
July/August 2009	 Copublished by the IEEE CS and the AIP	 1521-9615/09/$25.00 © 2009 IEEE� 91

A t I s s u e

and Los Alamos National Laboratory, where it’s now
located. Aside from its performance, Roadrunner has
two distinguishing characteristics: a very good power/
performance ratio and a “hybrid” computer architecture
that mixes several types of processors. By November 2008,
the traditionally architected Jaguar computer at Oak Ridge
National Laboratory was tied with Roadrunner in the per­
formance race, but it requires almost 2.8 times the electric
power of Roadrunner. This difference translates into mil­
lions of dollars per year in operating costs.

As supercomputer designers push on toward the exa­
scale computing goal, power consumption becomes a major
challenge. Current power estimates for exascale computers
range from many tens to low hundreds of megawatts for
the computer and memory alone, discounting storage and
environmental conditioning. For comparison, Roadrunner
requires roughly 2.5 MW for 1.45 petaflops/s peak. The
combination of computing performance and power effi­
ciency in Roadrunner shows one of the principal advantages
to considering hybrid architectures. However, this advan­
tage comes with the challenge of learning a new program­
ming paradigm. The November/December 2008 issue of
CiSE1 provided a glimpse into how computational scientists
are adapting to and exploiting a variety of novel architec­
tures. We can do this—there are many benefits, but there
are challenges.

It would be nice to think that specialized processors and
hybrid systems are simply fads that will disappear soon.
Scientific computing has enjoyed a fairly idyllic era since
the transition from vector processors to massively parallel
processing in the 1990s. Although there has been a shift
to commodity clusters and changes in operating systems
and communication infrastructure, the applications’ basic
structure hasn’t needed significant change. Unfortunately,

challenges in processor design and fabrication are bring­
ing this era to a close. In many ways, Roadrunner is just as
important as a glimpse into scientific computing’s future as
it is as a petaflop supercomputer.

Processors Are Changing and for Good Reason
As in any business, profit is the driving force in processor
design. Without an improved user experience to generate
sales, companies have no economic incentive to bring new
designs to market. Traditionally, this improvement in user
experience came through performance advances in gen­
eral-purpose processors (GPPs). However, this path has
bifurcated: the rapid proliferation of embedded processors
has created demand for specialized low-power designs, and
a variety of challenges to traditional means of improving
performance is causing designers to rethink GPPs. Here,
we illustrate some of these challenges to provide a rationale
for the changes coming to hardware and software, which
John Manferdelli discusses in his article, “The Many-Core
Inflection Point for Mass Market Computer Systems.”2

One traditional approach to improving processor perfor­
mance is simply to increase the processors’ clock frequen­
cies. However, because power consumption is proportional
to clock frequency, the heat density per fixed area of the
processor chip increased to the point where simple cool­
ing methods were inadequate. Designers are now lowering
processors’ clock frequencies, negating the “free” perfor­
mance improvements that applications were getting from
successive generations of faster single processors.

Another technique for transparently improving perfor­
mance is instruction-level parallelism, common in GPPs
since the late 1990s. These superscalar processors simulta­
neously execute multiple instructions on redundant func­
tional units and must automatically detect and avoid data

In June 2008, a new supercomputer broke the petaflop/s performance barrier,

more than doubling the computational performance of the next fastest

machine on the Top500 Supercomputer list (http://top500.org). This computer,

named Roadrunner, is the result of an intensive collaboration between IBM

Trailblazing with Roadrunner

By Paul Henning and Andrew B. White Jr.

Authorized licensed use limited to: Los Alamos National Laboratory Research Library. Downloaded on September 2, 2009 at 16:07 from IEEE Xplore. Restrictions apply.

A t I s s u e

92� Computing in Science & Engineering

dependencies between sequential instructions. Superscalar
processors also employ pipelined, speculative, and out-of-
order execution that lead to a combinatorial number of
gates related to dependency checking, branch prediction,
and instruction scheduling.3 These techniques create pro­
cessor designs that are difficult to design and verify; yet,
the nature of the instruction stream that executes ulti­
mately limits the promised performance improvements.
Designers are moving back to simpler instruction-sched­
uling models and are using the newly freed space for dif­
ferent purposes.4

The final architectural challenge is the growing discrep­
ancy between the time required to execute an instruction
and the time required to retrieve data from memory. For
most current processors, we can expect a single instruction
to take 10 or fewer clock cycles, whereas fetching data from
main memory might take several hundred cycles. This
problem is compounded when the processor executes mul­
tiple instructions simultaneously. Traditionally, program­
mers have worked around this difference by using larger
hierarchies of fast cache memory, which act as a bridge be­
tween the processor and the main system memory. How­
ever, this cache memory is expensive and complex, and the
deeper hierarchies that appear in contemporary processors
are increasingly difficult to verify for correctness. Design­
ers are beginning to introduce new memory subsystems to
processors, including crossbar switches and programmer-
controlled local storage.

