correction for
electronic losses, but that correction can be made with
high accuracy, thus making possible highly accurate
assays.

B. General Description of Assay Procedure

If the raw data acquisition rate is multiplied by
appropriate correction factors for both the rate-related
electronic losses and for the sample self-attenuation, we
may write

TCR =RR * CF(RL) * CF(AT), (1)
where

TCR = total corrected rate,

RR = raw rate of data acquisition,

CF(RL) = correction factor for rate-related elec-

tronic losses, and
CF(AT) = correction factor for self-attenuation in
sample.

If the correction factors are properly defined and com-
puted, TCR is the data acquisition rate that would have
been observed if there were no electronic losses and if
the sample were changed to a simpler shape (such as a
point or line) with the same gamma-ray emission but no
self-attenuation. Thus computed, TCR is proportional
to the mass of the isotope emitting the gamma ray of
interest. We can then write

TCR=K*M, 2)

where M is the mass of the isotope being assayed and K
is a calibration constant. The calibration constant K is
determined by use of appropriate standard(s) and in-
cludes the effects of detector efficiency, subtended solid
angles, and gamma-ray emission rates. The CF(AT) are
determined so that the TCR for both unknown and
standard are those that would have been observed if
they had the same nonattenuating spatial configuration.

The above, in essence, constitutes this general ap-
proach to passive gamma-ray assay. Let us list the
individual steps explicitly:

o

. Measure the raw data acquisition rate.

2. Determine the correction for electronic losses.

3. Determine the correction for gamma-ray self-at-
tenuation.

4. Compute the total corrected rate, which is propor-
tional to the mass of the isotope being assayed.

5. Determine the constant of proportionality, the

calibration constant, by use of appropriate physi-

cal standards, making sure that the TCR for both

standards and unknowns represents the same

nonattenuating geometrical shape in the same pos-

ition with respect to the detector.




It is clear that three quantities must be determined for
both standards and unknowns: RR, CF(RL), and
CF(AT). The accuracy of an assay depends on the
accuracy of each of the three factors that multiply
together to give TCR. Both RR and CF(RL) are re-
latively easy to determine accurately and will be dis-
cussed only briefly. The determination of CF(AT) is by
far the most difficult and is the principal subject of this
report.

C. Brief Discussion of Data Acquisition Rate, Deadtime,
and Pileup

1. Determination of the Raw Data Acquisition Rate.
Assuming that the experimental data are acquired by
means of a high-resolution detector and a multichannel
analyzer, we find the basic information is the areas A of
the full-energy spectral peaks of the gamma rays of
interest and their statistical uncertainties o(A). The full-
energy peak area A divided by the true time of acquisi-
tion TT yields the raw data acquisition rate RR.

Methods for extracting the full-energy peak areas
from the spectra fall generally into two categories. The
first category, applicable mainly to well-resolved peaks
suffering no interference from nearby peaks, uses the
sums of the channel counts in regions of interest (ROI)
relating to the peaks. Usually, a single ROI brackets the
peak, and one is assigned on each side of the peak to
establish the correction that must be made to the peak
ROI sum to compensate for the underlying Compton
continuum. Such ROI schemes are quite simple, and it
is straightforward to obtain the statistical uncertainty of
the extracted areas. Though the scheme is simple in
concept, careful attention must be given to the placing
and the widths of the ROIs if accurate and consistent
areas are to be obtained. References 2 and 3 give specific
formulas that can be applied in using the ROI area
scheme.

The second category of methods fits analytical func-
tions to the full-energy peaks or groups of peaks. Such
methods range from relatively simple ones that fit a
single Gaussian function to a single well-resolved peak
to very complex ones that fit a three- or four-component
peak function to overlapping multiplets of several
peaks. The complexity of the spectra expected in a given
application will usually govern the choice of method to
obtain the peak areas.

All methods for peak area determination work better
on high-quality spectra, those without distortion caused
by poor-quality detectors, poor-quality or improperly
adjusted equipment, or excessive count rates. Knoll’s
book? is probably the most useful single-volume source
of information on detectors, signal-processing electron-
ics, and data analysis methods now available (1983),

4

and it contains many references to more specialized
works. Adams and Dams® is also a good though older
single-volume reference work on many aspects of
gamma-ray spectroscopy. For information on the
capabilities of the latest detectors and data acquisition
equipment and for proper operation procedures, manu-
facturers’ literature should be consulted.

High-quality spectra and appropriate peak area ex-
traction methods consistently and carefully applied are
important to accurate gamma-ray assays. Systematic
errors of several per cent can easily creep in through
sloppy data acquisition or careless peak area extraction
methods. In general, greater errors can arise through
using incorrect procedures or algorithms in the com-
putation of the required correction factors from those
peak areas.

2. The Correction for Deadtime and Pileup. The cor-
rections for data loss because of pileup and deadtime
can be very significant. At high count rates in a high-
resolution detector, most of the potential information in
a spectrum may be lost to those causes, requiring correc-
tions as great as several hundred per cent. Thus, under
some conditions the rate-related electronics losses may
be as great as or greater than those caused by sample self-
attenuation. The point here is that these electronics
losses cannot be neglected if accurate, unbiased assays
are desired. There are currently three types of methods
for making the necessary corrections. All the methods
assume that all spectral full-energy peaks suffer the same
fraction of loss because of deadtime and pileup.

First, there are the purely electronic methods, most of
them based on fast timing circuitry that detects piled-up
events and extends the counting time sufficiently to
correct for the combined effects of both pileup and
deadtime. Such systems suffer limitations in the finite
resolving time of germanium detectors (usually =0.5
us) and in the first-order procedure normally used in
extending the counting time. Generally, they are not
adequate for use in assay systems where high accuracy is
desired over a broad range of count rates. Recent work,
particularly by Westphal,® seems to remove the limita-
tions and may offer the required accuracy at the price of
a more complex data acquisition system. Additionally,
if work must be done under conditions of both changing
rates and spectral shape, methods such as Westphal’s are
the only ones with the required capabilitv.

A second commonly used procedure employs pulsers
to inject into the spectrum a peak, which suffers nearly
the same fraction of losses as do the gamma-ray peaks.
Correction is made by comparing the number of pulses
injected with the number appearing in the pulser peak.
There are numerous implementations of the pulser
method, some employing ordinary fixed-period pulsers,
some using random pulsers, and some using pulsers in



which the pulser rate is related to the input rate to the
spectroscopy system. Good results can be obtained with
all the implementations, but there are common dif-
ficulties relating to amplitude and/or rate stabilities of
the pulsers and to the difficulty of inserting the pulses
through the preamplifier without some degree of spec-
trum-distorting undershoot at the amplifier output. Ifa
fixed-period pulser is used, as is most common, a cor-
rection must also be made for the fact that the pulser
events, which neither pile up on themselves nor are lost
because of their own deadtime, suffer somewhat smaller
losses than the full-energy gamma-ray events.

The third method may be termed the reference source
method, and at this time it seems most able to provide,
with standard spectroscopy equipment, highly accurate
corrections for the combined losses caused by deadtime
and pileup. It is similar to the pulser method in that
corrections are based on a reference peak in the spec-
trum, but the reference peak comes from a gamma-ray
source fixed in position relative to the detector so that
the detector sees a constant flux from the source. Stated
differently, the reference gamma ray has a fixed full-
energy interaction rate (FEIR) in the detector. Based on
the assumption that all the full-energy peaks in a spec-
trum suffer the same fraction of loss because of dead-
time and pileup, the ratios of the areas of any other
assay-related peaks to the reference peak area are inde-
pendent of such losses. Assays can be based on those
ratios without ever explicitly determining the actual
fraction of loss. However, if the FEIR of the reference
gamma ray is known (and it can be determined quite
accurately by the pulser method) the actual magnitudes
of the rates and corrections involved in an assay are
easily computed.

These procedures and devices are not the subject of
this report. However, those doing high-resolution
gamma-ray assays must become as familiar and skillful
with them as with the corrections for sample self-at-
tenuation. A short conceptual definition of CF(RL) will
be given, however, to show how it applies in Eq. (1). For
any given sample-to-detector configuration, there will
be a fixed rate of FEIRs in the detector for each gamma
ray. Some fraction of the FEIRs will be included in the
full-energy spectral peaks, most of the rest being lost to
the combined effects of deadtime and pileup.* The
correction factor for CF(RL) is determined so that the
FEIRs are given by

FEIR = RR * CF(RL). (3)

*A small and variable fraction of full-energy events will fail to
be recorded in the spectral full-energy peaks because of in-
complete charge collection in the detector crystal. The magni-
tude of the problem can vary from negligible to significant
depending on the quality of the detector.

Thus, Eq. (1) could be written also as
TCR =FEIR * CF(AT). (4)

Finally, remember that in high-quality spectra, assum-
ing a constant spectral shape, the fraction of loss from
the combined effects of pileup and deadtime is very
nearly the same for all the full-energy peaks in the
spectrum, and that this fact is the basis for all of the
useful correction procedures now employed.

D. General Discussion of CF(AT)

1. Necessary Assumptions for Determination of
CF(AT). Of the quantities that enter into a gamma-ray
assay, the correction for the loss of information because
of sample self-attenuation is generally the most difficult
to determine accurately. In fact, in many situations it is
impossible to determine the correction with any degree
of accuracy at all, and in others the obtainable correc-
tion will be of limited value. Because of this, a dis-
cussion of the conditions for which accurate assays are
and are not possible is given here.

In determining CF(AT), the basic question is, what
fraction of the gamma rays of interest that are emitted
by a sample in directions such that they could reach the
detector in the absence of absorption or scattering actu-
ally do reach the detector? If for a given energy the
sample material can be characterized for sufficiently
small volume elements by a single linear attenuation
coefficient p*, the fraction of gamma rays of that energy
escaping unmodified from the sample can, in general, be
computed and the desired correction thereby obtained.
Knowing or determining the sample p* is the key to
determining CF(AT).* It is usually also necessary to
require that the individual particles of the gamma-ray-
emitting compound are so small that the self-attenua-
tion within the individual particles is negligible (usually
<1%). This is particularly true when the sample is a
mixture of a high-Z, high-density gamma-ray emitter
(such as plutonium, uranium, and thorium) and a low-
Z, low-density matrix (such as paper, rags, water, and
acids). This requirement is necessary because though
many fine-grained mixtures (<100 pm) may have a
well-defined and small p* for samples a few centimeters
thick that correctly accounts for the attenuation of the
gamma rays after they emerge from their parent parti-
cles, u* does not account for much of the attenuation
within the parent particles.

*1t will be assumed that the reader is familiar with the defini-
tions of gamma-ray attenuation coefficients and with the basic
laws governing their use in calculating gamma-ray attenua-
tions in chemical compounds. References 4, 5, and 7 provide
adequate background material for those needing it.



Much study and experimental work have been de-
voted to defining conditions for which accurate assays
are possible. The following two assumptions seem ade-
quate to permit accurate gamma-ray assays when ap-
plied to the whole sample or a definable segment of it.

1. The mixture of gamma-ray-emitting material to be
assayed and matrix material—everything but the assay
material—is reasonably uniform and homogeneous in
composition and of constant density.

2. The particles of gamma-ray-emitting compounds
are small enough to make the self-attenuation within the
individual particles negligible for the given assay situ-
ation and required accuracy.

These required assumptions will guarantee that the
linear attenuation coefficient is single valued on a suffi-
ciently microscopic scale that one can use it to ac-
curately compute the necessary fraction of escaping
gamma rays. They may seem quite restrictive and in-
deed do eliminate many heterogeneous, nonuniform
samples from any hope of accurate gamma-ray assay.
However, in other ways these assumptions are not
restrictive. Most important, there are no restrictions at
all on the chemical composition of the sample. All that
is required is that the p* of the sample can be computed
or measured. Because of this, unknown samples to be
assayed need not have the same or even similar chemi-
cal compositions as the calibration standards. Note also
that there are no basic assumptions about the size and
shape of standards, though there are limitations. Stan-
dards and unknowns may also vary considerably in size
and shape as will be discussed in detail below.

It is emphasized that the two assumptions given
above concern only the material to be assayed. Even
when the sample material itself meets those assump-
tions, an accurate assay may not be possible because of
limitations and conditions on the density, size, and
shape of the sample and on the material, thickness, and
shape of the sample container. These conditions address
such things as the necessity of the escape of enough
gamma rays from the sample and of having a sample
shape simple encugh to permit a reasonably straight-
forward computation of the CF(AT). More comment
will be made on such conditions at appropriate places in
this report.

