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a b s t r a c t

Aquifer heterogeneity controls spatial and temporal variability of reactive transport parameters and has
significant impacts on subsurface modeling of flow, transport, and remediation. Upscaling (or homogeni-
zation) is a process to replace a heterogeneous domain with a homogeneous one such that both repro-
duce the same response. To make reliable and accurate predictions of reactive transport for
contaminant in chemically and physically heterogeneous porous media, subsurface reactive transport
modeling needs upscaled parameters such as effective retardation factor to perform field-scale simula-
tions. This paper develops a conceptual model of multimodal reactive mineral facies for upscaling reac-
tive transport parameters of hierarchical heterogeneous porous media. Based on the conceptual model,
covariance of hydraulic conductivity, sorption coefficient, flow velocity, retardation factor, and cross-
covariance between flow velocity and retardation factor are derived from geostatistical characterizations
of a three-dimensional unbounded aquifer system. Subsequently, using a Lagrangian approach the scale-
dependent analytical expressions are derived to describe the scaling effect of effective retardation factors
Ltd.
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Nomenclature

a, b constants in linear correlation between K and Kd (i.e.
lnKd = a lnK + b)

Cff ðnÞ covariance function of lnK
Cv1RðnÞ cross-covariance function of v1 and R
Cv1v1 ðnÞ covariance function of v1

CRRðnÞ covariance function of R
f perturbation of lnK
Ij(x) indicator variable of the j-th reactive mineral assem-

blage
J mean hydraulic gradient oriented in x1 direction
k a three-dimension wave-number vector, k = (k1, k2, k3)T

K hydraulic conductivity
KG geometric mean of lnK expressed as exp(MY)
Kd Sorption coefficient
KG

d geometric mean of lnKd

mj mean of the j-th reactive mineral assemblage
MY composite mean of a random variable
n porosity of medium
pj volumetric proportion of the j-th reactive mineral

assemblage
r perturbation of lnKd

R retardation factor
R0 perturbation of retardation factor
R(x) retardation factor as a function of spatial location
~RðxÞ scale dependent effective retardation factor
~RðtÞ time dependent effective retardation factor
R mean retardation factor

SRR(k) spectrum density of retardation factor
Srr (k) spectrum density of the fluctuations of lnKd

Sff(k) spectrum density of the fluctuations of lnK
Sfr(k) cross spectrum density of lnK and lnKd

Sv1v1 ðkÞ spectrum density of flow velocity
Sv1RðkÞ cross spectrum density of v1 and R
T travel time for a sorbing solute
Tp travel time for a conservative solute
u(x) Eulerian solute velocity
~uðtÞ time dependent effective solute velocity
v 01 perturbation of flow velocity
v1 mean flow velocity
v(x) Eulerian flow velocity
x spatial coordinator vector
Y(x) multimodal spatial random variable for K, Kd or R
Yj(x) random variable of the j-th reactive mineral assemblage
n separation distance or lag distance
r2

Y composite variance of a random variable
r2

j variance of the j-th reactive mineral assemblage
r2

v1R cross-variance of flow velocity and retardation factor
r2

v1
variance of flow velocity

r2
R variance of retardation factor

qb bulk density of medium
ki correlation length of the i-th reactive mineral assem-

blage
kI indicator correlation length
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in temporal and spatial domains. When time and space scales become sufficiently large, the effective
retardation factors approximate their composite arithmetic mean. Correlation between the hydraulic
conductivity and the sorption coefficient can significantly affect the values of the effective retardation
factor in temporal and spatial domains. When the temporal and spatial scales are relatively small, scaling
effect of the effective retardation factors is relatively large. This study provides a practical methodology to
develop effective transport parameters for field-scale modeling at which remediation and risk assess-
ment is actually conducted. It does not only bridge the gap between bench-scale measurements to
field-scale modeling, but also provide new insights into the influence of hierarchical mineral distribution
on effective retardation factor.