Looking beyond processor design, another broad cat­
egory of challenges deals with the increase in processor
power consumption as the fabrication process size de­
creases. Companies currently use a 45-nm manufacturing
process in which SRAM cell area is measured in fractions
of square micrometers.5 Many complicated physical ef­
fects exist at this scale (see, for example, Yannis Tsividis’s
book, Operation and Modeling of the MOS Transistor6), but
the net effect is that transistors leak significant amounts of
power. Advances in material sciences should help stem this
problem, but the shrinking feature size implies that we’ll
soon have more transistors on a chip than we can afford to
power simultaneously. It’s expected that fine-grained pow­
er management features will appear in processors (or even
to programmers), leading to heterogeneous performance
across even homogeneous processors.

In the face of these significant challenges, processor de­
signers must still meet the economic driver of providing
a better user experience. Rather than pursue even more
complex single processors, they place multiple copies of

a processor onto one chip to form a multicore processor.
Each of these cores tends to be slower and less complex
than the single processors of just five years ago, but they
provide performance increases in aggregate. However, this
trend shifts more work to the application programmer. Not
only do programmers have to make up the loss in single-
core performance through better optimization, but they
must also explore ways of parallelizing their applications to
take advantage of more cores. Although this is nothing new
for the scientific computing community, it’s a fundamental
shift in the broader software industry.

In addition to moving to multicore designs, companies
have introduced chips that contain a mix of general- and
special-purpose cores. These heterogeneous multicore
chips represent the most significant challenge (and op­
portunity!) for software developers. In contemporary het­
erogeneous multicore chips, special-purpose cores tend
to be short-vector processors, which are especially useful
in computer graphics applications. Whereas GPPs have
had some form of vector operations available for some
time (SSE, AltiVec, and so on), offloading this workload
to a stand-alone processor allows for greatly increased
parallelism. Scientific programmers certainly use vec­
tor processors, but expect to see much more specialized
processors appearing in the future, such as cryptographic
engines, compression, video decoding, and so on. These
will pose special problems for the high-performance com­
puting (HPC) community, both in terms of how (or if) to
use them, as well as managing the power they draw when
not in use.

Hardware Changes
That Disrupt Software Development
The changes occurring in computer architectures are cre­
ating a ripple effect in the software development arena,
even for traditionally serial applications. The availability
of specialized processors forces developers to decompose
their programs across functional units. Deep memory hi­
erarchies, especially coupled with disjoint address spaces,
require special attention to data motion costs. Short-vector
processors constrain data structure design, so developers
must look to parallelism, often in terms of multithreading,
for performance gains.

Even in the HPC community, where programming has
always involved some level of adaptation to distinctive hard­
ware, programs must evolve to new levels of complexity. We
can no longer imagine that all processors have equal access
to resources such as memory, network, or I/O: developers

Authorized licensed use limited to: Los Alamos National Laboratory Research Library. Downloaded on September 2, 2009 at 16:07 from IEEE Xplore. Restrictions apply.

July/August 2009� 93

must schedule tasks on the processors with the best balance
of functionality and resource access. Power management
considerations can become explicit in programs, such as
putting an idle functional unit into a reduced power state.
Moreover, as system sizes continue to increase, reliability
and resilience become significant issues. Can we detect and
recover from hard, soft, and even silent data corruption?
How do we restart calculations on systems with a mean
time between interrupts measured in hours?

Compounding these technical challenges is the dire
lack of parallelism experience among the general software
developer community. The state of the tools available to
developers makes this problem worse: threading libraries
and primitives added to fundamentally serial languages
are challenging to use. Hardware vendors have recognized
these problems and are working on a variety of solutions.
In the hardware itself, transactional memory could remove
some of the challenges of thread programming, and inno­
vations such as scout threads might provide more transpar­
ent performance increases.