The assumption of “reasonable uniformity” is admit-
tedly vague and is difficult to define precisely. What
constitutes reasonable uniformity will depend on the
energy of the gamma ray being employed, the chemical
composition of the sample, and the accuracy required.
Some sample types will almost always adequately satisfy
the assumptions and some will almost never do so. In

frequent cases what is known of the nature and compo-
sition of a class of material must be carefully considered
and some computational work must be done to decide
whether the material is reasonably uniform for purposes
of the desired assay.

It must be emphasized that it is the mass attenuation
coefficients p™ of the elements that impose the funda-
mental restrictions on the size, shape, composition, and
density of samples that can be successfully assayed by
gamma-ray methods. Those in charge of gamma-ray
NDA measurements should be thoroughly familiar with
the general trends, magnitudes, and dependencies of the
mass attenuation coefficients as functions of atomic
number and gamma-ray energy, and because of that
importance, a few significant properties will be dis-
cussed here. The linear and mass coefficients are related
by uf = u™ x p, where p is the actual spatial density of the
elements in the sample. The mass coefficients are more
fundamental than the linear ones because they are inde-
pendent of the actual spatial density and state of the
elements in physical compounds and mixtures.

Figure | shows mass attenuation coefficients vs
energy for selected elements ranging from hydrogen (Z
= 1) to plutonium (Z = 94). Qualitatively, the informa-
tion in the graph defines nearly all the possibilities and
limitations of passive gamma-ray NDA. Several impor-
tant features should be noted. Between 1 and 3 MeV, the
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Fig. 1. Total mass attenuation coefficients (without coherent
scattering contribution) vs energy for nine elements ranging in
atomic number Z from 1 to 94. Source is Ref. 11.



u™ for all elements are equal within about +20%, and the
average value is ~0.05 cm?/g. In this energy range,
Compton scattering is the dominant attenuation proc-
ess. If all the isotopes of interest had an adequately
intense gamma ray in this range, gamma-ray assay
would be much easier. Unfortunately, very few are so
endowed. At low energies, the ™ of the high-Z elements
of interest become much larger than those of low-Z
materials, reaching values ~ 20 times higher near the K-
absorption edges of uranium and plutonium. Both the
high absolute values and the large ratios between high-
and low-Z values make the quantitative assay of high-Z
materials by low-energy gamma rays difficult, and in
frequent cases, even impossible. For example, a 2-mm
thickness of uranium metal (~18.7 g/cm?) is essentially
infinitely thick to the 185.7-keV gamma ray, which is
the principal emission of 2**U. The transmission of that
gamma ray through a 2-mm-thick layer of uranium is
only ~0.5%. The guantity of **U in uranium metal
objects thicker than ~2 mm is therefore impossible to
measure by detection of the 185.7-keV gamma ray.
Note, however, that u™ for uranium at 185.7 keV is
nearly six times larger than that of plutonium at
413.7 keV, the energy of the most useful gamma ray of
239py. This means that the assay of **U by its 185.7-keV
gamma ray is subject to considerably more stringent
limitations on sample size, particle size, and uniformity
than is the assay of ***Pu by its 413.7-keV gamma ray.
Below ~120 keV, gamma-ray assay may well be com-
plicated by the fact that the sample p* can have discon-
tinuities as a function of energy because of the absorp-
tion edges for the elements in the sample and also by the
emission of x rays by absorption at the edges. Below
~80 keV, the u™ of most elements rise rapidly, making
attenuation problems unmanageably severe for all but
small samples of very small particle size. For assays of
high-Z materials, useful applications of <80-keV
gamma rays are limited to small samples of solution for
accurate assays or to rough screening of larger packages
of low-Z materials for small quantities of high-Z gamma
emitters.

Figure 2 is given as an aid in estimating self-attenua-
tion for individual particles.* It gives the fraction of
gamma rays escaping unscatiered and unabsorbed from
spherical sources as a function of the product p™pD,

*The expression for the fraction of gamma rays escaping
unscattered and unabsorbed from a sphere whose attenuation
properties are characterized by X = u™pD is given by

3 2 s 8
F= — | 1= =5 +e =+ =
2X X X X

For proof of this expression, see Ref. 8.
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Fig. 2. Fractions of gamma rays escaping unscattered and unabsorbed
from spherical gamma-ray-emitting particles as a function of p™pD,
where ™ is the mass attenuation coefficient of the particles at the
energy of interest, p is the density of the particle, and D is the diameter
of the particle. Coherent (elastic) scattering has been neglected.

where ™ is the mass attenuation coefficient for the
source material, p is the density of the material, and D is
the diameter of the sphere. As an example, for a 200-pm-
diam, p = 10 particie of U5, u™pD = 0.28§, indicating
that ~10% of the 185.7-keV gamma rays emitted are
scattered with some energy loss or are completely ab-
sorbed within the particle.

Finally, having described some of the considerations
that determine whether and to what degree a given
sample material will meet the required assumptions for
accurate gamma-ray assay, we should give some exam-
ples. First, of course, solutions by definition meet the
criteria, assuming that there are no particulates or
precipitates in the solution. Pure powders (PuQ,, UO,,
U;04, and so forth) almost always are suitable as are
certain well-mixed scrap materials such as incinerator
ash. High-temperature gas reactor (HTGR) coated fuel
particles and HTGR-type rods come close to meeting
the requirements, but assay results will be low by 5-10%
unless correction is made for the self-attenuation in the
particle kernels. Small quantities of high-Z gamma emit-
ters (<10 g) mixed with low-Z, low-density com-
bustibles may meet the requirement if there are no
agglomerations of the powder with significant self-at-
tenuation. Large quantities of high-Z powders (greater
than about 100 g) will aimost surely create some signifi-
cantly attenuating agglomerations when mixed with
such combustibles. Among the worst cases are those
with metal chips of high-Z, high-density metals or fuel
pellets mixed with low-Z, low-density matrices; in these
situations assays may well be low by factors of 2 or 3 or
even more.

It must be emphasized that the degree to which
samples of a given material satisfy the two assumptions
is the most important factor in determining the poten-
tial accuracy of a gamma-ray assay of the material.
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Experience indicates, for example, that small samples of
solution (up to a few tens of cubic centimeters) may be
assayed with accuracies of a few tenths of a per cent.
Samples of uniform, homogeneous powders of volumes
up to a few liters have been assayed with accuracies
approaching 1% in spite of significant density gradients.
Larger containers of waste (for example, 30-gal. drums)
rarely satisfy the assumptions well enough to allow
errors of <10%, and as mentioned above, the error will
be much worse for the extremely heterogeneous cases.

Having emphasized the errors caused by samples
deviating from the required properties, we can fairly say
that there are a few cases of samples that are hetero-
geneous, but in a regular known way, for which correct
CF(AT) may be determined.” HTGR fuel materials are
an example. Such cases are rare, however, and the
measured data must be supplemented by some prior
knowledge of the sample composition.

Another important general fact about gamma-ray
assays is that the results are almost always low when
samples that do not satisfy the necessary assumptions
ar¢ assayed in conjunction with calibration standards
that do satisfy the assumptions. The reason for the low
results is that the procedures that correctly determine
the fraction of self-attenuation in acceptable samples
underestimates that fraction in samples that fail to
satisfy the required conditions. As noted, the error may
be several hundred per cent in extreme cases. This fact
causes one to be cautious about using gamma-ray meth-
ods to screen heterogeneous materials for possible criti-
cality dangers.

2. Methods for Determining the Sample Linear At-
tenuation Coefficient. As before stated, if a sample satis-
fies the two assumptions and if its linear attenuation
coefficient pf is known, we can compute both the frac-
tion of unmodified gamma rays reaching the detec-
tor relative to those that could have reached it in the
absence of self-attenuation and the desired correction
factors. The basic problem, then, is to determine the
sample p*. Four principal methods have been employed,
though one is really an evasion of the problem. Al-
though the four procedures have been discussed
together previously,'? it is well to do so again here.

a. Representative Standards. The oldest and still a
frequently used (and abused) method is that of avoiding
the issue by using representative standards. In this
procedure a set of calibration standards is prepared as
nearly identical as possible in size, shape, and compo-
sition to the unknowns with varying concentrations of
the material to be assayed. The standards are counted in
a fixed geometry to prepare a calibration curve, and the
assay is accomplished by counting the unknowns in the
same geometry and comparing the count directly with
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the calibration curve. This procedure will produce good
results only if the unknowns and standards are suffi-
ciently similar that the same concentration of assay
material in each gives rise to the same sample p® and,
therefore, to the same CF(AT). In other words, at the
same concentration of assay material, the same fraction
of gamma rays must escape from both sample and
standard. The representative standard procedure
usually also assumes that the pileup and deadtime losses
are equal for equal concentrations of assay isotopes.
This method is only applicable when the nature and
composition of the assay samples are well known and
essentially unvarying as is the case, for example, for
some process solutions. The difficulty, if not futility, of
trying to create representative standards for many cate-
gories of material is so obvious that it does not require
discussion.

b. Computation from Knowledge of Composition. A
second method exploits previous knowledge of the
chemical composition, mass, and shape to compute the
sample p* from which in turn the correction factor is
computed. Sufficient prior knowledge to compute the
sample P does not necessarily mean that the assay result
is known in advance. In many cases, the assay material
is a small but unknown fraction of the total sample
mass, and the sample p* is almost purely dependent on
the matrix composition and mass, which is reasonably
well known. The correction factor can therefore be
computed, and especially when the highest accuracy is
not necessary, this approach is useful. When only verifi-
cation measurements are required on well-characterized
materials, the approach is useful even when the assay
material contributes significantly to the sample self-
attenuation. Computation of the sample p* from knowl-
edge of the chemical composition and densities is
straightforward but must be done correctly. The
necessary mass attenuation coefficients are reported
along with discussion of the methods used to obtain the
tabulated values and their uncertainties.'"'> Numerous
texts discuss in detail the interaction of gamma rays
with matter including the computation of linear at-
tenuation coeflicients from the known chemical compo-
sition and densities. References 4, 5, and especially 7 are
useful examples.

c. Gamma-Ray Intensity Ratios. Another method of
determining CF(AT) involves measuring the intensity
ratio of gamma rays of two different energies from the
same isotope in the sample and comparing it with the
same ratio from a thin source of negligible self-attenua-
tion containing the same isotope. This method is of
limited use because, in general, the sample p is not
uniquely related to the measured intensity ratios. Some
prior knowledge of the nature of the sample is also



required to obtain the actual correction factors.
Furthermore, not all isotopes have a pair of gamma rays
of the appropriate energies. Nevertheless, the method
has proved useful in specific cases and has the potential
for giving warning when the assumptions on uniformity
and particle size are grossly violated.

d. Transmission Method. The fourth and most gen-
eral method of obtaining the CF(AT) involves the direct
experimental measurement of the sample p* by measur-
ing the transmission through the sample of a beam of
gamma rays from an external source. From the funda-
mental law of gamma-ray attenuation, the transmission

T=exp (—p'x), (5)

where x is the thickness of the sample. Solving for pf, we
obtain

—In (T)
X

L=

: (6)

As previously stated, this method requires no knowl-
edge of the chemical composition or density of the
sample, just the basic assumptions on uniformity and
particle size, which were discussed above. As such, it is
the most practical way to proceed in the ever-present
“black box™ cases. In fact, it is often the preferred
method even when some knowledge of the sample
composition is available, particularly when the best
obtainable accuracy is desired. Let it be emphasized
again that the experimentally measured sample p! in-
cludes all the effects of chemical composition and den-
sity, which means that the calibration standards and the
samples to be assayed need not have the same or even
similar chemical compositions.

The transmission method also has the advantage of
identifying those samples for which accurate quan-
titative assays are impossible because of excessive self-
attenuation even though they satisfy the two basic as-
sumptions. As the measured transmission becomes
smaller, its precision deteriorates, and the precision of
the sample p* computed from it also becomes worse,
thus creating error in the computed value of CF(AT).
Depending somewhat on the sample, the energies in-
volved, the particular equipment being used, and the
allowable count times, the precision and accuracy of the
measured transmission become unacceptably poor for
values of transmission between 0.01 and 0.001. Trans-
mission values =0.001 (perhaps even negative) almost
always indicate an unassayable sample.

