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and Los Alamos National Laboratory, where it’s now 
located. Aside from its performance, Roadrunner has 
two distinguishing characteristics: a very good power/
performance ratio and a “hybrid” computer architecture 
that mixes several types of processors. By November 2008, 
the traditionally architected Jaguar computer at Oak Ridge 
National Laboratory was tied with Roadrunner in the per­
formance race, but it requires almost 2.8 times the electric 
power of Roadrunner. This difference translates into mil­
lions of dollars per year in operating costs.

As supercomputer designers push on toward the exa­
scale computing goal, power consumption becomes a major 
challenge. Current power estimates for exascale computers 
range from many tens to low hundreds of megawatts for 
the computer and memory alone, discounting storage and 
environmental conditioning. For comparison, Roadrunner 
requires roughly 2.5 MW for 1.45 petaflops/s peak. The 
combination of computing performance and power effi­
ciency in Roadrunner shows one of the principal advantages 
to considering hybrid architectures. However, this advan­
tage comes with the challenge of learning a new program­
ming paradigm. The November/December 2008 issue of 
CiSE1 provided a glimpse into how computational scientists 
are adapting to and exploiting a variety of novel architec­
tures. We can do this—there are many benefits, but there 
are challenges.

It would be nice to think that specialized processors and 
hybrid systems are simply fads that will disappear soon. 
Scientific computing has enjoyed a fairly idyllic era since 
the transition from vector processors to massively parallel 
processing in the 1990s. Although there has been a shift 
to commodity clusters and changes in operating systems 
and communication infrastructure, the applications’ basic 
structure hasn’t needed significant change. Unfortunately, 

challenges in processor design and fabrication are bring­
ing this era to a close. In many ways, Roadrunner is just as 
important as a glimpse into scientific computing’s future as 
it is as a petaflop supercomputer.

Processors Are Changing and for Good Reason
As in any business, profit is the driving force in processor 
design. Without an improved user experience to generate 
sales, companies have no economic incentive to bring new 
designs to market. Traditionally, this improvement in user 
experience came through performance advances in gen­
eral-purpose processors (GPPs). However, this path has 
bifurcated: the rapid proliferation of embedded processors 
has created demand for specialized low-power designs, and 
a variety of challenges to traditional means of improving 
performance is causing designers to rethink GPPs. Here, 
we illustrate some of these challenges to provide a rationale 
for the changes coming to hardware and software, which 
John Manferdelli discusses in his article, “The Many-Core 
Inflection Point for Mass Market Computer Systems.”2

One traditional approach to improving processor perfor­
mance is simply to increase the processors’ clock frequen­
cies. However, because power consumption is proportional 
to clock frequency, the heat density per fixed area of the 
processor chip increased to the point where simple cool­
ing methods were inadequate. Designers are now lowering 
processors’ clock frequencies, negating the “free” perfor­
mance improvements that applications were getting from 
successive generations of faster single processors.

Another technique for transparently improving perfor­
mance is instruction-level parallelism, common in GPPs 
since the late 1990s. These superscalar processors simulta­
neously execute multiple instructions on redundant func­
tional units and must automatically detect and avoid data 

In June 2008, a new supercomputer broke the petaflop/s performance barrier, 

more than doubling the computational performance of the next fastest 

machine on the Top500 Supercomputer list (http://top500.org). This computer, 

named Roadrunner, is the result of an intensive collaboration between IBM 
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dependencies between sequential instructions. Superscalar 
processors also employ pipelined, speculative, and out-of-
order execution that lead to a combinatorial number of 
gates related to dependency checking, branch prediction, 
and instruction scheduling.3 These techniques create pro­
cessor designs that are difficult to design and verify; yet, 
the nature of the instruction stream that executes ulti­
mately limits the promised performance improvements. 
Designers are moving back to simpler instruction-sched­
uling models and are using the newly freed space for dif­
ferent purposes.4

The final architectural challenge is the growing discrep­
ancy between the time required to execute an instruction 
and the time required to retrieve data from memory. For 
most current processors, we can expect a single instruction 
to take 10 or fewer clock cycles, whereas fetching data from 
main memory might take several hundred cycles. This 
problem is compounded when the processor executes mul­
tiple instructions simultaneously. Traditionally, program­
mers have worked around this difference by using larger 
hierarchies of fast cache memory, which act as a bridge be­
tween the processor and the main system memory. How­
ever, this cache memory is expensive and complex, and the 
deeper hierarchies that appear in contemporary processors 
are increasingly difficult to verify for correctness. Design­
ers are beginning to introduce new memory subsystems to 
processors, including crossbar switches and programmer-
controlled local storage.