Hardware vendors are also creating software solutions
to address these problems, from new compiler technolo­
gies to libraries and language extensions. But for the most
part, these tend to be proprietary, useful on only one
vendor’s hardware. One exception to this is the Khronos
Group’s OpenCL standard,7 which is an API for pro­
gramming attached accelerator processors, such as gen­
eral-purpose computations on graphics processing units
(GPGPUs). Some companies have pursued long-term
strategies such as establishing research labs at universities
to directly tackle some of today’s challenging problems
and creating a stream of talented and experienced gradu­
ates. Vendors have also introduced forms of declarative
programming into their tools to help programmers focus
on what should happen, rather than how the computer
should execute the task.

Although the intensity of these activities is encouraging
and will certainly bring advances, they’re not a sufficient
solution for HPC. Most of this work focuses on program­
ming a single chip or a desktop: large clusters of these
complicated nodes don’t command enough market share
to warrant the investment. Another, somewhat subtle chal­
lenge for the HPC market is a forced change in program­
ming languages. Hardware vendors have focused most of
their investment for new software tools on C/C++ com­
pilers. Although some of these developments will trickle
down into Fortran tools, it’s unlikely that Fortran will be
well-suited to take advantage of the new hardware.

A Comprehensive Approach
Perhaps the greatest challenge that software developers face
at this time can be simply termed as diversity. Hardware
designers have provided a dizzying array of options, and
each one could encourage several different programming
approaches. Eventually, this period of rapid innovation will
settle to a smaller set of stable technologies, but we don’t
have the luxury of waiting until that happens. Fortunate­
ly, the HPC community already has a tool that’s flexible
enough to confront most of our programming challenges
in Roadrunner (www.lanl.gov/roadrunner).

At the top level, LANL configured Roadrunner as a rel­
atively traditional cluster of clusters that uses InfiniBand
for the interconnect and supports HPC-standard message-
passing interface (MPI) communications. At the node level,
however, Roadrunner becomes unique. Figure 1 provides a
conceptual node schematic. The node’s root—at least with
respect to the network—is a blade server with two dual-
core AMD Opteron processors. Attached to that are two
accelerator blade servers based on the IBM PowerXCell 8i
processor. This processor conforms to the Cell Broadband
Engine architecture specification that Sony, Toshiba, and
IBM created8 and is itself a heterogeneous multicore chip.

4 Gbytes

4 Gbytes

PowerXCell 8i

PowerXCell 8i

4 Gbytes

4 Gbytes

PowerXCell 8i

PowerXCell 8i

8 Gbytes

8 Gbytes

2 Gbytes/s, 2 µs

2 PCI-E x8 links,
2 Gbytes/s, 2 µs each

SPE

LS

SPE

LS

SPE

LS

SPE

LS

SPE

LS

SPE

LS

SPE

LS

SPE

LS

EIB

PPE

4
Gbytes

In�niBand 4x DDR

Opteron x2

Opteron x2

SPE: Synergistic processing element
LS: 256 Kbytes of local store
PPE: PowerPC processor element

Figure 1. A Roadrunner node schematic. Bandwidth and latency characterize communication channels.

Authorized licensed use limited to: Los Alamos National Laboratory Research Library. Downloaded on September 2, 2009 at 16:07 from IEEE Xplore. Restrictions apply.

A t I s s u e

94� Computing in Science & Engineering

The PowerXCell 8i has a general-purpose core (the
PowerPC processor element [PPE]) and eight short-vector
engines (the synergistic processing element [SPEs]). The
PPE has a traditional two-level cache, whereas the SPEs
use a programmer-managed local store: 256 Kbytes for
program text and data. The programmer explicitly moves
data from main memory to the local store using asynchro­
nous communication calls, allowing truly overlapped com­
munication and computation. Each SPE contains 128-bit
registers and a statically scheduled, in-order, dual-issue in­
struction pipeline and can achieve 12.8 Gflops/s in double

precision. This gives each Roadrunner node a more than
400 Gflops/s peak.

Roadrunner’s design lets developers gracefully transition
their existing applications to the new architecture: MPI
applications can run unchanged on the Opteron cluster of
clusters. Although this makes a nice starting point for de­
velopers, such applications can access only a small fraction
(3.5 percent) of the machine’s peak performance. Accelerat­
ing these applications requires identifying portions of the
code to move to the PowerXCell processors. As provisioned,
Roadrunner has equal numbers of PowerXCell processors
and Opteron cores and the same amount of memory avail­
able to each. This admits the conceptually simple pairing of
one Opteron core with one PowerXCell processor. Develop­
ers can incrementally accelerate their applications by mov­
ing more functions from the Opteron to the PowerXCell.