III. FORMAL DEFINITION OF CORRECTION
FOR SELF-ATTENUATION

The definition of the correction factor for sample self-
attenuation CF(AT) used in this report is implicit in the
discussion of Sec. II, particularly in Eq. (4). It is ap-
propriate, though, to give a generalized formal defini-
tion and make some remarks about a few particular
forms that have proved useful.

A. The General Definition

Expressions for CF(AT) can be, and have been, for-
mulated in a number of useful ways. The formulation
adopted here has been prompted mainly by a preference
for multiplicative correction factors and by a desire to
obtain a corrected count rate that is directly propor-
tional to the quantity of isotope being measured. It has
proved convenient and useful for a number of years.

As indicated in Sec. II, it is useful to define CF(AT)
with respect to a specified geometrical shape, which is
often not that of the actual sample. The specified shape
is usually simpler than the actual one, a point, for
example. Let us then define CF(AT) by rearranging Eq.
(4) to give, with only slight change in notation to make
the concept more explicit,

FEIR(u = 0, Spec Shape)

CF(AT)= 7

(AT) FEIR(u # 0, Real Shape) ’ M
where

CF(AT) =the correction for self-at-

tenuation with respect to
a particular specified
shape,

FEIR(u = 0, Spec Shape) = the FEIR that would have
been measured if the
sample were totally
nonattenuating (u = 0)
and if it were changed to
the specified shape, and

FEIR(p # 0, Real Shape)=the actual measured
FEIR from the sample,

Now CF(AT) is not computed in practice by dviding
FEIR(n = 0, Spec Shape) by the measured FEIR (i # 0,
Real Shape). Indeed, FEIR(1 = 0, Spec Shape) is in
reality the total corrected rate TCR of Eq. (4), which we
seek to determine because it is directly proportional to
the quantity of isotope being measured.




The CF(AT) is actually determined by computing the
ratio of FEIR (p = 0, Spec Shape) to FEIR (u # 0, Real
Shape) based on the known sample uf, the sample
geometrical configuration, and the position of the sam-
ple relative to the detector. Most often the expressions
for the ratio are not integrable in terms of elementary
functions, so numeric methods must be used. There are
a few exceptions in which the expressions may be inte-
grated and CF(AT) given in closed form, most of which
will be discussed below.

Because CF(AT) is computed as the ratio of count
rates, one does not generally need to know the detector
efficiency for the computation.* Indeed, most often one
can assume a point detector with equal efficiency for all
angles of incidence, which considerably simplifies the
computations. The point detector assumption is usually
good when the distance between sample and detector is
at least several times the maximum dimension of either
detector or sample. If the sample-to-detector distance
must be kept small for reasons of efficiency and the
highest obtainable accuracy is required, the actual
measured or calculated detector efficiency as a function
of energy and position may be used. Cline describes a
procedure for creating an efficiency function based on
measurements of standard sources, which should be
adequate for almost all requirements.'?

B. Useful Specified Shapes
In 1983, the most useful specified shapes were

1. the actual sample shape,
2. apoint, and
3. aline.

If one has many samples of the same shape and size in a
standard container and calibration standards in the
same configuration, then the CF(AT) may be computed
with respect to a nonattenuating sample of the same
shape. However, remember that two nonattenuating
sources of different shapes will not usually produce the
same count rate per unit activity when centered at the
same point with respect to the detector, assuming the
samples have some well-defined center. This condition
is obviously a consequence of the effects of the inverse
square law, which must always be remembered,
especially when standards and unknowns are of grossly

*This is not to say that the detector efficiency is not important.
Indeed, the efficiency must be great enough to give adequate
count rates for the particular assay situation and must be
roughly known to estimate those rates. It is just that the
detector efficiency does not usually enter explicitly into the
determination of CF(AT).
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different size and/or shape. Therefore, in all cases in
which the whole sample is sufficiently uniform and
homogeneous and of reasonable size, it is probably best
to let the detector view the whole sample and to use the
CF(AT) computed with respect to a nonattenuating
point. As shown in the discussion of the general proce-
dure in Sec. I1, the TCR computed with the help of such
CF(AT) are independent of the size and shape as well as
of the chemical composition and thus allow the stan-
dards and the unknowns to be of different size, shape,
and chemical composition. Remember, however, that
for such assays to be accurate, the entire contents must
be reasonably well represented by a single p*.

Often samples have vertical gradients of density or
vertical discontinuities of composition and density, the
natural consequence of filling relatively narrow cylin-
drical or square containers of waste, scrap, or product
from the top. As is to be expected, things tend to fall into
the containers in layers. In such cases, a single p* cannot
adequately characterize the whole sample, but narrower
layers or segments can be adequately characterized by a
single pu* value. Assay accuracy can be improved by
using a segmented scan in which the detector views the
sample through a vertical collimator that defines re-
latively narrow horizontal segments, or layers, in which
1! can be assumed constant. For such segmented scans,
because of the effects of the collimator, it is best to
compute the CF(AT) with respect to a nonattenuating
line along the axis of the containers. In this way cylin-
drical samples may be accurately assayed with respect to
standards of quite different diameters.

IV. DETAILED DISCUSSION OF CF(AT)
A. Important Parameters and General Trends

In general, the correction factor for self-attenuation,
CF(AT), is a function of many parameters. Those cur-
rently recognized as significant, listed roughly in de-
creasing order of importance, are

. the p® of the sample material;

. the volume and shape of the sample material;

. the p* of the sample container;

. the size and shape of the sample container, the
shape of the container not necessarily being the
same as that of the sample:

5. position and orientation of the sample relative to

the detector; and

6. the size, shape, and efficiency of the detector.

L S

The sample p* is listed first because the dependence of
CF(AT) on it is usually strong and because for groups of



samples of a standard size and shape, it is always the
most variable parameter. This fairly lengthy list might
suggest difficulty in accurately computing CF(AT) if all
the parameters mentioned had to be known with high
accuracy. Fortunately, however, in many situations the
dependence of CF(AT) on several of the parameters is
mild, and very accurate values for them are not neces-
sary. For example, when the sample-to-detector dis-
tance is at least several times the maximum dimension
of the detector, the dependence of CF(AT) on the size,
shape, and efficiency of the detector is often negligible.
As another example, when the distance between a cylin-
drically shaped sample and the detector is at least
several times the maximum dimension of either sample
or detector, the CF(AT) is usually a strong function of
the sample p, a mild function of sample dimensions
and distance from the detector, and has negligible de-
pendence on the detector size, shape, and efficiency.
The greatest simplifications in form and dependence
occur in what we shall call the far-field case, the one in
which the maximum dimensions of both sample and
detector are negligible compared with the distance be-
tween them. In the far-field ‘case, dependence on the
inverse square law becomes negligible and all gamma
rays reach the detector along essentially parallel paths.
Thus, there is no dependence on detector size and shape,
nor on small changes in the sample-to-detector distance,
nor on sample size except for the influence of size on the
fraction of gamma rays escaping from the sample. Sim-
ple analytic expressions can be derived for several sim-
ple sample shapes. These forms are often useful for
approximate work in situations not truly far field and
for exhibiting general trends of CF(AT) for many assay
situations. Indeed, the far-field situation is useful as a
reference case against which to compare near-field cases.
In presenting CF(AT) values graphically to inter-
polate or to exhibit general trends, it is usually advan-
tageous to plot CF(AT) vs the parameter of strongest
dependence and to plot different curves for specific
values of other parameters of significant but lesser
importance. The parameter of strongest dependence is
almost always the sample pf, and if not of strongest
dependence, then it is very often of greatest variability
when considering a group of samples of fixed size and
shape. The CF(AT) may always be plotted vs p*; how-
ever, u' is often found by measuring the gamma-ray
transmission T through the sample and using the rela-
tionship T = exp(—p’x), where x is the sample
dimension along which the transmission is measured.
This expression suggests that CF(AT) could be plotted
vs the product p'x to avoid plotting separate curves for
different values of x or that the curves could be equi-
valently plotted vs In (T), for In (T) = —u*x. In fact, it is
generally more convenient to plot CF(AT) vs In (T)
because simpler analytic forms arise in the simple cases

when those forms are expressed as functions of T. It is
also useful to express analytic forms for CF(AT) as
functions of T because of known limitations on the
experimental determination of T.

As an illustration, consider the expression for CF(AT)
for the far-field assay of a box-shaped sample viewed
normal to a side. Neglecting any packaging, the ex-
pression (which shall be derived later) is

+ufx

P e e ]

: (8)

where x is the the thickness of the sample along the
normal to the detector. Using T = exp(—p®x), we can
write

~ —In(T)
CFAT)= 7 - ©)

which is a very simple expression, indeed the simplest of
any of the exact analytic expressions known. For T <<
1, we see that CF(AT) =~ —In (T), so a plot of CF(AT) vs
In (T) is nearly linear. Figure 3 gives a plot of CF(AT) =
—In (T)/(1 — T). It also gives CF(AT) vs In (T) for
cylindrically and spherically shaped samples where T is
measured across the diameter of the samples. All the
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Fig. 3. Far-field correction factors for slab, cylindrical, and spherical
samples as a function of transmission, The transmission is measured
normal to the face of the slab sample and along a diameter of the
cylindrical and spherical samples.
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cases are seen to be of the form CF(AT) = —k In (T) for
T << 1. This approximate In (T) dependence is rather
general for most assay geometries and is very useful to
keep in mind.

B. Analytic Far-Field Forms for CF(AT)

In general, when writing integral expressions for
CF(AT) in the near field, we cannot integrate the ex-
pressions in terms of elementary functions to yield
analytic expressions. In the far field, expressions have

The parameters p, I, and p* are constant. whereas g and r
are functions of position. The integrations are over the
total volume V. It is the exponential term in the de-
nominator that, for most sample shapes and geometrical
configurations, gives rise to expressions that cannot be
integrated in terms of elementary functions.

Now let us write the specific expression for the con-
figuration shown in Fig. 4, a parallelepiped of
dimensions X, 2Y, and 2Z centered on the coordinate
axes as indicated with a detector viewing the sample
along the x-axis at a distance D from the sample. The
expression is

ﬁz jjy f: ple(x,y,z) dx dy dz

; (11)

CF(AT) =

z ¥ X
f_z LY fu ple(x.y.z) e #x¥2) dx dy dz

been derived for three simple sample geometries: box
shaped (rectangular parallelepipeds), cylindrical, and
spherical. These expressions will be given and dis-
cussed; the derivation will be given for the box-shaped
samples. As a means of comparing the three cases, Fig. 3
gives the far-field CF(AT) for all three sample shapes as
a function of In (T), and Table I gives numeric values for
the three cases over a wide range of transmission.

1. Box-Shaped Samples. This is the simplest case
and the only one for which a simple derivation exists.
Because the derivation is both simple and instructive, it
will be given here. From Eq. (7), we can write the general
expression for CF(AT) with respect to a nonattenuating
sample (specified shape same as real shape) in integral
form as

| ple av
CF(AT) = : (10)
fv ple exp(—u'r) dV
where

p = spatial density of the isotope being assayed
(g/cm?),

I = emission rate of the assay gamma ray (y/g - s),

e = absolute full-energy detection efficiency,

u® = the linear attenuation coefficient of the sam-
ple,

r = distance gamma rays travel within the sample

on the way to the detector, and
dV = volume element.

where the explicit dependence of gand ron x, v, and z is
indicated and where dx dy dz=dV. Now [ is a constant
for a given isotope, and by virtue of the fundamental
assumptions on uniformity, we can assume p and p* are
also constant. In addition, the assumption of far-field
conditions is equivalent to assuming &(x,y,z) is also a
constant. Now note that for the configuration given in
Fig. 4, r = (X — x)/cos 6, where x is the x-coordinate of
the volume element and

Table 1. Far-Field Correction Factors For Slab,
Cylinder, and Sphere as Functions of Trans-

mission
Transmission Slab® Cylinder” Sphere®
1.0000 1.000 1.000 1.000
0.8000 1.116 1.097 1.086
0.6000 1.277 1.231 1.202
0.4000 1.527 1.434 1.376
0.2000 2.012 1.816 1.701
0.1000 2.558 2.238 2.054
0.0500 3.153 2.692 2.431
0.0200 3.992 3.326 2.956
0.0100 4.652 3.826 3.370
0.0010 6.915 5.552 4.805
0.0001 9.211 7325 6.288

*Transmission normal to surface.
bTransmission along diameter.
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Fig. 4. Counting geometry for a slab-shaped sample with coordinates and dimensions for

use in deriving the far-field correction factor.

cosb = D—=

V (D—xP+y +22

where y and z are the other coordinates of the volume
element. Again, because of the far-field assumption, we
have D>> X, Y, and Z, and therefore cos® = 1.0 and r
=~ (X — x). With these simplifications arising from the
far-field geometry, the expression reduces to

X

ple J‘iz .,r:(dy dz J-O dx

This evaluates to

pXx
| —e#X

CFAT) = (14)

which is identical to Eq. (8) and easily transforms to Eq.
(9). As noted above, this is a simple expression with the
approximate In (T) dependence for T << 1. It is also
useful in many practical situations that are not real far-

CF(AT) = — x
ple f_z J’AY dy dz j o e H (X gy

After the obvious cancellations, we have
X
f dx
0
X

R
J'o e WX gy

CF(AT) = 5 (13)

(12)

field cases but for which this expression will provide
values that are accurate within a few per cent.