Looking beyond processor design, another broad cat­
egory of challenges deals with the increase in processor 
power consumption as the fabrication process size de­
creases. Companies currently use a 45-nm manufacturing 
process in which SRAM cell area is measured in fractions 
of square micrometers.5 Many complicated physical ef­
fects exist at this scale (see, for example, Yannis Tsividis’s 
book, Operation and Modeling of the MOS Transistor6), but 
the net effect is that transistors leak significant amounts of 
power. Advances in material sciences should help stem this 
problem, but the shrinking feature size implies that we’ll 
soon have more transistors on a chip than we can afford to 
power simultaneously. It’s expected that fine-grained pow­
er management features will appear in processors (or even 
to programmers), leading to heterogeneous performance 
across even homogeneous processors.

In the face of these significant challenges, processor de­
signers must still meet the economic driver of providing 
a better user experience. Rather than pursue even more 
complex single processors, they place multiple copies of 

a processor onto one chip to form a multicore processor. 
Each of these cores tends to be slower and less complex 
than the single processors of just five years ago, but they 
provide performance increases in aggregate. However, this 
trend shifts more work to the application programmer. Not 
only do programmers have to make up the loss in single-
core performance through better optimization, but they 
must also explore ways of parallelizing their applications to 
take advantage of more cores. Although this is nothing new 
for the scientific computing community, it’s a fundamental 
shift in the broader software industry.

In addition to moving to multicore designs, companies 
have introduced chips that contain a mix of general- and 
special-purpose cores. These heterogeneous multicore 
chips represent the most significant challenge (and op­
portunity!) for software developers. In contemporary het­
erogeneous multicore chips, special-purpose cores tend 
to be short-vector processors, which are especially useful 
in computer graphics applications. Whereas GPPs have 
had some form of vector operations available for some 
time (SSE, AltiVec, and so on), offloading this workload 
to a stand-alone processor allows for greatly increased 
parallelism. Scientific programmers certainly use vec­
tor processors, but expect to see much more specialized 
processors appearing in the future, such as cryptographic 
engines, compression, video decoding, and so on. These 
will pose special problems for the high-performance com­
puting (HPC) community, both in terms of how (or if) to 
use them, as well as managing the power they draw when 
not in use.

Hardware Changes  
That Disrupt Software Development
The changes occurring in computer architectures are cre­
ating a ripple effect in the software development arena, 
even for traditionally serial applications. The availability 
of specialized processors forces developers to decompose 
their programs across functional units. Deep memory hi­
erarchies, especially coupled with disjoint address spaces, 
require special attention to data motion costs. Short-vector 
processors constrain data structure design, so developers 
must look to parallelism, often in terms of multithreading, 
for performance gains.

Even in the HPC community, where programming has 
always involved some level of adaptation to distinctive hard­
ware, programs must evolve to new levels of complexity. We 
can no longer imagine that all processors have equal access 
to resources such as memory, network, or I/O: developers 
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must schedule tasks on the processors with the best balance 
of functionality and resource access. Power management 
considerations can become explicit in programs, such as 
putting an idle functional unit into a reduced power state. 
Moreover, as system sizes continue to increase, reliability 
and resilience become significant issues. Can we detect and 
recover from hard, soft, and even silent data corruption? 
How do we restart calculations on systems with a mean 
time between interrupts measured in hours?

Compounding these technical challenges is the dire 
lack of parallelism experience among the general software 
developer community. The state of the tools available to 
developers makes this problem worse: threading libraries 
and primitives added to fundamentally serial languages 
are challenging to use. Hardware vendors have recognized 
these problems and are working on a variety of solutions. 
In the hardware itself, transactional memory could remove 
some of the challenges of thread programming, and inno­
vations such as scout threads might provide more transpar­
ent performance increases.

