
Advances in Water Resources 56 (2013) 49–60
Contents lists available at SciVerse ScienceDi rect 

Adva nces in Wate r Resources 

journal homepage: www.elsevier .com/ locate/advwatres
Assessing leakage detectability at geologic CO2 sequestration sites using 
the probabilistic collocation method 
0309-1708/$ - see front matter � 2012 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.advwatres.2012.11.017

⇑ Corresponding author. Tel.: +1 512 475 6190; fax: +1 512 471 0140.
E-mail address: alex.sun@beg.utexas.edu (A.Y. Sun).
Alexander Y. Sun a,⇑, Mehdi Zeidouni a, Jean-Philippe Nicot a, Zhiming Lu b, Dongxiao Zhang c

a Bureau of Economic Geology, Jackson School of Geosciences, The University of Texas at Austin, TX, USA 
b EES-16, Los Alamos National Laboratory, Los Alamos, NM, USA 
c College of Engineering, Peking University, Beijing, China 

a r t i c l e i n f o
Article history:
Received 5 June 2012 
Received in revised form 20 November 2012 
Accepted 25 November 2012 
Available online 5 December 2012 

Keywords:
Carbon sequestration and storage 
Leakage detection 
Probabilistic collocation method 
Detectability
Signal-to-noise ratio 
Uncertainty quantification
a b s t r a c t

We present an efficient methodology for assessing leakage detectability at geologic carbon sequestration 
sites under parameter uncertainty. Uncertainty quantification (UQ) and risk asses sment are integral and,
in many countries, mandatory components of geologic carbon sequestration projects. A primary goal of
risk assessment is to evaluate leakage potential from anthropogenic and natural features, which consti- 
tute one of the greatest threats to the integrity of carbon sequestration repositories. The backbone of our 
detectability assessment framework is the probability collo cation method (PCM), an efficient, nonin- 
trusive, uncertainty-quantification technique that can enable large-scale stochastic simulations that 
are based on results from only a small number of forward-mode l runs. The metric for detectability is
expressed through an extended signal-to-noise ratio (SNR), which incorporates epistemic uncertainty 
associated with both reservoir and aquifer parameters. The spatially heterogeneous aquifer hydraulic 
conductivity is parameterized usi ng Karhunen–Loève (KL) expansion. Our methodol ogy is demonstrated 
numerically for generating probability maps of pressure anomalies and for calculating SNRs. Results indi- 
cate that the likelihood of detecting anomalies depends on the level of uncertainty and location of mon- 
itoring wells. A monitoring well located close to leaky locations may not always yield the strongest signal 
of leakage when the level of uncertainty is high. Therefore, our results highlight the need for closed-loop 
site characterization, monitoring network design, and leakage source detection.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction 

Carbon capture and storage is an active R&D area being studied 
across the world for reducing greenhouse gas emission . A primary 
goal of geologic carbon sequestration is to ensure that injected CO2

can be safely contained in host formations for extensive perfor- 
mance periods. Unintend ed CO2 migration from storage formations 
can occur as a result of natural and anthropoge nic impacts, such as
overpressur e in cap rocks and leakage through geologic faults and 
abandoned wells. Therefore, risk analysis and managemen t play 
critical roles in all stages of CO2 sequestratio n projects for mitiga- 
tion of potential health and environmental risks. Many countries 
have or are in the process of mandating risk managemen t for site 
license applications . For example, the European Union explicitly 
requires that a proposed CO2 sequestra tion site shall ‘‘show no sig- 
nificant risk of leakage and no significant environmental or health 
risks under the proposed condition s of use’’ [1]. Under its Under- 
ground Injection Control program, the US Environmental Protec- 
tion Agency (EPA) has proposed specific rules on CO2 injection
wells to protect undergro und sources of drinking water (USDW).
In particular, the proposed EPA rules have extensive requirements 
to ensure that wells used for geologic sequestratio n are appropri- 
ately sited, constructed, tested, monitore d, funded, and closed 
[2]. Recently, the US Department of Energy releases best practice 
manuals on risk analysis and management activities related to
CO2 storage projects [3,4].

Another important and closely related goal of risk managemen t
is to optimize monitoring networks for timely detection of CO2

leakage under both model and data uncertainty. The first and fore- 
most concern of regulator s is how efficiently a proposed monitor- 
ing network can detect leakage signals when they first appear.
Detectabili ty refers to the capability of an observer or a piece of
equipme nt to different iate between noise and signal plus noise dur-
ing an arbitrary observation interval or sampling event [5]. Assess- 
ment of detection probability invariably requires quantitat ive 
informat ion on signal-to-noi se ratios (SNRs). In a series of papers 
[6–8], Taguchi used SNR as a metric for optimal product design,
which he referred to as ‘‘the operation of choosing settings for 
the design paramete rs of a product or manufacturing process to re- 
duce sensitivity to noise’’. A now widely used Taguchi SNR for 
product design is the logarithm of the ratio between mean and 
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standard deviation of observed signals; alternativ ely, the ratio can 
be used directly without taking logarithm. The optimization prin- 
ciples behind Taguchi’s design are to (1) minimize product sensi- 
tivity to variations transmitted from components and (2)
minimize product sensitivity to environmental fluctuations. We
adopt the same principles for the design of CO2 monitoring net- 
works under parametric uncertainty.

In the context of the current work, noise is broadly interpreted 
as uncertainty caused by (1) natural variability in a system (alea-
tory uncertainty) and/or (2) lack of complete knowledge about sys- 
tem characteristics (epistemic uncertainty). Common examples of
the latter are (1) hydrogeologic (or reservoir) properties of moni- 
toring intervals, including both the injection zone itself and aqui- 
fers above the injection zone (i.e., the above-zone monitoring 
interval (AZMI)), and (2) the type of leakage source and its proper- 
ties [9]. An inverse relationshi p generally exists between cost and 
sensitivity of leakage-det ection techniques, which inherentl y de- 
pend on four macroscales pertaining to (1) the region needs to
be monitored, (2) the region affected by leakage flux, (3) the main 
leakage zone (e.g., scale of sources), (4) the footprint of the moni- 
toring equipment used [10,11], as well as on pore- and other 
microscales . Physical and chemical processes associate d with these 
scales can all potentially affect SNR. Macroscales 1 and 4 are usu- 
ally either known or can be practicall y considered determini stic.
Macroscales 2 and 3, however, are rather dynamic and uncertain.
The lack of information on system properties and length scales 
identified here, especially during the planning stage of many CO2

sequestratio n projects, often leads to a situation in which uncer- 
tainty quantification (UQ) becomes the dominant question, over- 
riding the influence of secondary physical processes [12].