2. Cylindrically Shaped Samples. For a cylindrically
shaped sample viewed by the detector along a diameter
in the far field, it has been shown that '#
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1 p'D
CFAD = 3 LoD L)

, (15)

where

L, =the modified Struve function of order 1,

I, =the modified Bessel function of order 1,
D = the sample diameter, and where as usual,
p* = the sample linear attenuation coefficient.*

Again, the expression is very compact, but it is incon-
venient to use because of the necessity for finding or
computing values for the Struve and Bessel functions,

Inasmuch as the transmission across a diameter of a
cylinder is given by T = exp(—u*D), we can write the
expression for CF(AT) as

oAy < | ~in.(T) "
CFAD =3 | tmm—Lemmi |- @9

Equation (15) was used to generate the curve for a
cylinder in Fig. 3. Note that the CF(AT) for a cylinder
are a little less than those for a slab or box-shaped
sample, a situation we can understand intuitively by
comparing a square sample with a cylindrical one of the
same p* and whose diameter is equal to the side of the
square. In the cylindrical sample, fewer gamma rays
must penetrate the maximum thickness of material in
escaping from the sample; hence, the fraction escaping is
greater and the CF(AT) is smaller.

*As given in Ref. 15 (p. 375), the series expansion for the
modified Bessel function of order v and argument z is given by

(Z%/4)¢

I(Z) = < S
o 2 KINv+K+1) °
K=0

Also in Ref. 15 (p. 498), the series expansion for the modified
Struve function of order v and argument Z is given as

e E vl = (2/2)2K
L2y = ( MK+3/2)NK+v+3/2)

2 K=0

Values for the difference [I;(X) — L(X)] are also tabulated in

Ref. 15 (p. 501) for arguments covering transmissions as low as
0.005.
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3. Spherically Shaped Samples. For a spherical sam-
ple in the far field, the correction factor can be shown to
be?

{3 2
CE(AT) = (ﬁ) {1 D7

=1
il 2 2
+ e D [ F]_D + ——(uED)Z]}) ’

(17)

where D is the diameter of the sphere and as usual ptis
the sample linear attenuation coefficient. Obviously,
using In (T) = —u*D we can write the expression as

f 3 2
A = ({—ln )] {1 n (DF

2 2 T
! [[—m ™ T (T)]z] ) ‘

(18)

This expression is also plotted against In (T) in Fig. 3.
The CF(AT) for a sphere in the far-field case are clearly
smaller than those for either the parallelepiped or
cylinder. Again, the trend is intuitively obvious on
comparing a sphere of diameter D with a cylinder of
diameter D and a cube of side D. On the average, the
gamma rays travel shorter distances to escape from the
sphere than from either the cylinder or the cube. Thus,
the fraction escaping is greater and the CF(AT) are
smaller. Spherical samples are rarely met in practice, but
the reciprocal of the expression for CF(AT) gives the
fraction of gamma'rays escaping from spherical particles
and is useful in deciding whether a given particulate-
containing sample adequately meets the required as-
sumption on particle size. Written in terms of the mass



attenuation coefficient p™ and the density p of the
particle material, the fraction of gamma rays escaping is
given by

the sample diameter, a two-dimensional model in which
a point detector views a circular sample may suffice.
Clearly, if complicated geometries must be considered,

3/2 2 2

e~ 1D

1l — ————
(umpD)? umpD

(n™pD)?

(19)

Figure 2 was generated from this expression. As pointed
out there, a 200-pm-diam, p = 10 spherical particle of
UQ, absorbs ~10% of the 186-keV gamma rays emitted
within it. The reason that the assumption on particle
size is necessary is that a pu%, which accurately describes
the attenuation of a beam of gamma rays passing
through a heterogeneous layer of material (both beam
width and layer thickness much greater than the max-
imum particle size), says little about any absorption
occurring within the individual emitting particles when
high-density, high-Z emitters are contained in a low-
density, low-Z matrix. Thus, for example, in a sample
containing a dilute mixture of 200-pm-diam UQ; parti-
cles in a graphite matrix, a transmission measurement
will determine a p*, which describes mostly what hap-
pens after the gamma rays leave the particles but cor-
rects for little of the ~10% loss within the emitting
particles themselves. An ~10% assay error is likely if
the samples are being assayed with respect to standards
that meet the assumption on particle size,

C. Numeric Computation in the Near Field

1. General Discussion. As mentioned above, for most
if not all near-field situations in which inverse square
dependence must be put into the integral expressions
explicitly, the resulting expressions cannot be (or at least
have not been) integrated in terms of elementary func-
tions. As a result, numeric methods must be used, which
almost automatically implies the use of computers.
However, even with the power and availability of mod-
ern computers, it is good to minimize the effort required
for the computation, which means that the simplest
adequate model should be used to describe the assay
situation. As before mentioned, it is often possible to
simplify the computations by assuming a point or line
detector with efficiency independent of angle of in-
cidence. Other simplifications are also sometimes
possible. For example, for assay of a cylindrical sample
whose height is equal to or less than its diameter, and
the sample-to-detector distance is at least several times

very powerful Monte Carlo-type photon transport codes
requiring the use of large computers can be used. How-
ever, more often the situation encountered in the NDA
of simply shaped samples can be handled with
simplified models and straightforward one-, two-, or
three-dimensional numeric integration methods using
relatively simple codes and quite small computers. Re-
member always that the accuracy of gamma-ray NDA is
often determined more by the nonuniformity and in-
homogeneity of the samples than by the lack of detailed
accuracy in the CF(AT) computations. In such cases,
perfectly adequate correction factors can often be ob-
tained by a simple approximate model.

Clearly, ifit takes minutes or even hours to compute a
single value of CF(AT), then it will be advantageous to
compute CF(AT) for a given container and assay
geometry for a number of values of T (or equivalently
1) and to interpolate between them. That interpolation
could clearly be done in several ways, some of which
will be mentioned below.

For much work, simple approximate analytic forms
exist that give adequately accurate values for CF(AT)
over reasonable ranges of transmission (or p%). A few
such forms will be pointed out below. The adequacy of a
particular approximate expression can be determined
by comparison with more accurate numeric computa-
tions based on a suitable model. In connection with the
discussion of the approximate forms, it will be pointed
out and discussed in some detail that it usually does not
matter if CF(AT) is in error by a constant multiplicative
factor over the range of transmission concerned.

An unfortunate aspect of computing CF(AT) by nu-
meric methods is the difficulty of computing the
precision of CF(AT) as a function of the precision of the
transmission value. The approximate analytic forms
often provide the capability to derive sufficiently correct
analytic expressions for the precision of CF(AT). This,
too, will be discussed below.

2. A Useful One-Dimensional Model. A common
assay geometry is that in which a germanium detector
views a bottle of solution from beneath. Both detector
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and sample are generally well approximated by right
circular cylinders. Assume that the axes of symmetry of
the bottle and the detector coincide and that the detector
radius is 14, the sample radius is 1, the sample depth is
D, and the distance from sample to detector is d (Fig. 5).
Now if d is a few times greater than both ry and r,, no
gamma ray from the sample will impinge on the de-
tector at angles greater than ~10° from the common
axis. Inasmuch as cos = 0.95 for angles <19°, it is clear
that no gamma ray from anywhere in the sample will
travel more than a few per cent greater distance on its
way to the detector than those that travel parallel to the
common centerline. With this in mind, it is apparent
that the essence of the assay situation can be described
by a one-dimensional model consisting of a point de-
tector and a line sample of “depth” D and linear at-
tenuation coefficient p® separated from the detector by a
distance d as indicated in Fig. 6. This model contains in
a nearly correct way the inverse square law effects and

D
T Is
D CYUNDRICAL
SAMPLE
d |
- Y
CYLINDRICAL
DETECTOR

Fig. 5. Commonly used vertical assay geometry for which a
one-dimensional model is appropriate for computing
CF(AT).
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the gamma-ray attenuation effects, which are the main
influences on the CF(AT).

Having adopted the model, we give the CF(AT) with
respect to the nonattenuating sample according to the
definition of Eq. (7) by

J’ D dx
0 (d+ x)?

D e WX dx ,
J o (d+x)?

CF(AT) = (20)

where all constants pertaining to the detector efficiency
and gamma-ray emission rates have canceled. The nu-
merator immediately integrates to D/[d(d + D)], but as
simple as the denominator appears to be, it cannot be
integrated in terms of elementary functions. However, it
can be written as a sum in a simple way. The expression
for CF(AT) then becomes

N o 1-05)8x Ay

2 [d+I=05)Ax* @n
LINE AR
D SAMPLE
d
POINT
) ./DETECTOR

Fig. 6. One-dimensional model for computing CF(AT). The
detector is assumed to be a point, and the sample is assumed
to be a line of length D with linear attenuation coefficient pf,
which is separated from the point detector by distance d.



where Ax = D/N and N is the number of intervals into
which the sample depth is divided for the numeric
integration. Generally, taking N = 100 will give the
result of the integral to <0.1%, which takes negligible
execution time on almost any computer-based system.
The numeric integration could, of course, be done with
better accuracy by Simpson’s rule or other more elegant
methods in fewer steps. Equation (21) has been left in
the form given to make as clear as possible the func-
tional dependence of CF(AT) on the parameters d, D,
and p* and the equivalence of the integral and the sum.
Of the two geometrical parameters d and D, the latter is
well defined as the depth of the sample. The parameter
d, however, is less well defined, nominally the distance
from the detector to the sample. However, in real detec-
tors of finite volume, d is not well defined because the
gamma rays interact throughout the volume of the
detector and because even the average interaction depth
is a function of energy, a consequence of the variation of
p™ for germanium with energy. One might then ask how
d is chosen to get the correct answers to a given situ-
ation. Experience has shown that if the nominal value of
d is at least a few times D, then with the help of a set of
standards covering a wide range of p*, d can be adjusted
to give values of CF(AT) such that the corrected rate per
unit activity is nearly constant over a wide range of p*
(or alternatively, of course, a wide range of the trans-
mission T of the sample). By so adjusting d, compensa-

tion is made not only for the imprecisely known sample-
to-detector distance but also for the deviation of the
one-dimensional model from the actual three-dimen-
sional assay geometry.

Figure 7 shows results of a measurement exercise
using the procedure just described to determine the
appropriate CF(AT). The samples were 25-mg solutions
of depleted uranium nitrate in flat-bottomed bottles of
10-cm? area, thus making the samples right circular
cylinders of solution 3.57 ¢m in diameter and 2.5 cm
deep. The uranium concentration varied from 5 to 500
g/%, and all the samples were spiked with an equal
amount of 7Se. The detector crystal was ~4.0 cm in
diameter and ~4.0 cm long. The corrections for elec-
tronic losses, CF(RL), varied by only ~10%, whereas
the corrections for gamma-ray attenuation, CF(AT),
varied by ~275% for the results on the 136.0-keV
gamma ray of ”Se, which are presented in Fig. 7. The
lower part of Fig. 7 shows the magnitudes of CF(RL)
and CF(AT) as functions of uranium concentration; the
sample transmission T is also indicated for the nine
samples used. Remember that because of the 2.5-cm
sample depth, for any sample p* = [—In(T)/2.5] cm™".