Published by Elsevier Ltd.
1. Introduction

Estimation of effective transport parameters in physically and
chemically heterogeneous geological media has received growing
amount of attention in the past decade (Rubin, 2003; Davis et al.,
2004). Numerous investigations show that the transport parame-
ters are spatially and/or temporally scale-dependent in both por-
ous and fractured media (e.g. Rajaram, 1997; Liu et al., 2008; Dai
et al., 2009). These studies indicate that the scale dependence is
originated from physical and chemical heterogeneity of sedi-
ments. For transport of a reactive solute with linear equilibrium
adsorption, spatial variability of the sorption coefficients (Kd)
has significant effect on retardation factors (R) because of the lin-
ear relationship of R = 1 + (qb/n)Kd, where qb and n are bulk den-
sity and porosity of the medium, respectively. Spatial
distributions of Kd for reactive solutes in sediments are heteroge-
neous (Allen-King et al., 2006). The dilemma in reactive transport
modeling is that measurements of sorption coefficients are often
obtained from small-scale column experiments (Cheng et al.,
2007) while contaminant remediation and risk assessment are
actually conducted at larger field scales. Therefore, to bridge the
scale gaps and to estimate effective transport parameters for
field-scale modeling, we need transfer of knowledge obtained at
column scale to a larger field scale through upscaling, which is
one of the most important processes for field-scale transport
modeling.

The sorption coefficient and hydraulic conductivity are spa-
tially correlated in sediments (Allen-King et al., 2006). Using a
sedimentary facies-based geostatistical approach, Allen-King
et al. (1998) described the heterogeneous distributions of per-
chloroethene (PCE) Kd and hydraulic conductivity (K) and their
spatial correlation at the Borden site; significantly positive corre-
lations between Kd and K were found within and between differ-
ent facies. Using a Lagrangian approach, Rajaram (1997) derived
analytical expressions for scale-dependent effective retardation
factor in unimodal porous media by assuming various spatial cor-
relations between Kd and K. Deng et al. (2010) applied dual-
porosity model and concept of reactive mineral facies describing
multimodal fractured porous media and upscaled tortuosity and
retardation factor for reactive transport. Attinger et al. (1999) re-
ported time behavior of solute cloud in chemically heterogeneous
porous media with a space-dependent retardation factor using
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stochastic method within Fourier transformation domain. More
studies on the scaling of R in unimodal porous media can be
found in Chrysikopoulos et al. (1990), Bellin et al. (1993), Cvetko-
vic and Dagan (1994) and Fernàndez-Garcia et al. (2005).

Continuous time random walk (CTRW) has been proposed as a
new theoretical framework for upscaling retardation factor and
investigating anomalous transport (non-Fickian transport) in geo-
logical porous media (Berkowitz et al., 2006). Using CTRW, Dentz
et al. (2004) explored time behavior of effective solute transport
in heterogeneous porous media, particularly the transition from
anomalous to normal transport. An interesting and significant re-
sult given by Dentz and Castro (2009) based on CTRW formulation,
displayed that in porous media with heterogeneously distributed
retardation an (constant) effective retardation factor may not al-
ways exist at practically relevant time and length scales. Dentz
and Boster (2010) identified two different mechanisms causing
anomalous transport in quenched random porous media due to
different heterogeneities between broad disorder point distribu-
tion and strong disorder correlations. Bolster and Dentz (2012) fur-
ther studied anomalous dispersion in heterogeneous porous media
with a spatially varying retardation factor and derived effective
transport equation in a complex Fourier–Laplace space. It is also
worthy to point out that the definition of retardation factor used
in CTRW framework is different from that in traditional advec-
tion–dispersion transport equation.

Mineral facies is the physical and chemical basis for describing
the correlation between hydraulic conductivity and sorption coeffi-
cient. Geological formations consist of various minerals and organic
materials, which can be grouped into different types of facies. For
fluid flow and conservative solute transport, the sedimentary fa-
cies-based characterizations can appropriately represent multi-
modal conductivity distributions because variability of the sedi-
mentary facies accurately reflects the physical controls of conduc-
tivity and flow velocity (Ritzi et al. (2004), Dai et al., 2004). For
transport of a reactive solute in porous media, the sedimentary fa-
cies-based conceptual model does not always work well because
the sedimentary facies does not always capture the chemical heter-
ogeneity of the sorption coefficients (Allen-King et al., 1998). In por-
ous media the values of sorption coefficients are mainly controlled
by reactive minerals (Cheng et al., 2007) including organic carbon
(Russo et al., 2010), which are distinguished as any mineral or min-
eral facies controlling one or a group of specified sorption reactions
(e.g., Allen-King et al., 2006). This renders a multimodal for the
sorption coefficients. Therefore, a reactive mineral facies-based
conceptual model is conceived in this study for characterizing the
physical and chemical heterogeneity in porous media.