Moving a function to the SPE can seem a daunting task
at first. The small local store and the need to explicitly
move data between it and the main memory are constraints
that haven’t been relevant for some time in general-purpose
programming. Confronting the data structure and align­
ment implications of the vector-only SPE instruction set
can shake the confidence of even the most skilled scalar in­
struction programmers. The key observation to overcom­
ing these challenges is simply that the SPE makes many
operations explicit for programmers. It’s not that a GPP
isn’t doing these same tasks, it just has more hardware with
which to do them. SPE programmers must be cognizant of
data locality and will see data motion in explicit instruc­
tions. But awareness of these issues is exactly what program­
mers require to achieve high performance on cache-based
GPPs! We invariably obtain performance increases on our
GPPs when we apply the optimization lessons learned from
porting code to the SPE. This is a substantial benefit that
will outlive any particular architecture.

Although accelerating applications through function off­
load provides an expedient path to performance, develop­
ers realize the machine’s research potential when they start
with a fresh look at application design. Rather than look
at the SPEs as Opteron accelerators, we can reverse the
model and think of the Opterons as communication man­
agers for the PowerXCell processors. Although it’s easiest
to think of every SPE running the same instructions on
different portions of data, they’re independently program­
mable and can communicate with each other directly. This
admits a variety of streaming and process ganging models.
More opportunities arise when we discard the Opteron–
PowerXCell pairing and find ways to distribute the work of

Advertising Sales
Representatives

Recruitment:

Mid Atlantic
Lisa Rinaldo
Phone: +1 732 772
0160
Fax: +1 732 772 0164
Email: lr.ieeemedia@
ieee.org

New England
John Restchack
Phone: +1 212 419
7578
Fax: +1 212 419 7589
Email: j.restchack@
ieee.org

Southeast
Thomas M. Flynn
Phone: +1 770 645
2944
Fax: +1 770 993 4423
Email: flynntom@
mindspring.com

Midwest/Southwest
Darcy Giovingo
Phone: +1 847 498
4520
Fax: +1 847 498 5911

Email: dg.ieeemedia@
ieee.org

Northwest/Southern
CA
Tim Matteson
Phone: +1 310 836
4064
Fax: +1 310 836 4067
Email: tm.ieeemedia@
ieee.org

Japan
Tim Matteson
Phone: +1 310 836
4064
Fax: +1 310 836 4067
Email: tm.ieeemedia@
ieee.org

Europe
Hilary Turnbull
Phone: +44 1875
825700
Fax: +44 1875 825701
Email: impress@
impressmedia.com

Product:

US East
Joseph M. Donnelly
Phone: +1 732 526
7119

Email: jmd.ieeemedia
@ieee.org

US Central
Darcy Giovingo
Phone: +1 847 498
4520
Fax: +1 847 498 5911
Email: dg.ieeemedia@
ieee.org

US West
Lynne Stickrod
Phone: +1 415 931
9782
Fax: +1 415 931 9782
Email: ls.ieeemedia@
ieee.org

Europe
Sven Anacker
Phone: +49 202
27169 11
Fax: +49 202 27169
20
Email: sanacker@
intermediapartners.de

Advertiser� Page
AAPT 2009� 49

Advertising Personnel
Marion Delaney | IEEE Media, Advertising Dir.
Phone: +1 415 863 4717 | Email: md.ieeemedia@ieee.org

Marian Anderson | Sr. Advertising Coordinator
Phone: +1 714 821 8380 | Fax: +1 714 821 4010
Email: manderson@computer.org

Sandy Brown | Sr. Business Development Mgr.
Phone: +1 714 821 8380 | Fax: +1 714 821 4010
Email: sb.ieeemedia@ieee.org

AdvertiSER Information • JULY/AUGUST 2009

Authorized licensed use limited to: Los Alamos National Laboratory Research Library. Downloaded on September 2, 2009 at 16:07 from IEEE Xplore. Restrictions apply.

July/August 2009� 95

one process across all 40 processors on the node. By treat­
ing the node as a many-core processor, developers can bet­
ter understand the mismatch between high on-processor
performance and the slow access to off-processor resources
that we’ll see in many-core designs.

Developers have exploited all of these design techniques
when creating high-performance applications for Road­
runner. As a result of a peer-reviewed competition, LANL
awarded time on Roadrunner to 10 research teams for a va­
riety of open-science applications. These applications ran
the gamut of scientific fields (and scales!), from simulations
of cellusomes and viral phylogenetics to supernovae light
curves and a large-scale structure of the universe. In addi­
tion to the direct scientific contributions that these teams
have made, we’re studying the application development
process in each team to better inform the next generation
of application and tool developers.