The role of UQ in risk analysis and management is thus twofold.
First, it helps in identifying the dominant system and environmen- 
tal variables that contribute to system response variabilit y, an
analysis that is also important for subsequent activities such as
data collection and monitoring network design. Second, UQ yields 
bounding scenarios for system outputs and, therefore, provides di- 
rect inputs to risk-infor med performanc e assessment. UQ can be- 
come more powerful when coupled with data assimilation 
techniques and applied to site management adaptively. However,
to be suitable for data fusion or real-time decision support, a UQ
technique must be highly efficient. The purpose of this work is to
investigate the use of the probabilistic collocation method (PCM),
an efficient stochasti c-response surface method for assessing 
detectability under paramete r uncertainty.

Models have been used extensively to simulate the migration of
injected CO2 through various leakage pathways [13–17]. However ,
a number of challenges potentially exist when these models are 
applied to UQ using conventi onal techniques. For example, pertur- 
bation methods and stochastic-mom ent approach es require deriv- 
ing and solving a set of coupled stochastic partial differential 
equations (PDEs) correspondi ng to various uncertain input vari- 
ables, which is a nontrivia l task for complex, nonlinear processes.
In addition, the assumptions underlying these approaches largely 
restrict their applicability to small parameter variability [18].
Whereas Monte Carlo methods do not impose strong assumptions 
on the variabilit y of uncertain variables and do not require modifi-
cations of existing codes (i.e., nonintrus ive), they are computation- 
ally demanding and become intractable for large-scale problems 
without access to parallel or distributed computin g facilities.

In recent years, a new breed of UQ techniques—the polynomial 
chaos expansion (PCE) method and stochasti c collocatio n (SC)
method—have received broad attention in engineering- reliability 
analyses [19–24]. Both UQ techniqu es belong to the so-called sto- 
chastic-resp onse surface methods , and both represent parametric 
uncertainties as an expansion of orthogonal polynomi als of
independen t random variables and propagate them to quantify 
model-outp ut uncertainty. Exponential convergence rates can be
achieved by both methods for a wide range of probabilistic analysis 
problems [21].

The classical PCE method, pioneered by Ghanem and Spanos 
[24], is based on the homogeneous chaos theory of Wiener [25].
The method starts with a spectral expansion of input uncertain 
variables, through which the variables are projected onto a sto- 
chastic space spanned by a set of complete orthogonal polynomi -
als. A main consequence of this spectral expansion is that the 
uncertain variables are represented as a deterministic part (i.e.,
coefficients of expansion) and a stochastic part (i.e., polynomial 
chaos basis). Galerkin projection is then applied to each polyno- 
mial chaos basis, thereby replacing stochastic PDEs with a coupled 
determini stic system of equations, from which the coefficients of
expansion can be solved for. Ghanem and Spanos [24] worked with 
Hermite polynomial chaos, which is optimal for Gaussian random 
variables. Xiu and Karniadakis [21] later introduced generaliz ed
polynomi al chaos expansion using the Wiener–Askey scheme, such 
that a number of commonly used continuous and discontinuo us
probabili ty distribution functions (PDFs) could be accommodated .
The classical PCE method requires developing and solving a cou- 
pled system of determinist ic, ordinary differential equation s, a pro- 
cedure that can be cumbers ome and nontrivial when the problem 
at hand is complex and nonlinear.

The SC method, like its determinist ic counterpart in the finite
element method, seeks to construct a response surface using a pre- 
scribed set of collocation points, but in stochastic space rather than 
physical space. In the SC method, the expansion coefficients are 
nothing but model outputs correspondi ng to each of the colloca- 
tion points. The quantities to be solved for are expansion polyno- 
mials, which themselves are based on Lagrange interpolation 
polynomi als. The SC method is closely related to PCE because col- 
location points that offer high accuracy are also zeros of orthogon al
polynomi al bases used in PCE [20]. By design, the SC method is
nonintrus ive and leads naturally to uncoupled determinist ic sys- 
tems, as opposed to coupled system of equations resulting from 
Galerkin projection. The efficiency and accuracy of SC depend lar- 
gely on the number and location of collocation points. Several 
methods exist for generating collocation points, such as the tensor 
product grid and Smolyak sparse grid. The tensor product method 
is suitable only for low-dimension al systems because of the large 
number of collocation points it generates. The sparse grid approach 
uses a subset of the points generated by the tensor product method 
and therefore can be significantly more efficient [19,26,27].

A variant of the SC method is the probabilistic collocatio n meth- 
od (PCM), which combines features of both the classical PCE and SC
methods . Like PCE, it prescribe s a set of orthogon al polynomial 
bases. The expansion coefficients, however, are obtained by solving 
a linear system of equations, in which the right-han d-side data vec- 
tor (or matrix for transient problem) consists of model responses at
collocatio n points. The PCM, originally introduced by Tatang et al.
[28], is attractive for engineering- reliability analyses because it is
nonintrus ive and its impleme ntation is relatively straightforw ard.
The PCM has been used to solve both single- and multiphase flow
and mass transport problems in porous media [29–33]. Recently,
Oladyshki n et al. [12] used PCM in risk assessment of a hypotheti -
cal CO2 sequestration site, in which the authors considered the im- 
pact of uncertain paramete rs (reservoir porosity and permeabilit y
and leaky-well permeability) and design parameters (injection rate 
and size of screening interval) on predicted injection -zone vari- 
ables (i.e., cap-rock pressure and CO2 leakage rate). Oladyshkin 
et al. [12] assumed that all uncertain variables are independent 
and uniform in physical space; the uncertain variables were repre- 
sented using Hermite polynomial chaos, which is not optimal for 
non-Gau ssian random variables, as we have pointed out before.
Walter et al. [34] later applied a similar approach to study 
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migration of brine into a multi-aquifer system by considering three 
uncertain paramete rs (injection zone permeabilit y, aquifer anisot- 
ropy, and fault permeability). The authors assumed that the aquifer 
anisotropy is depth-indep endent. Although the assumpti on leads 
to reduction in random dimensions in their problem, it may not 
be realistic [35].

In this work, PCM is used to assess the effect of spatial hetero- 
geneity on detectability of pressure anomalies in AZMI. In the liter- 
ature, the effect of spatial heterogenei ty has been investigated for 
the injection zone, for which the main concern is related mostly to
CO2 trapping mechanis ms [36], shape of CO2 plumes [37–39], and 
conceptual-m odel uncertainty [40]. Heterogenei ty in the AZMI and 
connectivity of various geologic features can create preferential 
flow paths which, in turn, adversely affect a monitoring network’s 
ability to detect pressure anomaly . Therefore, it is important to
consider the effect of spatial heteroge neity when quantifyi ng leak- 
age probabilitie s.