This study focuses on upscaling the retardation factor for reactive
solute transport in multimodal reactive mineral facies (RMFs) that
consist of a porous medium. It is different from method used by Rus-
so et al. (2010), which is based on nonlinear, rate-limited sorption/
desorption with a continuous distribution function. A conceptual
model of RMFs is first described for the heterogeneous porous media
with hierarchical structures, followed by geostatistic characteriza-
tion of random variables R and flow velocity. Then, the temporally
and spatially scale-dependent equations of effective retardation fac-
tors are derived using a Lagrangian approach coupled with transition
probability models, followed by discussions and conclusions.

2. Conceptual model for hierarchical multimodal porous media

Sorption reactions in porous media depend not only on aque-
ous-phase chemical species and physiochemical conditions (e.g.,
temperature, oxygen fugacity, pH, and Eh) but also on types of
reactive minerals (RMs) and their spatial distributions. From small
to large scales, the RMs constitute reactive mineral assemblages
(RMAs), which in turn form reactive mineral facies (RMFs). A con-
ceptual model of the RMFs in quartz-feldspar sandstone is con-
structed for reactive transport in heterogeneous porous media
with multimodal Kd and K. As described in Fig. 1, the spatial distri-
butions of uranium sorption coefficients are characterized at each
hierarchical level (For convenience of discussion, the species ura-
nium is used as an example).

RM at the microform scale (10�6 to 10�2 m) refers to any min-
erals that are sensitive to a specified geochemical reaction. As
shown by the four probability distributions of lnKd in Fig. 1C, dif-
ferent RMs such as calcite, smectite, hematite and organic matters
usually have different sorption coefficients for uranium. Quartz
and feldspar are not considered as RMs in the sandstone because
their sorption coefficients for the uranium are extremely low.
However, these non-reactive minerals (NRMs) occupy a large vol-
umetric proportion of the rock; the spatial distributions of NRMs
can thus result in heterogeneous patterns of the RMs and in turn
affect the statistical properties (e.g. proportion and correlation
length) of the RMs.

A RMA at the mesoform scale (10�2 to 101 m) represents coex-
isting of NRMs and RMs for a specified geochemical reaction.
Because of different statistical distributions of the uranium sorp-
tion coefficients among different RMs (Fig. 1A), three different
RMAs, i.e. Clay-Quartz-feldspar, Clay-Fe2O3-Quartz-Feldspar, and
Clay-Organic Mater-Quartz-Feldspar, may have different statistical
distributions of uranium sorption coefficients (Fig. 1B). In other
words, if different RMs have significantly different statistical distri-
butions of the uranium sorption coefficients, the RMA composed of
the RMs will have a multimodal structure for the uranium sorption
coefficients (Fig. 1B and Table 1). Given that there can be one or
several non-reactive mineral assemblages (NRMAs), the spatial dis-
tributions of NRMAs among RMAs can also affect the spatial heter-
ogeneity of RMA distributions in the sandstone.

A RMF is a body of rock that is characterized by an association of
RMAs (or RMAs and NRMAs) for a specified geochemical reaction.
Due to temporal and spatial variability of sedimentation, weather-
ing and oxidation of sandstones, the spatial distributions of RMAs
are heterogeneous. Two types of RMFs, i.e. Calcite-Clay-Organic
Matter RFM (CCO-RMF) and Clay-Hematite RFMs (Fig. 1C), are
summarized in this study on intensity of oxidation and degrees
to which the RMF influence uranium sorption in the sandstone.
For the purpose of demonstration, only the CCO-RMF is used for
upscaling from three RMAs in this study, and flow and transport
are assumed to occur in CCO-RMF. Upscaling the reactive transport
parameters from the RMF scale to a larger scale can be easily ex-
tended, but is beyond the scope of this study.