Because each sample had identical amounts of "Se,
the corrected 136.0-keV rate should have been equal for
all samples. The upper part of the figure gives the
fractional deviation of the corrected rates from the
average of all and indicates the typical precision of the
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Fig. 7. Results of a measurement exercise designed to test the usefulness of a one-dimensional model for
computing CF(AT). CF(AT) is indicated as a function of transmission T simply by CF(T).
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measurements. As can be seen, all the corrected rates are
within about #+0.5% of the average even though the
CF(AT) changes by ~275%, whereas the CF(RL) re-
mains constant to within ~ 10%. This is a good example
of how a very much simplified model can give good
results for CF(AT) for quite complex assay geometries,
particularly if there is one adjustable parameter whose
value can be optimized with the help of suitable physical
standards. In this case, the actual distance of the sample
bottom to the average interaction depth in the detector
was ~8 cm, and the adjusted value was 9.0 cm.
Qualitatively, the pure one-dimensional model will give
values of CF(AT) that are a little low compared with the
correct three-dimensional model with the same d and D.
This is because in the actual assay geometry the gamma
rays on the average will pass through slightly greater
thicknesses of solution than in the one-dimensional
model and thus require slightly greater corrections. In-
creasing d increases CF(AT) overall and also increases
the CF(AT) more for lower values of T relative to those
of higher T values as required. Hence, the value of d
used in computations will usually be a little higher than
the physical value, the difference depending on the
particular assay geometry.

If a set of solution samples has fixed diameter and
position relative to the detector but has variable but
determinable depths, one would prefer to compute the
CF(AT) with respect to a nonattenuating point so that
the corrected rates from all the samples can be directly
compared. If the nonattenuating point is placed at the
bottom of the idealized sample, a distance d from the
point detector, the expression for the CF(AT) becomes

P dx

CRAT) — _*® & (22)
. e+ dx
f NCEE

The ratio between the CF(AT) with respect to the nonat-
tenuating point and the CF(AT) with respect to the
nonattenuating sample is (1 + D/d), independent of p*,
as can be seen by taking the ratio of Eq. (22) to Eq. (20).
For a set of samples of the same shape and counting
geometry, it obviously does not matter which form for
CF(AT) is used; but if sample depths vary, the CF(AT)
with respect to the nonattenuating point must be used
because the observed count rate from two nonattenuat-
ing linear samples of the same activity but different
lengths would be different. These remarks are intended
to emphasize the general rule that all CF(AT), for both
standards and unknowns, should be computed with
respect to the same nonattenuating shape so that the
corrected rates might be directly comparable.
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3. A Useful Two-Dimensional Model. Another com-
mon assay geometry is that in which a detector views a
cylindrical sample from the side along a ray normal to
the sample axis, usually centered along the sample depth
(Fig. 8). Now if the sample depth is, for example, less
than or equal to the sample diameter and if the distance
from the detector to the sample center is at least several
times the sample diameter, then a simple two-dimen-
sional model can often be used to compute adequately
correct values of CF(AT). The model consists of a point
detector at a distance D from the center of a cylindrical
sample of radius R and zero height. The use of a point
detector implies that the full-energy interaction effi-
ciency for the detector is essentially constant for gamma
rays originating at any point within the sample volume.
This assumption is almost true if D is at least several
times both the sample diameter and the detector diame-
ter. Figure 9 shows the geometry of the two-dimensional
model and indicates the distances that must be de-
termined and the variables in terms of which they are
expressed. The parameters D and R define the
geometry. The distances that must be determined in
terms of D and R and the coordinates of the area
elements r and 6 are

e [, the distance from the area element to the point
detector, and

e t the distance from the volume element to the
cylinder edge along L.

From the law of cosines, L is found directly as

L=V D>+1r2—2Drcos 0. (23)

The expression for t is much more complex and could be
written in various ways; one way follows. If the angle y is
known, then from the law of cosines,

t=VvV RZ+r2—2rRcosy. (24)
CYLINDRICAL T
SAMPLE “
pe /-
DETECTOR o
-

Fig. 8. Typical assay geometry for which a two-dimensional
model for computing CF(AT) is usually adequate.



CYLINDRICAL AREA
SAMPLE ELEMENT

Fig. 9. Two-dimensional model for computing CF(AT) showing the
distances that must be determined and the variables in terms of which
they must be expressed. Notethat0 < a < m, § < n/2,and0 <y < 1.

Buty =n — a — B so that if « and B are found, 7y is
determined. From the law of cosines,

12412 —D?
= =1 -
o = cos ( TS ) ; (25)

and from the law of sines, we find
B=sin! = si (26)
g sina ) .

Expressed in integral form, the correction factor with
respect to a nonattenuating cylinder is given according
to the definition of Eq. (7) as

J- J‘ _dA@)

- LZA(R.D.r.0)

CF(AT) = @7
i 7 e~HUR.DI8) JA (1)
fe=0 fr=D LYR.D,r,0)

where the area element in cylindrical coordinates dA =
r dr d0 and where a uniform distribution of activity over
the sample area is assumed. Because of the obvious
symmetry, the integral needs to be performed only over
half of the cylindrical sample. When t and L are given as
explicit functions of R, D, r, and 6 according to Eqgs.
(23)-(26), the double integral in the denominator be-
comes complex and cannot be integrated in terms of
elementary functions. The numerator can be integrated,
yielding the expression —(m/2) In (1 — R%/D?. Numeric

methods must then be used to evaluate the denominator
of the expression for CF(AT).

One method 1s outlined here. More sophisticated
procedures no doubt exist. Let the radius of the cylinder
R be divided into N intervals and let the whole n radian
range of 8 be divided into M intervals. The radial and
angular increments are then given by

Ar= N (28)
N’
and
T
AB = — 29
T (29)

Let the coordinates of the area element AA be given by

r=Ar(n—0.5)withn=1,... N | (30)
and
0=AB(m—0.5)withm=1,..,. M . 31

The area of the area element at r and 0 is then given by

AA(n,m) = {n(n At —nf[(n—1) Ar]z} (g)

= [(2n — 1)/2] (Ar)* (48) . (32)

An approximation to the denominator of Eq. (27) can be
written as a sum with dA replaced by AA, with L and t
written in terms of R,D,r, and 6 according to Egs. (23)-
(26), and with r and 6 given in terms of the indices of
summation n and m according to Egs. (30) and (31). The
correction factor with respect to the nonattenuating
sample can then be written as

R2
a’“n(l - “Di‘)

CF(AT) = ; (33)
M N —p t{(m,n)
g™ Umm) AA(n)
13 (m,n)

m=1 n=1

It is often desirable to use the transmission T of the
sample as an input parameter to the computation in-
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stead of the linear attenuation coefficient p*, in which
case p* is expressed as

—In(T)

| g
B 7R

(34)

If one is computing the CF(AT) with respect to a
nonattenuating point at the center of the sample, the
numerator in Eq. (27) integrates easily to mRZ?/(2D?)
while the denominator remains the same. For the sim-
ple two-dimensional model, then, the ratio of the
CF(AT) with respect to the nonattenuating sample to
the CF(AT) with respect to a nonattenuating point at the
center of the sample is —(D?/R?) In (1 — R%/D?), which
depends only on the ratio D/R and not on the value of u*
(or of T).

As mentioned before, it is often convenient to express
or plot the values of CF(AT) as a function of the
transmission T rather than of the linear attenuation
coefficient p*. Plotting as a functon of T is particularly
convenient in presenting the results of this two-dimen-
sional model because for a fixed value of T, the CF(AT)
are a function only of the ratio D/R. This means, for
example, that for a given value of T, a sample of R =10
cm and D = 1000 cm has the same CF(AT) as a sample
of R = 100 ¢cm and D = 10 000 cm. Figure 10 gives
CF(AT) with respect to the nonattenuating sample as a
function of D/R for several values of T. The essential

8 : 1
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T=00004
2 ol T=000I
o
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(@]
s ﬁ,_( T-0.004
8 af /',’ 7001 |
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e ]
T=0.4
T=1.00
o | | |
0 25 250 375 500

D/R

Fig. 10. Correction factors with respect to a nonattenuating sample as
computed from the two-dimensional model. They are plotted vs the
ratio D/R for various values of the transmission T, where D is the
distance from the center of the cylindrical sample to the point detector
and R is the radius of the sample.
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point is that the CF(AT) decrease slowly as D/R de-
creases; the larger changes occur for the smaller values
of T. Remembering the definition of CF(AT), we can see
qualitatively that this behavior is a consequence of the
inverse square law. It is clear that for a given value of T,
CF(AT) asymptotically approaches a maximum as
D/R — «. To show quantitatively the deviations from
the far-field (D/R = =) case as D/R decreases, the
deviations are plotted in Fig. 11 as a function of T for
various values of D/R. For T >0.001 and D/R >50, all
deviations are <1%. Therefore, D/R =50 can be re-
garded as the far-field situation for most purposes. It is
also important to notice that the variation of CF(AT) as
a function of T is much stronger than the variation with
the ratio D/R.

The results presented above were obtained with a
minicomputer using values of M = 200 and N = 200 for
which all the results are within 0.1% of what the actual
integrals would give. The total number of area elements
computed was obviously 40 000, and the time required
was ~2 min per value. The exact time required for
execution will obviously depend greatly on the comput-
ing equipment and programming language used. The
point is that for two-dimensional numeric integrations,
results of high accuracy can be obtained in about a
minute. The motivation for using a simple two-dimen-
sional model when it is adequate is clear. If we go to a
three-dimensional model, a modest extension in deri-
vation and programming, and the third dimension is
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Fig. 11. Deviations of near-field values of CF(AT) from the far-field
values as a function of transmission for various values of D/R. For T
>0.001 and D/R = 50, all deviations are <1.0%. Thus, D/R = 50 can
be regarded as “far field” in many situations.



also given 200 increments, the required execution time
immediately increases to hundreds of minutes, a much
more expensive and tedious proposition. Nevertheless,
with judicious choices of the number of increments
allotted to the three variables over which summing is
done, three-dimensional numeric integration is feasible,
though it is almost certain that an interpolation scheme
will be needed to obtain values between those computed
for selected values of T or other parameters.

4. An Example of a Three-Dimensional Model. As a
final example of an effort to construct a simple, yet
adequate, model for an assay geometry, consider the
segmented assay of cylindrical samples. In this case (Fig.
12), a detector views the sample through a horizontal
collimator, which defines (with more or less overlap)
segments, or slices, of the sample that are assayed
individually. The sample is usually, but not always, as
close to the collimator as possible. The detector is, of
course, of finite size, often being a right circular cylinder
of germanium ~ 5.0 ¢cm 1n diameter and ~ 5.0 cm long.
Experience has shown that for assay by the segmented
procedure, the inverse square law effects caused by the
collimator must be considered explicitly. It is generally
not good enough to simply consider a very thin cylin-
drical, two-dimensional sample as described by the
model in Sec. IV.C.3.

With respect to modeling the detector, the first
thought might be to consider it as a point centered at the
rear of the collimator. However, because some gamma
rays are emitted in places within the sample where only
a portion of the detector is seen through the collimator,
the point detector assumption is not adequate. A little
thought suggests that a vertical line detector centered at
the rear of the collimator might be an adequate model.
The results of such an assumption are quite good and
the expressions, which are derived below, will be based
on it. Experimental results and more thought about the
finite size of the actual detector suggest one further
simple improvement in the model. Clearly, the gamma
rays do not interact right at the rear of the collimator but
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Fig. 12. Typical segmented assay situation for which a three-dimen-
sional model for computing CF(AT) is appropriate.

actually behind the collimator in the volume of the
detector, the distance from the rear of the collimator to
the average interaction location being often as much as
several centimeters. The resulis of the CF(AT) computa-
tions are improved a little by increasing the distance
traveled by gamma rays to the line detector of the model
by a constant length computed from the known average
mean free path in the detector material for gamma rays
of the energy concerned.

In summary, the model from which the required
expressions will be derived consists of a perfect collima-
tor (that is, one with no leakage) and a vertical line
detector centered at the rear of the collimator. The
efficiency of the “detector™ is assumed to be independ-
ent of either the position or angle at which the gamma
rays strike it, and for computation the distance from the
emitting element to the line detector of the mathemati-
cal model will be increased by a constant approximately
equal to the distance from the line detector to the
average interaction location in the detector.