We use Karhunen–Loève (KL) expansion, a commonly used 
dimension- reduction technique, to parameterize the spatially het- 
erogeneous hydraulic-cond uctivity field. The resulting low-dimen- 
sional representat ion is then used in the PCM framework to
propagate uncertainty. The analyses presented in this work reduce 
dimensional ity of stochasti c space and significantly improve the 
efficiency of stochasti c simulatio n. Although only the pressure sig- 
nal is considered here, our methodol ogy can be readily adapted to
quantifying uncertainties related to other types of signals (e.g.,
geochemica l and thermal) and, thus, will provide valuable tools 
for assessing the detectability of CO2 leakage in a model-driven 
framework. Note that we distinguish the UQ problem considered 
here from the pressure-anom aly inversion problem. The former 
is for risk assessment using given system (design) parameters 
and a prior information on parameter uncertainty , whereas the lat- 
ter is for identifyin g leakage characterist ics (location and leaking 
history) using observed pressure data. Although the two are closely 
related, the former problem focuses on model design in a forward 
sense, whereas the latter focuses more on remediation in an inver- 
sion sense and was addressed separately by Sun and Nicot [9], who 
showed that inversion of pressure-an omaly data can be a promis- 
ing technology for quick identification of CO2 leakage sources.

This paper is organized as follows. Section 2 presents the PCM 
approach. Section 3 demonstrat es the use of PCM for assessing 
AZMI pressure -anomaly detectab ility through a number of numer- 
ical experiments. Finally, Section 4 summarizes the main findings
of the current work and provides future research directions.

2. Technical approaches 

2.1. Pressure anomaly detection in the AZMI 

AZMI monitoring is recommend ed for CO2 sequestration pro- 
jects to mitigate risks associated with CO2 leakage and minimize 
potential adverse impacts on USDW [41]. We introduce the formu- 
lation of the AZMI flow problem in this section. The approach to
couple AZMI and reservoir flows will be discussed in Section 3.2.
Let us consider an AZMI in which pressure is monitored for poten- 
tial leakage from the underlying CO2 injection zone. To be consis- 
tent with hydrogeolog ic terminology, we shall use hydraulic head 
in most of the following presentation , unless noted otherwise.
The governing equation for saturated groundwate r flow is

SsðxÞ @hðx;tÞ
@t þr � qðx; tÞ ¼ Q wðx; tÞ

qðx; tÞ ¼ �KsðxÞrhðx; tÞ
ð1Þ

subject to initial and boundar y conditio ns

hðx;0Þ ¼ H0ðxÞ; x 2 D ð2Þ
hðx; tÞ ¼ Hbðx; tÞ; x 2 CD ð3Þ

qðx; tÞ � nðxÞ ¼ Qbðx; tÞ; x 2 CN ð4Þ

where h is hydraulic head; q is Darcy flux; Ss is specific storage; Ks is
saturated hydraulic conducti vity; Qw is the sink/source term; H0 is
initial conditio n; D denotes the interior of the model domain; Hb

and Qb define the Dirichlet and Neuman n boundary conditio ns on
boundar y segments CD and CN , respective ly; and nðxÞ is an outward 
unit vector normal to the boundar y.

As mentioned in the Introduction, predicting the extent and 
magnitud e of head anomalies caused by CO2 leakage is of great 
interest from a risk-assessm ent perspective because head pertur- 
bations travel faster than other signals [14,42–44] and their cost 
of acquisition is lower than that of other signals. However , detect- 
ability of head anomaly (e.g., SNR) can be subjected to interference 
by model and data uncertainti es and, therefore, should be evalu- 
ated in a probabili stic sense. In the rest of this section, we show 
how PCM can be used to predict spatiotemporal variations in the 
hydraulic head field.

2.2. Probability collocation method (PCM)

Treating uncertain parameters (e.g., Ks) in Eq. (1) through (4) as
random variables, we have a stochastic PDE, which can be denoted 
as

Lðx; t;x; hÞ ¼ Q wðx; t;xÞ; x 2 D; x 2 X ð5Þ

where x is a random event belonging to the outcome space, X, and 
L is a differentia l operator acting on h, which is itself a stochastic 
process, namely h ¼ hðx; t;xÞ.

2.2.1. Generalized polynomial chaos 
The starting point of PCM is to represent a response variable of

interest using spectral expansion. Under Wiener’s homogeneous 
chaos theory [24,25], a random variable is projected onto a sto- 
chastic space spanned by a set of Hermite polynomi als, WðnÞ;
which, in turn, are functions of an infinite-dimensional random 
vector, n, consisting of independen t standard Gaussian variables.
Hermite polynomial chaos is orthogon al with respect to the Gauss- 
ian measure and converge s in probability space to Gaussian distri- 
bution in a mean-sq uare sense [20]. Although non-Gau ssian 
variables may be represented using Gaussian variables through 
probabili ty-space transformat ion, the converge nce rate is typically 
degraded, and higher-o rder polynomial expansion is required. Xiu 
and Karniadakis [21] proposed generaliz ed polynomial chaos 
expansion for non-Gaussian random variables, under which a gen- 
eral second-order, random process, X , with finite variance can be
represented by the following infinite expansion:

Xðx; t;xÞ ¼
X1
i¼0

aiðx; tÞWiðnðxÞÞ ð6Þ

where x is a random event; nðxÞ is a vector of independen t random 
variable s; faiðx; tÞg are unknow n expansion coefficients, which are 
also referred to as random modes of the system; and fWiðnÞg is a
set of complete multivariate polynom ials that satisfy the following 
orthog onality relation 

hWi;Wji ¼ W2
i

D E
dij ð7Þ

where dij is Kronecker-d elta function (dij ¼ 1 if i ¼ j, and 0 other- 
wise), and the inner product operator, h�i, is defined as

hWi;Wji ¼
Z

WiðnÞWjðnÞf ðnÞdn ð8Þ

with f ðnÞ the joint PDF of n. In practice , the infinite series given in
Eq. (6) is truncated at finite terms 



52 A.Y. Sun et al. / Advances in Water Resources 56 (2013) 49–60
Xðx; t;xÞ ¼
XM

i¼0

aiðx; tÞWiðnðxÞÞ ð9Þ

and the total number of terms is given by

M þ 1 ¼ ðN þ pÞ!
N!p!