This conceptual model of the hierarchical structure of the RMFs
provides a basis for upscaling the sorption coefficient. After all
appropriate RMFs are identified and their hierarchical structure is
established, multimodal cross-covariance functions are developed
for upscaling the retardation factor using indicator geostatistics
and a transition probability model (e.g., Dai et al., 2007a) to de-
scribe the distribution patterns of RMAs.
3. Geostatistical characterization of random variables in
multimodal porous media

Although the conceptual model above contains the three hierar-
chical levels of the K and Kd, for the purpose of demonstration, the
upscaling equations developed below are only for two levels, i.e.
from the RMA to the RMF. These equations can be easily extended
to any number of hierarchical levels as suggested in Dai et al.
(2004). Consider a domain X filled with N RMA of mutually exclu-
sive occurrences. Let Y(x) be multimodal spatial random variables
for K, Kd or R at location x. It can be expressed via indicator geosta-
tistics as:
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Fig. 1. Concept model for reactive mineral facies at different spatial scales.
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YðxÞ ¼
XN

j¼1

IjðxÞYjðxÞ; ð1Þ

where Ij(x) is indicator variable within the domain X and Yj(x) are
the random variables of the j-th RMA. Following Ritzi et al.
(2004), the composite mean MY and variance r2

Y of the random var-
iable are computed via:

MY ¼
XN

j¼1

pjmj; ð2Þ

r2
Y ¼

XN

j¼1

pjr2
j þ

1
2

XN

i¼1

XN

j¼1

pipjðmi �mjÞ2; ð3Þ

where pj, mj and r2
j are volumetric proportion, mean and variance,

respectively. Consider a steady groundwater flow in a three dimen-
sional unbounded porous medium with a mean hydraulic gradient
(J) oriented in x1 direction. Similar to the method used by Rajaram
(1997), we assume that the hydraulic conductivity K is also second-
order stationary and log normal distributed. For reactive solute
transport in such a porous medium, the solute velocity u and retar-
dation factor R are assumed to be second-order stationary, and that
the sorption coefficient Kd follows a log normal distribution. Follow-
ing Gelhar (1993) and Rajaram (1997), perturbations of R and v1 are
obtained as:

R0 ¼ qb

n
KG

d r; ð4Þ

v 01 ¼
KGJ
n

1� k2
1

k2

 !
f ; ð5Þ

where the prime symbol indicates pertubations, superscript G de-
notes geometric mean expressed as exp(MY), r and f are pertuba-
tions of lnKd and lnK, respectively. Therefore the spectrum
densities of the retardation factor and flow velocity are expressed
as below:
SRRðkÞ ¼
qb

n
KG

d

� �2
SrrðkÞ; ð6Þ

Sv1v1 ðkÞ ¼
1
n2 ðK

GJÞ2 1� k2
1

k2

 !2

Sff ðkÞ; ð7Þ

where Sff and Srr are the spectral density of the fluctuations of lnK
and lnKd, respectively, and k = (k1, k2, k3)T is a 3-D wave-number
vector. If K and Kd are perfectly correlated as ln Kd = a ln K + b, where
a and b are real constants, then the cross spectrum of lnK and lnKd

has a linear relationship with the spectrum of lnK, i.e. Sfr(k) = aSff(k)
and the cross spectrum density of v1 and R is expressed as (Rajaram,
1997):
Sv1RðkÞ ¼
qb

n2 KG
d KGJa 1� k2

1

k2

 !
Sff ðkÞ: ð8Þ
Using the relationship between the spectrum and the covari-
ance function yields:
Sff ðkÞ ¼
1

ð2pÞ3
ZZZ 1

�1
e�ik�nCff ðnÞdn; ð9Þ
where n is separation distance or lag distance. For the multimodal
covariance function of lnK, we can assume that it follows an expo-
nential form (Dai et al., 2007b), i.e.



Table 1
Synthetic parameters of three RMA used for model calculation and plotting.