Hardware vendors are also creating software solutions 
to address these problems, from new compiler technolo­
gies to libraries and language extensions. But for the most 
part, these tend to be proprietary, useful on only one 
vendor’s hardware. One exception to this is the Khronos 
Group’s OpenCL standard,7 which is an API for pro­
gramming attached accelerator processors, such as gen­
eral-purpose computations on graphics processing units 
(GPGPUs). Some companies have pursued long-term 
strategies such as establishing research labs at universities 
to directly tackle some of today’s challenging problems 
and creating a stream of talented and experienced gradu­
ates. Vendors have also introduced forms of declarative 
programming into their tools to help programmers focus 
on what should happen, rather than how the computer 
should execute the task.

Although the intensity of these activities is encouraging 
and will certainly bring advances, they’re not a sufficient 
solution for HPC. Most of this work focuses on program­
ming a single chip or a desktop: large clusters of these 
complicated nodes don’t command enough market share 
to warrant the investment. Another, somewhat subtle chal­
lenge for the HPC market is a forced change in program­
ming languages. Hardware vendors have focused most of 
their investment for new software tools on C/C++ com­
pilers. Although some of these developments will trickle 
down into Fortran tools, it’s unlikely that Fortran will be 
well-suited to take advantage of the new hardware.

A Comprehensive Approach
Perhaps the greatest challenge that software developers face 
at this time can be simply termed as diversity. Hardware 
designers have provided a dizzying array of options, and 
each one could encourage several different programming 
approaches. Eventually, this period of rapid innovation will 
settle to a smaller set of stable technologies, but we don’t 
have the luxury of waiting until that happens. Fortunate­
ly, the HPC community already has a tool that’s flexible 
enough to confront most of our programming challenges 
in Roadrunner (www.lanl.gov/roadrunner).

At the top level, LANL configured Roadrunner as a rel­
atively traditional cluster of clusters that uses InfiniBand 
for the interconnect and supports HPC-standard message-
passing interface (MPI) communications. At the node level, 
however, Roadrunner becomes unique. Figure 1 provides a 
conceptual node schematic. The node’s root—at least with 
respect to the network—is a blade server with two dual-
core AMD Opteron processors. Attached to that are two 
accelerator blade servers based on the IBM PowerXCell 8i 
processor. This processor conforms to the Cell Broadband 
Engine architecture specification that Sony, Toshiba, and 
IBM created8 and is itself a heterogeneous multicore chip.
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Figure 1. A Roadrunner node schematic. Bandwidth and latency characterize communication channels.
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The PowerXCell 8i has a general-purpose core (the 
PowerPC processor element [PPE]) and eight short-vector 
engines (the synergistic processing element [SPEs]). The 
PPE has a traditional two-level cache, whereas the SPEs 
use a programmer-managed local store: 256 Kbytes for 
program text and data. The programmer explicitly moves 
data from main memory to the local store using asynchro­
nous communication calls, allowing truly overlapped com­
munication and computation. Each SPE contains 128-bit 
registers and a statically scheduled, in-order, dual-issue in­
struction pipeline and can achieve 12.8 Gflops/s in double 

precision. This gives each Roadrunner node a more than 
400 Gflops/s peak.

Roadrunner’s design lets developers gracefully transition 
their existing applications to the new architecture: MPI 
applications can run unchanged on the Opteron cluster of 
clusters. Although this makes a nice starting point for de­
velopers, such applications can access only a small fraction 
(3.5 percent) of the machine’s peak performance. Accelerat­
ing these applications requires identifying portions of the 
code to move to the PowerXCell processors. As provisioned, 
Roadrunner has equal numbers of PowerXCell processors 
and Opteron cores and the same amount of memory avail­
able to each. This admits the conceptually simple pairing of 
one Opteron core with one PowerXCell processor. Develop­
ers can incrementally accelerate their applications by mov­
ing more functions from the Opteron to the PowerXCell.