ð10Þ

where N denotes total random dimensions (i.e., the sum of dimen- 
sions of uncertain input variables) of the UQ problem and p is the 
order of polynom ial expansion. The dimension of n is N, and the 
highest degree of each component of n is p. For exampl e, the set 
of complet e orthogonal bases for a second- order expansio n involv- 
ing two random dimens ions consist of six terms 

W0ðnÞ ¼ w0ðn1Þw0ðn2Þ
W1ðnÞ ¼ w1ðn1Þw0ðn2Þ
W2ðnÞ ¼ w0ðn1Þw1ðn2Þ
W3ðnÞ ¼ w2ðn1Þw0ðn2Þ
W4ðnÞ ¼ w1ðn1Þw1ðn2Þ
W5ðnÞ ¼ w0ðn1Þw2ðn2Þ

ð11Þ

where wj (j ¼ 1;2) are univariat e polynom ials and the dependenc e
of ni (i ¼ 1;2) on x is omitted for clarity. Eq. (11) indicates that 
Wiði ¼ 0; . . . ;5Þ are simply product s of univariate polynom ials for 
each random dimensio n. As mention ed before, differen t PDFs have 
different optimal orthogonal polynom ials under the framework of
general ized polynom ial chaos. In the exampl e given in Eq. (11),
the following set of univariat e Hermite polynom ials provide the 
optimal bases for Gaussian distrib ution for p ¼ 2:

w0ðniÞ ¼ 1; w1ðniÞ ¼ ni; w2ðniÞ ¼ n2
i � 1; i ¼ 1;2 ð12Þ

where ni is standard Gaussian variable Nð0;1Þ. If a random variable 
follows uniform distribution instead, the optimal polynom ial set 
will consist of Legendre polynomials ,

w0ðniÞ ¼ 1; w1ðniÞ ¼ ni; w2ðniÞ ¼
1
2

3n2
i � 1

� �
; i ¼ 1;2 ð13Þ

and ni becom es a uniform variable defined on interval ½�1;1�, i.e.,
Uð�1;1Þ. A nice feature of the generalized polynom ial chaos is that 
we can mix and match univariate polynom ial bases for different 
distribution s. Again, using the example in Eq. (11) and assum ing 
the PDF of the first random variable is Gauss ian and that of the sec- 
ond is uniform, we would then use cross-produ cts of the univariat e
polynom ials defined in Eqs. (12) and (13), and the six terms in Eq.
(11) becom e

W0 ¼ 1; W1 ¼ n1; W2 ¼ n2;

W3 ¼ n2
1 � 1; W4 ¼ n1n2; W5 ¼

1
2

3n2
2 � 1

� � ð14Þ

The moments of Wi are evaluated by performing integration 
using these standard random variables and their PDFs, which is
straightforw ard for independen t variables.

2.2.2. Formulation of the PCM system of equations 
Applying the finite-sum series of Eq. (9) to approximat e

hðx; t;xÞ, we have 

ĥðx; t;xÞ ¼
XM

i¼0

aiðx; tÞWiðnÞ ð15Þ

Substitution of Eq. (15) into Eq. (5) results in a residual term R
because of the approximation 

Rðfaig; nÞ ¼ LðĥÞ � Q w ð16Þ

The main idea of the weighted-re sidual method in the tradi- 
tional finite-element method is to force the residual in Eq. (16)
to zero in an average sense, namely,
Z
n

Rðfaig; nÞWjðnÞf ðnÞdn ¼ 0; i ¼ 0; . . . ;M; j ¼ 0; . . . ;M ð17Þ

where f ðnÞ is the joint PDF of n and the number of weightin g func- 
tions Wj is equal to the number of expansio n coefficients ai. The 
PCM chooses the Dirac delta function as weightin g function [29],
namely,

WjðnÞ ¼ dðn� njÞ; j ¼ 0; . . . ;M ð18Þ

where nj is a point in random space and the set of all nj is called col-
location points . As a result, Eq. (17) becomes a set of uncoupled alge- 
braic equations evalua ted at M þ 1 collocatio n points and with 
M þ 1 expansio n coefficients as unknow ns

ZAðx; tÞ ¼ Hðx; tÞ ð19Þ

where elemen ts of the ðM þ 1Þ � ðM þ 1Þ matrix, Z, consist of WiðnÞ
evalua ted at colloc ation points; columns of Aðx; tÞ consist of expan- 
sion coefficients, ai, for different simulation times; and columns of
Hðx; tÞ consist of model responses evaluated at collocatio n points.

In PCM, the collocation points are roots of univariate polyno- 
mial basis at one degree higher than the order of expansion [29].
For one-dimensi onal integrati on, it is well known that a Gaussian 
quadratur e rule consisting Np points can integrate polynomials 
up to degree 2Np � 1 exactly [45]. For the second-order Hermite 
polynomi al chaos considered in Eq. (12), for example, the roots 
are obtained from the third-order Hermite polynomial, n3 � 3n,
whereas for the second-o rder Legendre polynomi al chaos in Eq.
(13), the roots are zeros of the third-order Legendre polynomi al,
1
2 ð5n3 � 3nÞ. Note that the number of all possible collocation points,
ðpþ 1ÞN , is typically much greater than the number of unknown s,
M þ 1. A subset of these collocation points should be selected in
such a way that the resulting matrix Z in Eq. (19) maintain s full 
rank. One way to generate these collocatio n points is to select roots 
correspond ing to higher probability regions in each dimension first
and then gradually move to other roots with lower probabilitie s
[29]. Each time before a new collocation point is included, Z is
tested for its row rank. If the full row-rank condition is not satis- 
fied, the search process will continue until an (M þ 1)-rank Z is ob- 
tained. Using the full-rank Z we can solve Eq. (19) determini stically 
for ai which, in turn, can be used to obtain the mean and variance 
of hydraulic head [29]

hhi ¼
XM

i¼0

aihWii ¼ a0;

r2
h ¼

XM

i¼1

a2
i W2

i

D E ð20Þ

where the moments of Wi are calculated as discussed in the text fol- 
lowing Eq. (13).