RMF RMA Lj pj Parameter mj r2
j MG

j
kj kw Rj

Cc-Clay-OM RMF Cc-QF 50 0.6 lnK 1.5 0.6 4.48 10 6.67 2.39
lnKd �2.2 0.22 0.11 12 7.5

Clay-Fe2O3-QF 23.5 0.15 lnK 0.5 0.3 1.65 6 4.62 4.76
lnKd �1.2 0.12 0.3 8 5.71

Clay-OM-QF 26.7 0.25 lnK 0.05 0.15 1.05 9 6.21 10.26
lnKd �0.3 0.1 0.74 7 5.19

Parameters lnK lnKd R
Statistics MY r2

Y MG
Y

MY r2
Y MG

Y
MY r2

Y MG
Y

Values 0.99 0.86 2.68 �1.58 0.84 0.21 4.93 5.6 3.59

Parameters �v1 r2
v1R

kI n qb J

Values 0.21 0.2 20 0.2 2.5 0.01

Note: RMA = reactive mineral assemblage, Cc = calcite, Fe2O3 = iron oxides, QF = quartz and feldspar; For j-th RMA (j = 1, 2, 3), Lj = mean length (m), MG
j = geometric mean,

kj = correlation length (m), kw = kjkI/(kj + kI), Rj = retardation factor; MY = global mean, r2
Y = global variance, MG

Y = global geometric mean, �v1 = mean flow velocity (m d�1),
r2

v1 R = cross covariance of flow velocity and retardation factor, kI = indicator correlation length (m), n = porosity, qb = bulk density of the porous media (g cm�3), J = average
hydraulic gradient, K = hydraulic conductivity (m d�1), Kd = sorption coefficient (cm3 g�1).
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Cff ðnÞ ¼
XN

i¼1

p2
i r

2
i e�g1 þ

XN

i¼1

pið1� piÞr2
i e�g2

þ 1
2

XN

i¼1

XN

j¼1

pipjðmi �mjÞ2e�g3 ; ð10Þ

where g1 ¼ ki=n, g2 ¼ kw=n; and g3 ¼ kI=n are the dimensionless
distances. ki and kI are the correlation length of i-th RMA and the
indicator correlation length for the whole domain, respectively;
kw = kikI/(ki + kI), and N is the number of RMA in the multimodal
porous medium. Substituting (10) into (9) and integrating (9), the
spectrum corresponding to the multimodal covariance function is
obtained as:

Sff ðkÞ ¼
XN

i¼1

p2
i

r2
i k

3
i

p2ð1þ k2k2
i Þ
þ
XN

i¼1

pið1� piÞ
r2

i k
3
w

p2ð1þ k2k2
wÞ

(

þ1
2

XN

i¼1

XN

j¼1

pipjðmi �mjÞ2
k3

I

p2ð1þ k2k2
I Þ

)
: ð11Þ

Integration method used for Eq. (9) can be found in Appendix A.
Then substituting (11) into (8), using the relationship between the
spectrum and the covariance function and integrating (8) over
wave number space, the cross-covariance of v1 and R for the mul-
timodal isotropic porous medium is:

Cv1RðnÞ ¼
Z Z 1

�1

Z
eik�nSv1RðkÞdk

¼ qb

n2 KG
d KGJa

XN

i¼1

p2
i r

2
i F1ðg1Þ þ

XN

i¼1

pið1� piÞr2
i F1ðg2Þ

(

þ1
2

XN

i¼1

XN

j¼1

ðmi �mjÞ2pipjF1ðg3Þ
)
; ð12Þ

where F1(g) = 4g3(1 � e�g) � 2ge�g � 4g2e�g. If the separation dis-
tance approaches to zero, the cross-covariance of the v1 and R is:

r2
v1R ¼

2qb

3n2 KG
d KGJa

XN

i¼1

pir2
i þ

1
2

XN

i¼1

XN

j¼1

pipjðmi �mjÞ2
( )

; ð13Þ

Integration method used to attain Eqs. (12), (13) can be found in
Appendix B. Similarly, using Eq. (7) and the relationship between
the spectrum and the covariance function, and then integrating
produces the covariance of v1, i.e.,
Cv1v1 ðnÞ ¼
ðKGJÞ2

n2

XN

i¼1

p2
i r

2
i F2ðg1Þ

(
þ
XN

i¼1

pið1

� piÞr2
i F2ðg2Þþ

1
2

XN

i¼1

XN

j¼1

ðmi �mjÞ2pipjF2ðg3Þ
)
; ð14Þ

where F2(g) = [8g2 + 48g3 + 96g4]e�g + [96g5 � 8g3](e�g � 1) .Thus
the variance of v1can be retrieved as the dimensionless distances
g ?1:

r2
v1
¼ 8

15
ðKGJÞ2

n2

XN

i¼1

pir2
i þ

1
2

XN

i¼1

XN

j¼1

pipjðmi �mjÞ2
( )

; ð15Þ

In the same way, the multimodal covariance of R is obtained
according to Eq. (6), i.e.