Moving a function to the SPE can seem a daunting task 
at first. The small local store and the need to explicitly 
move data between it and the main memory are constraints 
that haven’t been relevant for some time in general-purpose 
programming. Confronting the data structure and align­
ment implications of the vector-only SPE instruction set 
can shake the confidence of even the most skilled scalar in­
struction programmers. The key observation to overcom­
ing these challenges is simply that the SPE makes many 
operations explicit for programmers. It’s not that a GPP 
isn’t doing these same tasks, it just has more hardware with 
which to do them. SPE programmers must be cognizant of 
data locality and will see data motion in explicit instruc­
tions. But awareness of these issues is exactly what program­
mers require to achieve high performance on cache-based 
GPPs! We invariably obtain performance increases on our 
GPPs when we apply the optimization lessons learned from 
porting code to the SPE. This is a substantial benefit that 
will outlive any particular architecture.

Although accelerating applications through function off­
load provides an expedient path to performance, develop­
ers realize the machine’s research potential when they start 
with a fresh look at application design. Rather than look 
at the SPEs as Opteron accelerators, we can reverse the 
model and think of the Opterons as communication man­
agers for the PowerXCell processors. Although it’s easiest 
to think of every SPE running the same instructions on 
different portions of data, they’re independently program­
mable and can communicate with each other directly. This 
admits a variety of streaming and process ganging models. 
More opportunities arise when we discard the Opteron–
PowerXCell pairing and find ways to distribute the work of 
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one process across all 40 processors on the node. By treat­
ing the node as a many-core processor, developers can bet­
ter understand the mismatch between high on-processor 
performance and the slow access to off-processor resources 
that we’ll see in many-core designs.

Developers have exploited all of these design techniques 
when creating high-performance applications for Road­
runner. As a result of a peer-reviewed competition, LANL 
awarded time on Roadrunner to 10 research teams for a va­
riety of open-science applications. These applications ran 
the gamut of scientific fields (and scales!), from simulations 
of cellusomes and viral phylogenetics to supernovae light 
curves and a large-scale structure of the universe. In addi­
tion to the direct scientific contributions that these teams 
have made, we’re studying the application development 
process in each team to better inform the next generation 
of application and tool developers.

B ringing a new large-scale computational resource on­
line takes considerable time and effort. This fact alone 

buffers the HPC community from the most rapid techno­
logical changes, as technology choices are often made well 
in advance of system delivery. Although this provides some 
continuity for the HPC community, we shouldn’t be com­
placent to the changes occurring in the broader market. 
Computer technology is changing, and although we can’t 
predict or prescribe which technology path will eventually 
dominate, we can be assured that we’ll be programming 
differently in the future. If nothing else, the lines of code 
dedicated to explicit control of memory, functional unit 
power, resilience, and data communication will soon out­
number the lines of code doing the real computation.

To make this transition as smooth as possible, we must 
start by preparing ourselves. As you design an application, 
think about the implications of running on heterogeneous 
or hybrid architectures. Try to maximize the short-vector 
and multithreaded-processor uses that we have today, with­
out assuming that a compiler will take care of this for you. 
Think about the costs of moving data around the system, 
whether that’s between local memory and a processor or 
between nodes in a parallel system.

The next step is to experiment and add to the commu­
nity’s body of knowledge. Write applications for alterna­
tive processors, such as FPGAs or Cell processors. Learn 
to program a small, accelerated system, such as a work­
station with a GPGPU or a cluster of Sony PlayStation 
consoles. Experiment with functional programming lan­

guages, such as Clojure or Haskell, to see how this class 
of languages can provide a powerful abstraction from the 
hardware. These sorts of investments prepare us for the 
future, but they can also pay dividends in terms of better 
utilization of today’s technology.

Finally, we must engage the broader community to en­
sure that standards and tools support HPC needs. People 
are just beginning to consider how to develop tools that 
can alleviate some of the new burdens placed on program­
mers—now’s the time to share the experience we’ve gained 
from years of programming parallel systems. As the indus­
try struggles with the rapid rise of parallel computing, we 
can act as mentors, helping avoid the mistakes that we’ve 
made, while looking for the insights that will come from a 
fresh perspective on our long-standing problems.�
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