2.2.3. Incorporation of spatial heterogeneit y
The number of model runs required by PCM can still be signif- 

icant when either the random dimensionality or the order of
expansion, or both, is large as indicated by Eq. (10). Therefore, it
is always desirable to apply some type of dimension reduction to
reduce parameter dimensio ns before applying PCM, especiall y for 
spatially distribut ed paramete rs. A widely used parameter-d imen- 
sion reduction techniqu e is KL expansion [24,29,46]. In the current 
problem, KL expansion is used to paramete rize the spatially heter- 
ogeneous hydraulic-cond uctivity field, which is modeled as a sec- 
ond-order stationar y random process. Let Yðx;xÞ ¼ ln Ksðx;xÞ
and its spatial covariance be CYðx;x0Þ. The KL expansion of
Yðx;xÞ takes the form of infinite series 

Yðx;xÞ ¼ YðxÞ þ
X1
i¼1

ffiffiffiffi
ki

p
/iðxÞniðxÞ ð21Þ
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where YðxÞ is the mean of Yðx;xÞ, niðxÞ are indepen dent standard 
Gaussian random variables, and ki and /i are eigenvalues and eigen- 
functions of the following eigenvalue problem Z

D
CYðx; x0Þ/iðx0Þdx0 ¼ ki/iðxÞ ð22Þ

which can be solved either analytic ally or numericall y, depending 
on the specific form of CY . In practice , the number of terms that 
needs to be retained in (21) can be set by calculating the ratio be- 
tween the sum of the first L largest eigenvalues and the sum of all 
eigenvalues , the latter of which represe nts the product of total var- 
iance and the area or volume of the domain. The truncation is done 
such that the percenta ge of retained variance is greater than a user- 
specified threshold [29,46].

The KL expansion is optimal in the sense that the mean-squar e
error of the finite-term representation is minimized [22]. A direct 
consequence of KL expansion is that the spatial random process 
Yðx;xÞ is now represented by a limited number of independen t
random variables and, therefore, can be readily incorporate d into 
the PCM framework described herein. For demonstration purposes ,
we assume that the covariance of Yðx;xÞ can be modeled using a
separable exponential covariance that takes the following form 
for two-dimensional random fields [46]

CYðx;x0Þ ¼ r2
Y exp �jx1 � x01j=g1 � jx2 � x02j=g2

� �
ð23Þ

where rY is the standard deviation of Yðx;xÞ and g1 and g2 are
integral scales along x1 and x2, respective ly. The covariance model 
in Eq. (22) is often used in the literature because analytic al
solution s of its eigenvalue proble m exist for rectangular domains 
(see Appendix A in Zhang and Lu [46]). In general, the eigenv alue 
problem in Eq. (20) needs to be solved numerica lly to obtain 
eigenvalues and eigenfunctio ns.

3. Numerical experiment s

3.1. Problem setup 

We now use a series of numerical examples to show how PCM 
can be used to construct probability maps for assessing detectabil- 
ity of leakage in the AZMI. Fig. 1(a) illustrate s the problem setup, in
which our system consists of an injection zone (saline aquifer) and 
an AZMI (confined aquifer), separated by an aquitard. Albeit sim- 
ple, such a layered system is representat ive of the basic structure 
of many geologic sequestratio n repositories and has been studied 
extensively in analytical and numerical studies [14,17,43]. The in- 
put uncertainty can be caused by a number of uncertain system 
characterist ics, as discussed previously in the Introduction. A
Fig. 1. Setup of demonstration problem: (a) profile view of full system, which includes in
leaky well and a monitoring well, at which detectability assessment is performed.
common strategy in system performance assessment is to divide 
the whole system into subsystem s and perform UQ on each sub- 
system separately so that the required computation is manageable.
Such a paradigm is behind, for example, the certification frame- 
work for CO2 risk assessment [47], in which a subsystem is referred 
to as a compartment. We shall follow this paradigm in this work 
and model AZMI as a compartment.

Fig. 1(b) shows the plan view of the actual AZMI model domain,
which has lateral dimensions of 1000 � 1000 m2 and is 30 m thick.
The leaky well is located at the origin of the domain. For the base- 
line scenario, the monitoring well is put at (100,100) m. Because 
there is only one source term, we have invoked the symmetry 
argument and model only a quadrant of the full AZMI domain.
Although strictly speaking such symmetry argument is not valid 
when spatial heterogenei ty is involved, our approach is appropri- 
ate in an ensemble averaging sense. Inclusion of additional fea- 
tures, such as large-scal e faults or pumping wells, would require 
modeling the entire model domain and would increase the compu- 
tational time for each realization. However, it does not invalidate 
our non-intrusive UQ approach. For simplicity, we assume two- 
dimensio nal horizontal flow in this work. Incorporatin g heteroge -
neity in the vertical dimensio n is straightforw ard using the KL
expansion and has been considered, for example, by Li et al. [48].
We solved the confined-flow problem using the subsurface module 
of finite-element software, COMSOL (http://www.com sol.com ),
which automatically generates computati onal meshes and pro- 
vides mesh refinement around wells.

3.2. Solution workflow

Fig. 2 illustrates the workflow for the numerical experiments .
We use a widely adopted analytical solution develope d by
Nordbott en et al. [17] to generate pressure distribution at the top 
of injection zone, which is then used to calculate leakage flux into 
AZMI using Darcy’s law [49]. The analytical solution of Nordbotten 
et al. assumes that (1) a sharp interface exists between CO2 and
brine, (2) phase saturations and fluid viscositie s are constant 
within each zone, (3) the capillary effects are small, and (4) vertical 
equilibriu m applies to the entire flow system. Uncertain reservoir 
paramete rs considered in this study are permeabilit y and com- 
pressibility. Rock compressibility is uncertain due to incomplete 
knowled ge of the pore structure and rock mechanical properties.
In the numerical example, both reservoir parameters are assumed 
to have a triangula r PDF, which is commonly used when uncer- 
tainty is presented in the form of expert opinions. Other types of
PDFs can be easily accommod ated if they are supported by site- 
characteri zation data.
jection zone, AZMI, and aquitard in between; (b) plan view of AZMI, which shows a

http://www.comsol.com


Fig. 2. Workflow diagram for constructing stochastic-response surfaces using PCM, where KL expansion is used to parameterize hydraulic conductivity and leakage fluxes are 
generated by sampling uncertain reservoir parameters.
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Table 1 provides the PDF parameters used for reservoir perme- 
ability and compressib ility. Table 2 lists all other variables needed 
by the analytica l solution to calculate leakage flux from the injec- 
tion zone. For risk-assessm ent purposes, location of the leaky well,
required by the analytical solution, is assumed given and is at a dis- 
tance of 500 m from the injection well in the injection zone. On
average, the CO2 plume reaches a radial distance of about 250 m
after 100 days of injection for parameters listed in Table 2 and
according to Eq. (6) in Nordbotten et al. [17]. Therefore, the head 
anomaly is caused mainly by brine leakage during our simulation 
period, and the solution of a single-phas e flow is valid; otherwis e,
a two-phase problem involving both CO2 and brine needs to be
solved. For AZMI, realizations of log conductivity, Y , are generated 
through KL expansion using the separable exponential -covariance 
model (see Eq. (23)). The geometric mean of Ks is 0.07 m/d, which 
is approximat ely equal to the mean reservoir permeab ility for 
brine properties listed under Table 2. Bilinear interpolation was 
used to map Ks generated through KL expansion on a structured 
grid (5 � 5 m resolution) to the unstructured grid used by COM- 
Table 1
Parameters of reservoir perme ability and compressibility probability distributions,
both are assumed triangular. Mode corresponds to the peak of triangular PDFs.