Though somewhat more complex than the first two
examples, this model is still much simpler than the real
geometry but provides accurate values of CF(AT) over a
wide range of transmission, especially with the addition
of the penetration depth constant. Adequately accurate
means generally within ~ 1% of the correct values,
which in most cases of the assay of solid samples, is
satisfactory because the ultimate accuracy of the assay of
such samples almost always depends more on the heter-
ogeneities that so frequently exist within them than on
the exact function used for CF(AT).

Inasmuch as materials are often packed in metal
containers that significantly attenuate the emitted
gamma rays, the packaging should be, in general, in-
cluded in the model. As will be seen, this is straight-
forward. The necessary package parameters (inside di-
ameter, outside diameter, and p*) are usually known
with sufficient accuracy. In the case to be discussed
below, the outside diameter of the sample may be
different from the inside diameter of the container, a
situation that arises quite often when double contain-
ment is used.

Qualitative considerations indicate that if cylindrical
samples of different diameters are to be assayed in a
common geometry by the segmented procedure or if the
standards are of different diameters and/or packaging
than the unknowns, the CF(AT) are best calculated with
respect to a nonattenuating line source along the axis of
the sample. By doing this, the corrected rates from
samples of different diameters with different package
materials and thicknesses can be directly compared,
thus permitting the assay of unknowns with respect to
standards of different diameters and packaging. A line
rather than a point is required as the simpler specified
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shape because the influence of the collimator must be
included.

When the sample packaging is included in the model,
more possibly useful definitions of CF(AT) can be
given. Although the CF(AT) with respect to the nonat-
tenuating line is generally the most useful in segmented
scanning, it is worthwhile to list some of the possible
definitions of CF(AT) for the segmented geometry to
emphasize the fact that there are several useful ap-
proaches. First, if the package is ignored, there are the
two obvious definitions:

1. CF(AT) for an attenuating cylindrical sample with
respect to a nonattenuating cylindrical sample. This is
simplest in concept, and it is adequate if samples in
identical packages of negligible attenuation are to be
assayed.

2. CF(AT) for an attenuating cylindrical sample with
respect to a nonattenuating line sample. If samples of
varying diameters in packages of negligible attenuation
are to be assayed, this too is an adequate definition.

Now when samples in packaging of significant attenua-
tion must be considered, we can write more definitions;
three of them are given below.

3. CF(AT) for an attenuating cylindrical sample and
package with respect to a nonattenuating cylinder. This
definition is applicable, for example, to samples in
packages of the same dimensions but different materials
and/or thickness.

4. CF(AT) for an attenuating cylindrical sample and
package with respect to a nonattenuating cylinder in an
attenuating package. This would be suitable for identical
samples of the same diameter in packaging of significant
attenuation.

5. CF(AT) for an attenuating cylindrical sample and
package with respect to a nonattenuating line sample.
This is probably the most general and useful of any of
these definitions, though it is not quite as simple as
some of the others.

Mathematical expressions will be given for all five
definitions. The main intent is to show that there are
often several alternative definitions and that care should
be taken to use one that is commensurate with the
desired or possible accuracy of a given assay situation.
After the model is set up and the basic trigonometry is
done, it is just about as easy to compute according to
one definition as another.

Figure 13 gives typical output from a code that gives
results for all five definitions. All the parameters given
in the upper part of Fig. 13 are input by the user except
the D/R ratio and maximum sample height seen by the
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CODE CYLCL1

NUMERIC INTEGRATION FOR CORRECTION FACTORS FOR 3-1 CYL
WITH COLLIMATION. ASSUMES ESSENTIALLY LINEAR DETECTOR

AND CONSIDERS FRACTION OF DETECTOR SEEN IN FENUMBRA REGION,
COMFUTES FIVE DIFFERENT CORRECTIANN FACTONRS.

NUMBER OF RADNIAL INCREMENTS
NUMBER OF ANGULAR INCREMENTS IN FI RADIANS
NUMBER OF Z-INCREMENTS IN HALF HEIGHT

S50
150
S50

DISTANCE SAMFLE-CENTER TO DETECTOR(CHM)
SAMFLE RADTUS (CH) = 4.2

17

RATIO OF D/R = 4,04742
CONTAINER IR (CM) = 4,2
CONTAINER OR (CH) = 4,35
COLLIMATOR DEFTH (CH) = 10.2
COLLIMATOR HEIGHT (CM) = .73

DIS REAR OF COLL TO INTERACTION FT IMN DET = 1,5

MAX SAMFLE HEIGHT VIEWED EY DETECTOR = 2.99902
CONTAINER TRANSMISSION = .95

CF1=CF FOR CYL WRT NON-ATT CYL

CF2=CF FOR CYL WRT NON-ATT LINE

CF3=CF FOR CYL + CONTAINER WRT NON-ATT CYL

CF4=CF FOR CYL + CONTAINER WRT CONM-ATT LINE

CF5=CF FOR CYL + CONTAINER WRT NON-ATT CYL & ATT CONTAINER

TRANS HU(1/CH)
CF1 CF2 CF3 CF4 CFo

102 1463717

3.3B697 3,40347 3.50473 3.5218B1 3.3954
+15 2225848

2.00708 2.01588 2.07469% 2.0848 2.00997
3 » 14333

1.59773 1.460552 1.65074 1.46587% 1.59925

DAY & TIME AT START NF EXECUTIONO4-AUG-82 14144150
DAY & TIME AT END OF EXECUTIDN 04-AUG-B2 30:17:27

Fig. 13. Sample output from a code using the three-dimensional model
for CF(AT) in segmented assays. Results are given for five different,
sometimes useful, definitions of CF(AT).

detector, both of which are computed from the other
parameters. Execution time will clearly be shorter if
fewer definitions are computed, but it is a much stronger
function of the equipment used. For example, the out-
put of Fig. 13 was produced in 18 660 s per transmission
value with a BASIC code running on a DEC PDP 11/34
computer without hardware floating point arithmetic
capability. The same results were obtained by a FOR-
TRAN code running on a DEC PDP 11/60 computer
with hardware floating point arithmetic capability in
only 283 s per transmission value, 66 times faster.

Finally, the expressions used in computing the values
of CF(AT) for the five definitions will be derived. It will
be seen that once the geometry and appropriate
variables are defined, the task is basically an exercise in
trigonometry. Figure 14 shows the model geometry
from above, along with the pertinent parameters and
variables. Figure 15 shows a vertical section of the assay
geometry along line L in Fig. 14. The task consists of
expressing in terms of the parameters and the volume
element coordinates the following quantities:

A = the distance of volume element to
detector,
f = the fraction of detector viewed from the

volume element,
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Fig. 14. Horizontal sectional view of the three-dimensional model for
computing CF(AT) showing required distances and the variables in
terms of which they must be expressed. Note 1: angles 8, 83, v2, 73, B2,
and B3 correspond in an obvious way to angles 8y, v, and By. Note 2: 0
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T = the distance traveled by the gamma rays
from the volume element within the
sample,

13— T, = the distance traveled by the gamma rays
from the volume element through the
container walls, and

F = the fraction of sample volume of a given
volume element.
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Fig. 15. Vertical sectional view of the three-dimensional model for
computing CF(AT) showing required distances and the variables in
terms of which they must be expressed. The section is along line L in
Fig. 14.

We will adopt a cylindrical coordinate system with
origin at the center of the cylindrical sample and with
the z-axis along the axis of the sample. The coordinates
of the volume elements will be r, 8, and z. The projec-
tions of the required distances on the r,0 plane will be
derived first, and then the expressions will be extended
to the third dimension.

Referring to Fig. 14, the section in the horizontal
plane, and using the law of cosines, we obtain

L=V D*+r2—2Drcos 0 , (35)

which is the total distance traveled in the horizontal
plane by gamma rays from the volume element at 1,6,z
to the detector. Next consider the distances t,, t,, and ts,
all of which are required to compute the total distances
traveled by gamma rays on the way to the detector
through the sample and its packaging. Various equiva-
lent formulations are possible; the one given here is
different from that for the corresponding distances in
the two-dimensional case in Sec. IV.C.3. If the angles a
and v, of Fig. 14 are known, one can write by the law of
sines

sin T (36)
sina

I
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From Fig. 14, it is seen that o = — 8 — p and that by the
law of sines again

p= sin“(ir) sin 0 (37)

so that a is now fully determined. Again referring to Fig.
14, we see that y; =n— o — By, and by the law of sines yet
again

D , D
By =sin™ (ﬁ sin p ) =sin~" ( R Irsin 8) (38)
1 1

so that vy, is also fully determined. The expressions for t,
and t; are identical to those for t; with the subscript 1
becoming 2 and 3, respectively. Referring again to Fig.
14, p < /2 and B, < n/2 so that the sin™! function will
give no trouble in writing codes.

Now referring to Fig. 15, let us find the actual dis-
tances traveled on the way to the detector by gamma
rays from the volume element at r,0,z. Consider two
cases, the first for z < H/2 and the second for z > H/2.
For the z < H/2 case, the whole detector is viewed. It is
assumed that the efficiency is equal all along it and that
the distance from the volume element to any point on
the detector is the distance to the center of the detector.
With these simplifying assumptions, we have

A=L\/1+4+2}/1%. (39)
Lettinga = +/ 1 + z%/L? we have by similar triangles
T =at;, 1, =at,, and 13 =at;. (40)

Letting f be the fraction of the detector viewed, we have
f=1forz = H/2.

For the z > H/2 case, we try to take into account the
fact that only part of the detector is viewed from a
volume element at r,08,z. It is assumed that the collima-
tor is perfect, that is, there is no leakage through the
edges. It is additionally assumed that all the viewed
portion of the detector is equally efficient, and that the
distance traveled to the detector by all gamma rays is the
distance to the center of the area viewed. With these
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simplifying assumptions, by similar triangles the wun-
viewed detector length is

_ (z—Hp) w
= (L — w/cos p) (cos p) ' L

For h < H, the distance from the volume element atr,0,z
to the center of the portion of the detector viewed is
given using the Pythogorean Theorem and minor al-
gebra by

2
A=L\/1+%, -

Letting b=\ 1 + (z + h/2)¥/L2, using similar triangles
we have

= bT.], To— btz, and Ty= btg = (43)
Here the fraction of detector viewed is given by

h
f: _—
o 55 (44)

One more geometrical relationship is needed, the length
of cylindrical sample over which to do the numerical
integration. We seek the value of z for which the fraction
of the detector viewed becomes zero for all values of r
and 0; this value is clearly obtained forr=R,and 0 = n.
Letting Z equal the maximum value of z and using
similar triangles, we obtain

7= (D+R1~— \;) (l\;) . (45)

Now it is desired to compute CF(AT) with respectto a
nonattenuating line, that is, with the source obtained if
the cylindrical sample and its container collapse radially
into a nonattenuating line along the axis of the sample.
The expressions for the distance to the detector will
change somewhat, and again there are cases for z < H/2
and for z > H/2. Letting A; be the distance from the line
element at r =0 and z, we have forz < H/2
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As before, f=1 forz < H/2. For z > H/2, we have

= D 1+ 2 (47)

where

!
h=( 2|l w.
D—W

Forz > H/2, as before, f=1 — h/H.

In performing the numeric integrations, let the range
of the volume element coordinates r,0,z be divided into
IJ.K intervals, respectively, wherer = R;, 0 <= 0 < 7,
and 0 < z < Z. The increments in r,0,z are then

Ar=R/L, AB=mn/],and Az =Z/K . (48)

Letting the indices of summation corresponding to 1,8,z
be 1.k, respectively, the coordinates of the volume
element are

r =Ar(i—0.5)fori=1,..,1 (49)
B=A0G—0.35)forj=1,..J (50)
z =Az(k—0.5)fork=1,.. K. (51)

In terms of i,j,k and Ar, A8, Az, the volume element is
given by

AV(i)= (Ar)? (AB) (Az) , (52)

Q2i—1)
2

and its fraction of the volume of a cylinder of radius R
and height 2Z is given by

A 2
F@) = Qi—1) (R—]r) (%?) (%) . (53)

For summing the nonattenuating line source, the sum is
obviously only over k, and the volume element becomes
just the line element Az = Z/K. The fraction of the total
“volume” in Az is F; = 1/2 K because the total length of
the line is 2Z.

Either AV(i) or F(i) may be used in the summations of
the numeric integrations because the expressions for
CF(AT) are ratios of sums. Using F(i) seems preierable
because it is independent of the units of length used.