B ringing a new large-scale computational resource on­
line takes considerable time and effort. This fact alone

buffers the HPC community from the most rapid techno­
logical changes, as technology choices are often made well
in advance of system delivery. Although this provides some
continuity for the HPC community, we shouldn’t be com­
placent to the changes occurring in the broader market.
Computer technology is changing, and although we can’t
predict or prescribe which technology path will eventually
dominate, we can be assured that we’ll be programming
differently in the future. If nothing else, the lines of code
dedicated to explicit control of memory, functional unit
power, resilience, and data communication will soon out­
number the lines of code doing the real computation.

To make this transition as smooth as possible, we must
start by preparing ourselves. As you design an application,
think about the implications of running on heterogeneous
or hybrid architectures. Try to maximize the short-vector
and multithreaded-processor uses that we have today, with­
out assuming that a compiler will take care of this for you.
Think about the costs of moving data around the system,
whether that’s between local memory and a processor or
between nodes in a parallel system.

The next step is to experiment and add to the commu­
nity’s body of knowledge. Write applications for alterna­
tive processors, such as FPGAs or Cell processors. Learn
to program a small, accelerated system, such as a work­
station with a GPGPU or a cluster of Sony PlayStation
consoles. Experiment with functional programming lan­

guages, such as Clojure or Haskell, to see how this class
of languages can provide a powerful abstraction from the
hardware. These sorts of investments prepare us for the
future, but they can also pay dividends in terms of better
utilization of today’s technology.

Finally, we must engage the broader community to en­
sure that standards and tools support HPC needs. People
are just beginning to consider how to develop tools that
can alleviate some of the new burdens placed on program­
mers—now’s the time to share the experience we’ve gained
from years of programming parallel systems. As the indus­
try struggles with the rapid rise of parallel computing, we
can act as mentors, helping avoid the mistakes that we’ve
made, while looking for the insights that will come from a
fresh perspective on our long-standing problems.�

References
Computing in Science & Eng.1.	 , special issue on novel architectures, Nov./
Dec. 2008; www2.computer.org/portal/web/csdl/magazines/cise#3.

J.L. Manferdelli, “The Many-Core Inflection Point for Mass Market Com-2.	
puter Systems,” CTWatch Quarterly, vol. 3, no. 1, 2007; www.ctwatch.
org/quarterly/articles/2007/02/the-many-core-inflection-point-for-mass-
market-computer-systems.

S. Cotofana and S. Vassiliadis, “On the Design Complexity of the Issue 3.	
Logic of Superscaler Machines,” Proc. 24th Euromicro Conf., IEEE CS
Press, 1998, pp. 227–284.

J. Kahle et al., “Introduction to the Cell Multiprocessor,” 4.	 IBM J. Research
and Development, vol. 49, nos. 4–5, 2005, pp. 589–694.

K. Mistry et al, “A 45nm Logic Technology with High-k+Metal Gate 5.	
Transistors, Strained Silcon, 9 Cu Connect Layers, 193 nm Dry Pattern-
ing, and 100% Pb-Free Packaging,” Proc. Int’l Electron Devices Meeting,
(IEDM 2007), IEEE CS Press, 2007, pp. 247–250.

Y. Tsividis, 6.	 Operation and Modeling of the MOS Transistor, 2nd ed., Oxford
Univ. Press, 2003.

A. Munshi, ed., “The OpenCL Specification,” v. 1.0, revision 29, 2008; 7.	
www.khronos.org/registry/cl/specs/opencl-1.0.29.pdf.

IBM, “Cell Broadband Engine Architecture,” v. 1.02, 2007; www-01.ibm.8.	
com/chips/techlib/techlib.nsf/techdocs/1AEEE1270EA27763872570600
06E61BA/$file/CBEA_v1.02_11Oct2007_pub.pdf.

Paul Henning is a research scientist at Los Alamos National Laborato-

ry (LANL). His research interests include high-performance comput-

ing and domain-specific languages for scientific computing. Henning

has a PhD in computer science from the University of Iowa. He’s a

member of SIAM and the ACM. Contact him at phenning@lanl.gov.

Andrew B. White Jr. is the deputy associate director for theory, simu-

lation, and computation at LANL. His research interests include high-

performance computing, reliability, and resiliency. White has a PhD

in applied mathematics from the California Institute of Technology.

Contact him at abw@lanl.gov.

Authorized licensed use limited to: Los Alamos National Laboratory Research Library. Downloaded on September 2, 2009 at 16:07 from IEEE Xplore. Restrictions apply.