Parameter Mode Lower bound Upper bound 

Permeability(m2) 2 � 10�14 1 � 10�14 2 � 10�13

Compressibility (Pa�1) 2.1 � 10�10 2.1 � 10�11 2.1 � 10�9

Table 2
All other parameters used in baseline scenario.

Parameter Value 

CO2 density 479 kg/m 3

Brine density 1045 kg/m 3

CO2 viscosity 3.95 � 10�5 Pa s
Brine viscosity 2.54 � 10�4 Pa s
Porosity a 0.15 
Leaky-well permeability 2 � 10�11 m2

Well radius b 0.15 m
CO2 injection rate 947 m3/d
Initial head a 1950 m
Injection-zone thickness 30 m
Aquitard thickness 15 m
AZMI thickness 30 m
AZMI hydraulic conductivity 0.07 m/d 
Aquifer specific storage 1 � 10�6 m�1

Leaky-well location (inj zone) 500 m

a Same for both injection zone and AZMI.
b Same for both injection well and leaky well.
SOL. Because the grid resolution is fine relative to correlation 
length of Y, spatial interpolation is expected to have little impact 
on numerica l results.

Each collocatio n point n consists of a number of standard ran- 
dom variables, chosen to be optimal for the distribut ion of actual 
uncertain parameters. Two elements of n are uniformly distribut ed
variables—one is for reservoir permeabilit y and the other for reser- 
voir compressib ility. At runtime, the two uniform variables are 
transformed back to random samples from triangular distribution .
Remaining elements of n are standard normal variables used for KL
expansion. Each collocatio n point provides parameters for one 
COMSOL run. After the model is run M þ 1 times, expansion coef- 
ficients correspond ing to all time intervals are obtained simulta- 
neously by solving Eq. (19). We then construct a stochastic 
response surface for approximating hydraulic head using the 
resulting expansion coefficients. For this example, the time re- 
quired for a single COMSOL run is 25 s on a PC workstation .
3.3. Results and discussion 

3.3.1. Baseline scenario 
For the baseline scenario, Y is assumed to have an isotropic 

covariance structure with a correlation length of 400 m, and the 
variance of Y is 1.0. Although not exactly the same, the problem 
settings here resemble those of the geology in Texas Gulf Coast 
aquifers, in which the deep saline aquifer is characterized by thick 
sandston es that are laterally extensive and permeable and sepa- 
rated by regionally extensive shales deposited during marine 
transgress ions [50]. The assumed correlation parameters are with- 
in the range found for alluvial aquifers ([51], Table 2.1). The num- 
ber of terms retained in truncated KL expansion is seven, which has 
been found to be sufficient for the correlation-length to domain- 
size ratio considered here [29]. Note that the smaller the ratio be- 
tween correlation length and domain size, the more KL terms 
would need to be included to get the same level of variance repre- 
sentation. The resulting total random dimension for the baseline is
N ¼ 9. The number of collocation points and, thus, model runs re- 
quired are 55, 220, and 715, respectively , for p = 2–4. In this case,
the computational time required to generate a full-rank Z grows
significantly, from 1 s for p = 2 to 4400 s for p ¼ 4.

Fig. 3 shows some realizations of leakage flux generated by ran- 
dom sampling of uncertain reservoir parameters. The leakage flux
generally increases rapidly in the beginning and becomes flat later.
If fitted to a log-normal distribution [52,53], log-transformed leak- 
age fluxes have a coefficient of variation of 368 at t ¼ 1 day and de- 
crease to about 0.33 at 100 days. Fig. 4 shows two ‘‘realization s’’ of
Y generated using the seven-term KL expansion (p ¼ 2) and for the 



Fig. 3. Examples of leakage flux random realizations generated by sampling 
uncertain reservoir parameters.
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second and third collocation points chosen for the PCM system of
equations. The seemingly nonrandom pattern of realizations is
due largely to the scheme used for selecting polynomi al roots. Re- 
call from Section 2.2 that our collocation- point selection process 
cycles through roots in high-probab ility regions first before mov- 
Fig. 4. Log-transformed hydraulic-conductivity fields corresponding to (a) second and (b
p ¼ 2.

Fig. 5. Comparison between PCM and Monte Carlo simulation for
ing to lower-probabil ity regions. In this case, the collocatio n points 
used for generating Fig. 4(a) and (b) are ½�

ffiffiffi
3
p

;0;0;0;0;0;0� and
½0;�

ffiffiffi
3
p

;0;0;0;0;0�, respectively .
Head anomalies, Dh, are computed by subtracting the initial 

head from model outputs. Fig. 5(a) and (b) show the mean and 
standard deviation of Dh calculated at the monitoring well loca- 
tion using Eq. (18) for p = 2, 3, and 4, respectively . We compared 
our results to those obtained from 5000 Monte Carlo simulations 
(open circles). The number of terms used for KL-expansion in the 
Monte Carlo runs is 60, and Latin Hypercub e Sampling was used 
to generate paramete rs for each realization. In general, the match 
between PCM and Monte Carlo simulation improves as the order 
of chaos expansion increases. Li and Zhang [29] observed that the 
head variances computed by PCM match well with those calcu- 
lated by Monte Carlo simulatio n for p ¼ 2 and r2

Y ¼ 1. In our case,
the PCM solutions obtained by the third and fourth-or der expan- 
sion are close to each other and both are better than that ob- 
tained by the second-order expansion. The deviation of PCM 
from Monte Carlo simulatio n can be attributed to the large vari- 
ance in leakage fluxes. For smaller variances, the match is ex- 
pected to improve. Fig. 5(a) and (b) suggest that the third and 
fourth-or der PCM solutions differ slightly in their curvature in
the time period from 0 to 60 days. As we will show later in
Fig. 8, this minor difference actually makes a significant differ- 
ence when SNR is computed.
) third collocation points for the case of second-order polynomial chaos expansion,

 (a) mean and (b) standard deviation of head anomalies, Dh.