As in the two-dimensional case, the computations can
clearly be done with specific values of the linear attenua-
tion coefficient for the sample p* and the container p or
alternatively for corresponding values of transmission.
Because the transmission is usually the measured pa-
rameter, it is preferred to use it as input to the computa-
tional codes. We have then

_ —In(T)
pt= IR, (54)
and
In (T,)
. 55
T RR-R &

If we take advantage of the symmetrical geometry, the
numeric integration needs to be done only over one-
fourth of the cylindrical volume, and the range of 6 and
z have been chosen accordingly. However, it is impor-
tant to remember that F is the fraction of the total
volume, so one must properly normalize when compar-
ing a volume sum with a line sum.

To compute the five different correction factors de-
sired in this illustrative example, five sums must be
formed from the expressions given above. The ex-
pressions for F, f, and A are given in terms of the
geometrical parameters and the coordinates 1,0.z ac-
cording to the equations above. In calculating the sums,
one must remember that the forms of f, A, 1., 7, and 13
are different for z < H/2 and for z > H/2. The sums are

Ff

S1 =4 5

(56)

1=
[

r
1

i

i

which is proportional to the count rate from a nonat-
tenuating cylindrical sample without a container;

52 =4

[ =
‘M“‘

(57)

& ’

i Ffe
k=1

»-.
I
Il

1 j=1

which is proportional to the count rate from an attenuat-
ing cylinder without a container;,
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F fexp{{#' THE (53— 1))
;Lz

53

I
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M =
T
=

T
7

(58)

which is proportional to the count rate from an attenuat-
ing cylindrical sample with its attenuating container;

fe— [MG3—) ]

_ IOk g
$3=43 Y ¥ 25 .69
k=1

=1 j=I

which is proportional to the count rate from a nonat-
tenuating cylindrical sample and its attenuating con-
tainer; and
K
_ Fo f
S$5=2 > -
s

=1 g

(60)

1

which is proportional to the count rate from a nonat-
tenuating line source.

The factors 4 and 2 in the sums normalize so that each
sum represents the count rate from the whole sample.
Remember that f = 0 for a portion of the volume of
summation, a cylinder whose height is equal to twice the
maximum z for which any fraction of the detector is
seen from the cylindrical sample. Also, at the extremes
of the line source, the detector cannot be seen at all. Any
values of f that are negative when computed with the
expressions above should be set to zero.

With the sums as given above, the expressions for the
five correction-factor definitions previously listed are

S1
Fl= — 51
C 5 (61)

the CF(AT) for an attenuating cylindrical sample with
respect to a nonattenuating cylindrical sample;

cr2= 22

S2 ©2)

the CF(AT) for an attenuating cylindrical sample with
respect to a nonattenuating line sample;

S1

= = 63
CF3= o5 (63)
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the CF(AT) for an attenuating cylindrical sample and
container with respect to a nonattenuating cylindrical
sample;

54
4= 64
CF4= =, (64)

the CF(AT) for an attenuating cylindrical sample and
container with respect to a nonatienuating cylindrical
sample and its attenuating container; and

53
5= 2
- S3 7

(65)
the CF(AT) for an attenuating cylindrical sample in an
attenuating container with respect to a nonattenuating
line sample.

5. Approximate Forms and Interpolation. In general,
the most accurate way to compute CF(AT) for reason-
able assay geometries is by the use of a relatively simple
mathematical model and numeric integration as dis-
cussed above. However, as also explained before, be-
cause of the often lengthy execution times to compute
CF(AT) by those procedures, it is often desirable for a
given assay system and class of samples to compute
CF(AT) for a few values of T (or p*) and to use an
interpolation scheme to find CF(AT) for intermediate
values of T. This procedure becomes necessary rather
than desirable if the particular assay system does not
have adequate computing capability. The interpolation
problem can clearly be approached in several ways; a
few will be discussed below.

The brute force approach is to do point-to-point
interpolations between enough computed values of
CF(AT) to reduce the error in any interpolated value to
the maximum acceptable level. This will surely work,
but if it is to work in an automated way, the assay
system computer must be given a table of CF(AT)
values and an interpolation code. The scheme is quite
adequate if sufficient computer capability is available
and relatively few kinds of samples are to be assayed so
that only a limited number of tables need to be
provided.



Since CF(AT) has in general an approximate log (T)
dependence (see Fig. 3), it is reasonable to fit to a set of
values a function of the form

CF(AT)=A + Blog (T)+ C [log (T)]*. (66)
The assay system computer, whatever its capability may
be, then need only store the constants A, B, and C for
each set of CF(AT) to be fit. Experience has shown that
this scheme works very well over quite wide ranges of T.
For example, in a typical segmented scanning situation,
A, B, and C can be determined to give values of CF(AT)
correct to < (0.3% for 0.008 < T = 0.30.

A particularly simple scheme, especially useful when
the greatest accuracy is not required, is based on the far-
field form for the CF(AT) for a slab, —In (T)/
(1 — T). Observing that a circle is not after all so very
different from a square and remembering that the
CF(AT) for a thin cylindrical sample is a little less than
that for a thin square sample whose side is the same as
the cylinder diameter (see Fig. 3), one is led to try

—In (T%)

CFAD = =1

(67)

with k < | as an approximate function for cylindrical
samples, even in the near-field situation. This form also
has a In (T) dependence for T << 1 and has the virtue of
being simple with only one constant to be determined. It
has been used often, particularly a few years ago when
more was done with hand-held calculators or program-
mable desk calculators of limited capability than at
present. Figures 16 and 17 provide a feeling for how
accurate and useful the approximate form might be.

Figure 16 gives the fractional deviation of —In (T¥)/
(1 — T¥) from the correct far-field values for a cylinder
[Eq. (15)] as a function of transmission for various
values of k. Figure 17 is similar, but the comparison is
for a near-field assay of a cylindrical sample where
(D/R)=5/1 (distance from center of sample to detector
five times sample radius). In Figure 16, k = 0.82 gives
CF(AT) correct within £1% for 0.01 = T
=< 1.0, and in Fig. 17, k = 0.75 gives CF(AT) correct
within =1.5% for 0.01 < T =< 1.0. However, as will be
pointed out in the next section, the choice of k that gives
the smallest overall absolute error for CF(AT) may not
be the best choice for assays in a particular range of T.

As a final example of an approximate function for
CF(AT), the simplest and crudest of all, consider the
function

1
CF(AT) = T . (68)

For T > 0.2, this function gives values =<10% greater
than —In (T)/(1 — T) (Table II). As crude as it is relative
to other functions, 1 /\/—f is useful for rough work,
particularly with low-resolution detectors. Notice that
1/ \/T implies that all the gamma rays are emitted at the
center of the sample.

The major point of this discussion is that various
interpolation procedures and approximate functions for
CF(AT) are available. Just what is done will depend on
the accuracy desired or possible for a given class of
materials to be assayed. If, for example, the problem isa
field measurement of a heterogeneous drum containing
2351J, the accuracy will probably be determined far more
by the degree of heterogeneity of the sample material
than by the function used for CF(AT). In such a case,
where +25% accuracy may be all that can be hoped for,

010 | ,
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Fig. 16. Deviations of the values of CF(AT) computed from the approximate expression
CF(T) = —k In (T)/(1 — T¥) from the far-field values for a cylinder. They are plotted as
functions of the transmission T for several values of the parameter k.
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Fig. 17. Deviations of the values of CF(AT) computed from the approximate
expression CF(T) = —k In (T)/(1 — T¥) from the values from the two-
dimensional model for cylindrical samples for. D/R = 5. They are plotted as
functions of the transmission T for several values of the parameter k.

the work of setting up a model and doing numeric
integrations for CF(AT) 1s wasteful. On the other hand,
if the samples are solutions, which by definition meet
the assumptions on uniformity, careful modeling and
computation can result in assay results with accuracies
<1%, and the effort is fully justified.

6. The Effects of Absolute and Relative Error in
CF(AT). Throughout this report it is assumed that
gamma-ray assay systems will be calibrated by use of
suitable physical standards containing known amounts
of the isotope being assayed. It is also assumed that
CF(AT) will have to be determined for both the un-
knowns and the standards. Generally, the CF(AT) will
be mainly a function of the measured transmission T
with some influence from the geometrical parameters,
which may or may not be the same for both unknowns
and standards.

The consequences of using a function for CF(AT).
which is incorrect to some degree, should be in-

Table II. Comparison of Far-Field Correction Factor
for Slab with Approximate Form 1//T as
Function of Transmission®

1 1/VT —In(T)/(1 —T)

1.0 1.000 1.000
0.8 1.118 1.116
0.6 1.291 1.277
0.4 1.581 1.527
0.2 2.236 2.012
0.1 3.162 2.558

a
T = Transmission normal to sample face in both cases.
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vestigated because of the important influence the ac-
curacy of CF(AT) has on the accuracy of the final assay
results. To do so, consider a situation as indicated in
Fig. 18 in which a true and a false CF(AT) function are
shown as functions of T, along with indication of dif-
ferent transmissions for the unknown and standard. Let
the following notation be adopted for this demonstra-
tion:

T = transmission,
CF(T) = CF(AT) as a function of T,
RR = rawrate for assay gamma ray,
TCR = total corrected rate for assay gamma ray,
K = calibration constant,
G = mass of assay isotope in unknown, and
M = known mass of assay isotope in standard.
\(c:' m
crt (m \
L
&)

Tl.l T5
In(T)

Fig. 18. A hypothetical situation to illustrate the consequences of
using an incorrect function for CF(AT). CFf(T) represents the
incorrect or false function for CF(AT) as a function of trans-
mission T and CFY(T) represents the correct or true function for
CF(AT). T, and T, represent the transmissions of unknown and
standard, respectively.



The superscripts f and t will be used to indicate quan-
tities associated with the false and true functions for
CF(AT), respectively, and the subscripts u and s will
similarly be used to indicate quantities associated with
the unknown to be assayed and the standard used to
calibrate. From Eq. (2), we can write

TCR,
G= 69
K (69)

where from Eq. (1), ignoring CF(RL),

TCR =RR * CF(T) (70)
and
TCR,
K= — il
M (71)

As indicated in Fig. 18, we assume that the ratio of CFf
to CFY{T) is a well-behaved function of T:

CF{(T) _
CFY{T)

() . (72)

Using the incorrect function for the CF(AT), we would
determine an incorrect calibration constant as

RR, * CF{(Ty) _ RR, * CF(T) * C(Ts)

f =
K M M 2
(73)
whereas the correct result should be
RR, * CFY(T
K = *M (T ] (74)

The TCR for the unknown will also be incorrectly
determined as

TCR{ = RR, *CF{(T,) = RR,*CFY(T,)*C(T.) ,

(75)

whereas it should be

TCR, = RR, * CF{(T,) . (76)

Then the incorrect assay value will be determined as

ot = TCR' _ RR,xCF(T)*C(T)
K" RR.*CFY(T,)*C(T)
(77
whereas the correct answer is given by
TCR! RR, * CF{(T,)
G' = = - - 7
K RR.<CRT) M- {78)
The ratio of the two results then becomes
f YT
G' _ C(T.) _ CF(T.)/CFY(T,) -

& ©m — CHTyCRT)

It is now seen that the ratio of false to true results does
not depend directly on the absolute error in CF(T) but
only on a ratio of ratios, namely, the ratio of CFfto CF!
at T, divided by the ratio of CFfto CF" at T.. If this ratio
of ratios is ~1.00 over the range of T among both
standards and unknowns, the assays will be correct in
spite of any absolute error in CF(AT).

This result demonstrates and emphasizes that it is
easier to correctly calibrate an assay system for a narrow
range of transmission (which usually also implies a
narrow range of concentration of the assay isotope) than
for a broad range. It also emphasizes why great care
must be used in modeling the assay geometry and
computing CF(AT) if high accuracy is required over a
wide range of concentrations. Although determination
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of the correction factor for the rate-related losses result-
ing from deadtime and pileup, CF(RL), is not the sub-
ject of this report, it is clear that a wide range of assay
isotope concentrations often means a wide range of
count rates, which in turn implies large variations in
CF(RL) and the consequent necessity for carefully de-
termining it.