Fig. 8. SNR calculated by both Monte Carlo simulation and PCM.

Fig. 6. Empirical CDF of Dh corresponding to 10, 50, and 100 days in base scenario for r2
Y ¼ 0:001 and 1, respectively. Head anomaly data were generated by running 10,000 

stochastic simulations using PCM.
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Fig. 7. Detection-probability map constructed by using empirical Dh CDF calculated 
for each time step. Dark lines are detection thresholds that separate map into 
detectable and nondetectable regions.
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In the next step, we performed 10,000 stochasti c simulatio ns
using the PCM expansion coefficients obtained for p ¼ 4 and then 
used the results to calculate the probability maps or empirical 
cumulative distribution functions (CDF). Fig. 6 shows the CDF plots 
for t ¼ 5, 10, and 25 days, respectively (dotted lines). The Dh CDFs
generally show a non-Gaussia n pattern. For a given detection 
threshold DhD, and given time, we can use a plot like Fig. 6 to evalu- 
ate detectability, 1� PðDh < DhDÞ. The effect of heterogenei ty in the 
AZMI is contrasted by considering a case with little heterogeneity 
(r2

Y ¼ 0:001) while keeping all other paramete rs fixed. Comparing 
the two sets of results in Fig. 6, we see that the effect of AZMI heter- 
ogeneity, as parameterized here, is manifested by prolonging tails of
the CDF, a well-known result for flow in heterogeneous porous med- 
ia. For example, Nowak et al. [54] studied head variance in bounded,
three-dimens ional, heterogeneous porous media and showed that 
the head variance becomes increasingly skewed as r2

Y is increased.
Larger r2

Y and longer correlation lengths create more continuous 
preferential flow paths, making it more challenging to determine 
monitoring well locations, as we will show below.
During monitoring, we need to tackle the issue of false positives 
that are caused by background fluctuations (which may be signif- 
icant for shallow aquifers) and uncertainties associate d with both 
AZMI and injection-zone propertie s. The former can be quantified
via baseline measure ments, while the latter should be dealt with 
probabili stically. In essence, we would like to assess the condi- 
tional probabili ty of leakage, given the observed anomaly and the 
level of uncertainty. Using the same stochastic simulation results 
as those used to make Fig. 6, we can construct such a probabili ty
map to provide a holistic view of detectability. Fig. 7 shows the re- 
sult for three different detection thresholds (thick, dark lines). To
be consistent with pressure transduc er readings, we have con- 
verted head anomalies to psi. Fig. 7 suggests that all anomalies will 
be greater than 0.1 psi, starting around t ¼ 30 days for base-sce- 
nario parameters. Before that time, the monitoring well will prob- 
ably fail to pick up pressure anomalie s because of the instrument 
detection limit and the time required for the pressure anomaly 
to build up. To minimize the number of false positives, we may 
need to relax the detection thresholds. However , the adverse effect 



Fig. 9. Effect of variance of Y on predicted SNR.
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of doing so is that the likelihood of missing an incident (i.e., false 
negative) is also increased.

Therefore, we suggest that the anomaly-detec tion process con- 
sist of a series of stages. The first stage is early warning, which is
triggered when a monitoring network receives signals indicating 
possible leakage. The second stage is triage, during which an oper- 
ator can use a model-based system like the one we have developed 
to quantify leakage probabili ties rapidly for known problematic 
wells. The operator can continue to analyze signals to rule out 
the possibility of false positives. Statistical methods that have long 
been used in groundwate r-complianc e monitoring can be useful 
here. For instance, a prediction limit test can be conducted using 
background data so that new head observations are evaluated by
determining whether they fall within a prediction interval derived 
from the background [55,56]:

PL ¼ hb þ js ð24Þ

where PL is predictio n limit; hb and s represent mean and standard 
deviation of backgroun d head data, respective ly; and j is a multi- 
plier derived from Student ’s t-distrib ution for a given confidence le- 
vel. An observed value greater than PL presen ts statistical ly
significant evidence of a head increase over background. Field visits 
may also be initiated at this time to expedite the diagnosis process.
The third stage is remediati on and verification, for which the goal is
to eliminat e multiple leaky sources. Note that if an operator chooses 
to shut down injection immediat ely when anomalies arise, verifica-
tion can be more challen ging unless injection history is already 
incorporat ed into the simulatio n model.

So far, we have demonst rated detection assessment using abso- 
lute magnitudes of head anomalies. An alternative and probably 
more preferable way is to compute the SNR as a measure of detect- 
ability. Here, we define SNR as the ratio between mean, l, and 
standard deviation, r, of signal, which is nothing but the reciprocal 
of coefficient of variation,

SNR ¼ jlj
r

ð25Þ

The range of SNR defined in Eq. (25) is from 0 to1. Clearly, the 
larger the ratio, the greater the detectability.

Fig. 8 plots the SNR using essentiall y the same information as
that presented in Figs. 5–7. The figure suggests that the SNR is
low in early times and gradually rises to above 1.0 in about 7 days.
It also indicates that the PCM solution with p ¼ 2 captures the 
early trend obtained by Monte Carlo simulatio n well, although it
overestimat es its large time behavior. In comparison, PCM with 
p ¼ 4 matches the Monte Carlo results well, except near the very 
beginning. Result obtained from the third-order expansion is sig- 
nificantly different from the fourth-order solution for t < 60 days,
although the two look similar on Fig. 5 when the first and second 
moments are plotted separately. We, therefore, chose to use the 
fourth-or der expansion for the remainder of this work.

Fig. 8 has delivered a conundrum and also a challenge. On the 
one hand, we would like to be able to detect leakage early; on
the other hand, the SNR gets stronger only in late times. We think 
that such a conundrum can be dealt with only by embracing a
strategy that can gradually reduce model uncertainty, such as data 
assimilati on.

3.3.2. Effect of Y variance 
The first sensitivit y study concerns the effect of r2

Y on SNR. Fig. 9
shows the results obtained by PCM (p ¼ 4) for r2

Y equal to 0.7, 1.0,
and 1.5, respectively. As the level of variability increases, the pre- 
dicted head variance at any monitoring location is greater, leading 
to smaller SNR. Larger variability in hydraulic conductivi ty trans- 
lates directly to greater variabilit y in shape and connectivity of
flow paths and, therefore, leads to smaller detectab ility for a given 
location.