One might ask, considering the difficulty in comput-
ing a CF(AT) as a function of T that is correct over a
wide range of T, why standards should not be used to
determine a variable calibration constant as a function
of T or perhaps of the gross count rate if that seems to be
causing most of the problem. Indeed that can be done,
but preferably only as a fine tuning of a system calibra-
tion. Remember that by so doing we are, as it were,
sweeping under the rug the things we do not understand
about the physics of the assay arrangement or are per-
haps incorporating a maladjustment of the equipment
into the system calibration. Surely all efforts should first
be made to understand the physics, to have functions for
CF(AT) and CF(RL) that are as correct as possible, and
to make sure the equipment is working correctly before
attempting to calibrate away the residual systematic
errors.

7. Considerations of the Precision of CF(AT) and of
TCR. It is important in gamma-ray NDA (and indeed
most forms of NDA) to be able to estimate the precision
of the assay. Precision as used here means essentially
just repeatability, and a measurement result may be
very precise but nevertheless very inaccurate. This is
only a reminder that precision is not a guarantee of
accuracy. Nevertheless it is still important in gamma-
ray NDA to have a reasonable estimate of precision
because it puts a minimum bound on the uncertainty
that must be assigned to a measurement and allows the
variation of subsequent measurements to be under-
stood.

In a properly operating gamma-ray NDA system
using modern electronics, the precision will be almost
totally a function of the random nature of the emission
of the gamma rays being counted. The influence of
electronic fluctuations and drifts in the equipment
should almost never influence the precision of the NDA
results at a level of >0.1%. The dominant statistical
component of the precision of the assays can usually be
estimated from the full-energy peak areas that were the
input data for the assay result and from their precisions.
The overall precision, including any contribution from
the equipment, is estimated from replicate assays, and
this overall precision compared with that estimated
from peak areas and their precisions usually forms the
basis for evaluating the stability of the assay system,
both electronically and mechanically.
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Herein the concern is only with the statistical
precision of the assay and primarily with the influence
of the precision of CF(AT) on the precision of the final
assay results. As formulated in this report, the assay
result—the computed mass of the isotope being as-
sayed—is proportional to the total corrected rate TCR,
which is given [see Eq.(4)] as

TCR = FEIR * CF(AT),

where FEIR is, as usual, the full-energy interaction rate.
Letting o( }indicate the estimate of the standard devia-
tion of the indicated quantity, o(TCR) must be found
for the assays. We will not describe the procedures used
to derive the expressions for o(TCR), o(FEIR), or the
o[CF(AT)], which are covered in detail in many papers,
reports, and texts (two relatively simple sources are
Refs. 16 and 17). The intent here is only to emphasize a
few points relative to obtaining a reasonable expression
for estimating s(TCR).

The first point is that if TCR can be written as an
analytic function of the peak areas that went into com-
puting it, then an expression for o(TCR) can usually be
derived in terms of those peak areas and their
precisions. However, when CF(AT) is found by the
numeric procedures described above, for the sake of
reducing bias and thus improving accuracy, TCR is not
computed from an analytic function, and the question
of how to compute o(TCR) remains. A useful approach
to the problem, and the point most emphasized in this
section, 1s to use an approximate analytic function for
CF(AT) in formulating the expression for TCR from
which the expression for o(TCR) is derived. If used in
computing TCR, the approximate forms for CF(AT) are
often not sufficiently accurate (that is why the numeric
integration procedures are used in the first place), but if
chosen reasonably well, they usually provide an ade-
quately accurate expression for o(TCR). For example,
in Sec. IV.C.1 a one-dimensional model was used to
obtain by numeric integration values of CF(AT) for the
assay of cylindrical samples viewed normal to the
cylinder face by a germanium detector. It is likely that
for deriving an expression for o(TCR), one could use
CF(AT) = —In (T)/(1 — T), where T is the transmission
through the face of the cylindrical sample. If that is not
satisfactory, the modified form CF(AT) = —In (T¥)/
(1 — T% with 0.5 < k < 1.0 would almost surely be
adequate. The proper value of k would be chosen by
comparison with precisions computed from replicate
assays. By using the procedure just described, one can
have the accuracy provided by numeric integration of a
more accurate model for CF(AT) and still have good
estimates of o(TCR). Most modern assay systems have
enough computational power to do the extra computa-
tion with modest extra execution time.



Note that although o(TCR) is the assay precision and
1s therefore what is usually required, o[CF(AT)] alone is
also sometimes of interest. The expression for
o[CF(AT)] will always be simpler than the one for
o(TCR). If no full-energy peak areas are common to the
expressions for FEIR and CF(AT), then

6. (TCR) = \/ o, ?(FEIR)+ o, 2 [CF(AT)] , (80)

where o(x) = o(x)/x, so that the expression for
o[CF(AT)] becomes explicitly part of the expression for
o{TCR). If there are peak areas common to the ex-
pressions for FEIR and CF(AT), the separation in Eq.
(80) does not exist, and the expression for TCR must be
written as an explicit function of the peak areas con-
cerned. The expression for 6(TCR) must be derived
from this new function according to procedures de-
scribed in the references, and the expression for
o[CF(AT)] generally will not be a recognizable part of it.
Such expressions for precision will frequently be very
complex, but considerable simplification can usually be
achieved by judicious approximations in setting up the
original expression for TCR and by dropping from the
final precision expression terms that make insignificant
contributions. The effort to make such simplifications is
worthwhile in terms of both reduced computation time
and better understanding of the main sources of im-
precision in a particular assay procedure.

V. REVIEW OF FACTORS GOVERNING THE
NUMBER OF STANDARDS USED

It is stated in the introduction that the objective of
this report is to explain procedures whereby calibration
standards can be appropriate without being particularly
similar, either physically or chemically, to the un-
knowns being assayed. Indeed, the bulk of all the
preceding material has been devoted to that goal. The
current insistence that the range of the masses of the
isotopes of interest in the standards used for a given
NDA procedure span the expected range in the un-
knowns to be assayed can also be considerably relaxed.
Although the evidence for this allegation is implicit in
the forgoing sections, no explicit discussion has been
given of how far and how safely a calibration may be
extrapolated beyond the range of masses in the stan-
dards used. It is appropriate to end this report with a
brief discussion of those matters.

The insistence that the standards span the range of
expected masses to be assayed seems rooted in the
expectation that a calibration function will be fitted to a
plot of assay system response. When gamma-ray NDA

systems are considered, that response might be assumed
to be the RR of Eq. (2) or the FEIR of Eq. (3). Such plots
will almost inevitably be quite nonlinear, and extrapola-
tion of a fitted nonlinear function beyond the data
points to which it is fitted is not particularly safe.
However, as explained above, if the multiplicative cor-
rection factors CF(RL) and CF(AT) are properly defined
and computed, a total corrected rate is obtained: TCR =
RR * CF(RL) * CF(AT). This is the data acquisition rate
that would be observed in the absence of electronic
losses and if the sample were changed to a specified
nonattenuating simple shape. If the CF(AT) for all
samples assayed are computed with respect to the same
specified simple shape, one arrives at Eq. (2), TCR =K *
M, where M is the mass of isotope being assayed and K
is the calibration constant. The important point is that
the calibration function is now linear, in fact, linear with
TCR = 0 when M = 0 and is thus determined by one
parameter, K. Extrapolation with such functions is far
less hazardous than with the nonlinear calibration func-
tions generally assumed in the past, and hence most of
the logical force is taken from the requirement to have
the mass range of the standards span that of the un-
knowns.

With Eq. (2) as a calibration function, one can in
principle determine K, the calibration constant, with a
single standard. However, in practice, it is wise to use
several standards, spanning a reasonable range of mass
of the assay isotope, and perhaps with variations in
other parameters such as matrix density and compo-
sition or sample size. The object in using several stan-
dards is obviously to confirm that CF(RL) and CF(AT)
are being correctly determined so that TCR = K * M is
independent of variations in M, chemical composition,
shape, and so forth. It must be emphasized that if some
nonlinearity is detected, the first concern should be to
correct the problem(s), whether in equipment or in
computation of CF(RL) or CF(AT), so that the calibra-
tion is linear, rather than to proceed immediately to add
terms to the calibration equation. To prematurely start
modifying the calibration equation often simply dis-
guises the effects of poorly set up equipment, incorrect
algorithms for CF(RL) and CF(AT), equipment
malfunction, or even of outright ignorance of proper
procedures and methods. After the equipment is func-
tioning at optimal levels and the computational algo-
rithms are as good as can be reasonably derived, if there
is still some nonlinearity, then consideration can be
given to modifying the calibration equation. Indeed, if
the assays are to be made over a very wide range of
isotope masses and/or count rates and very high ac-
curacy is required, there may be residual nonlinearities
greater than acceptable. Because such problems will
often result from a wide range of count rates, which
results from a wide range of assay isotope masses, one
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might first consider two or more linear, two-parameter
calibrations over more restricted mass ranges. Such
adjustment of the calibration function should be re-
quired infrequently. In gamma-ray NDA at Los Alamos,
the accuracy has more often been limited by in-
homogeneity or of excessive particle size in the sample,
and a single one-parameter linear calibration over the
range required has nearly always been sufficient.

The extent to which one may safely extrapolate even a
linear calibration beyond its data points will usually
depend on whether the extrapolation is toward lower or
higher masses of the assay isotope than those contained
in the standards. In gamma-ray NDA, the requirement
to “span the range” is more burdensome and least
necessary when the extrapolation is toward smaller
assay masses than those contained in the standards. If
the expected isotope masses in the unknowns include
levels that give low count rates, which result in poor
precision in a normal assay interval, then the time
required to count a standard of equivalent concentra-
tion to a precision justifying its inclusion in calibration
data rapidly becomes inconveniently long. At low con-
centrations of the assay isotope, the self-attenuation is
usually dominated by the matrix, even for the high-Z
elements encountered in special nuclear materials, and
so CF(AT) usually changes very slowly over a wide
range of low concentrations. Similarly, the count rates
are usually low so that CF(RL) not only changes slowly
but 1s small and accurately determined. As a result, one
usually has high confidence in extrapolating from an
assay isotope mass, which provides reasonable statistics
in a reasonable time down to the lowest detectable
levels. As an example, consider the assay of “*U solu-
tions by the 185.7-keV gamma ray. For reasonably sized
samples (>25 mR), a concentration of ~ 10 g/2 ***U may
well give a precision of ~0.5% in ~ 1000 s. A sample of
0.1 g/¢ 35U concentration would have nearly the same
CF(AT) and would give a precision of ~5% in a 1000-s
assay, which might well be quite acceptable for the assay
result at that concentration. However, it would take
~100 000 s to count a 0.1 g/f **°U standard to 0.5%
precision, which one might well require if including it in
the calibration data. A great deal of time can be and has
been wasted in counting very low level standards.

The extrapolation to mass values higher than those in
the standards must in general be approached more
cautiously, especially if the highest mass standard is at a
level where both CF(AT) and CF(RL) are changing
rapidly or where the gross count rates are approaching
the limits of the ability of the electronics to maintain
adequate resolution and satisfactory full-energy peak
shape. One should probably confirm the performance of
the system at the higher masses and count rates with an
approximately known source material of some sort even
if no standard exists at the desired mass level. For
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example, if it has been confirmed that the system is able
to accurately measure a transmission of 1% at a count
rate of 30 000 s~! with overall satisfactory performance
of the electronics, then one would have reasonable
confidence in assaving an unknown with 1% trans-
mission at 50 000 s™! even if the highest mass standard
has an ~2% transmission and gives a gross rate of
~40000s™". If the entire expected range of assay isotope
in the unknowns is such to give only modest count rates
and small and slowly varying values of CF(RL) and
CF(AT), then one is safer in extrapolating upward over a
greater fraction of the expected mass range.

A major point being emphasized here, and in the
whole report, is that even though one will always want
several standards to calibrate a gamma-ray NDA system
and to confirm the accuracy of the calibration, that
number can be much smaller than would be needed if
the requirements of chemical and physical similarity
and of “spanning the mass range” were strictly ob-
served.

By way of final comment, the possession of an ap-
propriate set of standards does not compensate for lack
of knowledge of how to use them or for maladjusted or
malfunctioning equipment, inappropriate assay
geometries, incorrect expressions for the correction fac-
tors, or assay samples that do not adequately meet the
requirements on uniformity and homogeneity. All the
items are important factors in achieving accurate
gamma-ray assays, and none can be safely neglected.
When all the pertinent factors are properly addressed,
including proper and efficient use of calibration stan-
dards, which is the subject of this report, gamma-ray
NDA can provide economical, timely, and accurate
assays for many classes of gamma-ray-emitting
materials.
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