3.3.3. Effect of monitorin g well locations 
The second sensitivit y study considers the impact of monitoring 

well distance. Fig. 10(a) and (b) show the mean and variance of
head anomalies obtained by PCM (p ¼ 4) for different monitoring 
well locations, (100,100), (150,150), and (400,400) m, respec- 
tively. The mean Dh increases when the monitoring well is closer 
to leaking locations, which is expected, and seems to suggest that 
we should put monitoring wells as close as possible to potential 
leaky locations to increase the likelihood of detection. However,
Fig. 10(b) indicates that head variation and, thus, uncertainty, is
greatest in the vicinity of a leaky location at a given point in time 
and under current boundary conditions. This observation echoes 
classical results in stochastic hydrogeolog y [18,57,58]. In Chapter 
4 of Zhang [18], for example, the author obtained statistical 



Fig. 10. Effect of monitoring-well location on predicted (a) mean and (b) standard deviation of Dh.

Fig. 11. SNRs calculated for monitoring wells located at (100,100), (150,150), (400,400), and (500,500) m.
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moments of hydraulic head correspondi ng to pumping in the cen- 
ter of a two-dimensi onal, closed-boun dary domain. The profile of
head variation evolves with time. At early times, the standard devi- 
ation of head increases sharply in the vicinity of the pumping loca- 
tion and then slowly decreases toward the domain boundary . Later,
the standard deviation of head flattens, except for a narrow region 
near the pumping well. The same observati ons apply to the current 
problem, except that we have a source instead of a sink term.

Fig. 11 compares SNR corresponding to the three monitoring 
locations. At early times, the well located at (100,100) m shows 
the largest SNR, whereas the well at (400,400) m has the smallest 
SNR because the anomaly has not propagated far enough yet. How- 
ever, later (about 10 days in our case) the order of SNR is
swapped—the well at (400,400) m has the largest SNR, whereas 
the well at (100,100) m has the lowest. With time, the three SNRs 
gradually converge and show similar values near 100 days. These 
observations have interesting implication s for the design of
monitoring networks, suggesting that an observation point placed 
closer to leaky locations may not necessar ily always yield the most 
reliable signals when aquifer properties are uncertain. Recall that 
the correlation length of Y is 400 m. A monitoring well located at
(400,400) m captures more flow paths on average than the one 
at (100,100) m does and, therefore, has a better chance of detecting 
head anomalie s when spatial heterogeneity is involved. To further 
substanti ate this latter point, we obtained the SNR for a monitoring 
well located at (500,500) m and the result is very close to that of
the well at (400,400) m (see Fig. 11). Therefore, for problem set- 
tings considered in this study, our results suggest the optimal loca- 
tion for placing a monitoring well is at one correlation length away 
from the leaky source. Although the recomme ndation is less of
concern for short Y correlations, it is important when Y is corre- 
lated over long distances. Without knowing the actual leaky well 
locations , a site operator may have to rely on information obtained 
from multiple monitoring wells. Then a plot like Fig. 11 is still 
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useful because it can be used to infer the proximity of monitoring 
wells to leaky locations.
4. Summary and conclusion s

Leakage from anthropoge nic and natural features represents 
one of the greatest risks to geologic CO2 sequestratio n sites. Risk 
assessment, therefore, plays a critical role during site-feasibility 
studies and througho ut the lifespan of storage projects. Interest 
is strong in reducing the computational burden associated with 
UQ, given the complexi ty of many site-scale simulation models 
and the number of runs typically required. In this work, we have 
implemented and applied a stochasti c response surface method,
PCM, to assessment of leakage detectability at geologic CO2

sequestratio n sites. The methodology was demonst rated for differ- 
ent uncertain parameters. In particular , we parameterized the spa- 
tially heteroge neous hydraulic conductivity field using KL
expansion. The advantag es of PCM are (1) it is nonintrusiv e and 
can be applied to any existing model without modification of the 
code and (2) once constructed, PCM allows fast stochasti c simula- 
tions at virtually no additional computational costs. PCM typically 
requires only a small fraction of the total number of runs required 
for a full-scale Monte Carlo simulation. We demonst rated how 
PCM can be used to construct probability maps for evaluating 
detectability of head anomalies, both spatially and temporally.

We found that PCM generally provides results that are compa- 
rable to Monte Carlo simulation. Although the second-order PCM 
did not perform well in this study because of the large variance 
of leakage flux, the fourth-order PCM did give satisfactory results.
The total random dimension considered in this study is 9. For prob- 
lems involving smaller correlation length to domain length ratios,
more KL expansion terms need to be included in the PCM. The in- 
crease in random dimensions not only adds to the computational 
cost, but also makes it harder to formulate a full-rank matrix Z
for the PCM system, Eq. (19). To circumve nt this latter issue, one 
can generate a large number of collocation points through random 
sampling and solve an over-dete rmined system of equation s using 
least squares. Hosder et al. [59] suggested that at least 2ðM þ 1Þ
collocation points be used to ensure accuracy. Because all UQ
methods will eventually break down in high-dimens ional cases 
[60,61], a more practical approach is probably to perform a priori 
analyses to reduce the random dimensions as much as possible.
We sampled two separate random variables to generate leakage 
fluxes in this work. A possible strategy for reducing random 
dimension is to treat the leakage flux as a single random variable 
and sample from its distribut ion, which is usually log normal 
[52,53,62]. Other common strategies include sensitivity analyses 
and metamodeling [63].

Detectabilit y has been quantified using both absolute head 
anomalies and SNR. Under parameter uncertainty, we found that 
the likelihood of detecting anomalies depends on (1) level of
uncertainty and (2) location of the monitoring well. A well located 
close to leaky locations may not always give the most robust indi- 
cation of leakage when the level of uncertainty is high. Therefore,
our research highlights the need for adaptive model-unce rtainty 
reduction, monitoring-ne twork design, and source-loca tion identi- 
fication. Because an operator can only install a limited number of
deep AZMI monitoring wells, a risk assessment plan must also 
evaluate leakage detectability at shallower depths and in the va- 
dose zone. In addition, the pressure -based techniqu e needs to be
supplemented by monitoring other leakage signals to increase 
the chance of detection.

Finally, the extension of the current methodol ogy to three- 
dimensional and/or multiphase flow is straightforwar d. We have 
assumed statistically stationary, multi Gaussian log-cond uctivity 
random fields and used KL expansion as a means for paramete riza- 
tion and dimension reduction. With other paramete rization tech- 
niques, the UQ methodology presented in this work may be
extended to nonstationa ry or non-Gau ssian random fields to
accommodate multiple permeability zones [64] or multiple facies 
[65–67].
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