CRRðnÞ ¼
qb

n
KG

d

� �2 XN

i¼1

p2
i r

2
rie
�g1 þ

XN

i¼1

pið1� piÞr2
rie
�g2

(

þ 1
2

XN

i¼1

XN

j¼1

pipjðmri �mrjÞ2e�g3

)
; ð16Þ

where r2
ri and mri are the variance and mean of lnKd of the i-th RMA,

respectively, kri is correlation length of lnKd for the i-th RMA. There-
fore, the corresponding variance of retardation factors is

r2
R ¼

qb

n
KG

d

� �2 XN

i¼1

pir2
ri þ

1
2

XN

i¼1

XN

j¼1

pipjðmri �mrjÞ2
( )

; ð17Þ

The covariance and cross-covariance derived here will be ap-
plied in the following development of time- and scale-dependent
retardation factors for the multimodal porous media.

4. Time dependent effective retardation factor

For reactive solute transport with linear equilibrium sorption in
a 3-D unbound saturated porous medium, the Eulerian solute veloc-
ity is defined as u(x) = v(x)/R(x) with a spatially variable retarda-
tion factor R(x). Using the assumptions made in Section 3 that u,
v and R are all second order stationary, the effective retardation fac-
tor in non-dimensional form is thus expressed as (Rajaram, 1997)

~RðtÞ ¼ �v1=~uðtÞ; ð18Þ

where upper bar indicates mean, and upper tilde denotes effective
value. Then Lagrangian mean velocity of a reactive solute is de-
scribed as uiðXtÞ ¼ dXti=dt, where Xti means the component of posi-
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tion vector in the direction i-th (i = 1, 2, or 3). In the Lagrangian
framework, Rajaram (1997) developed an equation for the time
dependent effective retardation factor, ~RðtÞ, as:

R
~RðtÞ
¼ 1þr2

R

R2
�

r2
v1 R

�v1R

 !
�

~RðtÞ
R

1
R2

r2
R�CRRðn;0;0Þ

� �
� 1

�v1R
½r2

v1R�Cv1Rðn;0;0Þ�
� �

;ð19Þ

where separation distance n ¼ �v1t=~RðtÞ. Eq. (19) shows that the
behavior of ~RðtÞ is determined by the covariance (CRR) and cross-
covariance (Cv1R). Substituting the multimodal covariance (16) and
cross-covariance (12) into (19), ~RðtÞ can be evaluated. For the multi-
modal porous media, when the solute travel time (t) approaches to
infinity, R=~Rð1Þ ¼ 1, indicating that ~RðtÞ approaches the arithmetic
average of R, which is similar to the result of Rajaram (1997) for uni-
modal porous media. As t ? 0, the following equation holds:

R
~RðtÞ
¼ 1þ r2

R

R2
� rv1R

�v1R

� 	
: ð20Þ
5. Space dependent effective retardation factor

In the 3-D random velocity field, the uniform mean flow direc-
tion is parallel to the x1-direction. When a solute particle started
traveling at the origin in the 3-D field, the ensemble average of
the travel time through the x2–x3 plane at a distance x from the ori-
gin is expressed by T(x). According to Dagan et al. (1992) and Rajaram
(1997), the differential equation of T(x) for a sorbing particle is:

dT
dx
¼ R

�v1
1þ 1

�v2
1

Cv1v1 ðx;0;0Þ �
1

R�v1
Cv1Rðx;0;0Þ


 �
ð21Þ

For a conservative solute particle, R is equal to 1. After integra-
tion, Eq. (21) becomes:

Tp ¼
x
�v1
þ ðK

GJÞ2
�v3

1n2

XN

i¼1

p2
i r

2
i kiG1ðb1Þ

(
þ
XN

i¼1

pið1� piÞr2
i kwiG1ðb2Þ

þ 1
2

XN

i¼1

XN

j¼1

ðmi �mjÞ2pipjkIG1ðb3Þ
)

ð22Þ

where G1ðbÞ ¼ 24b4ð1� e�bÞ � 24b3e�b � 4b2ð1þ 2e�bÞ þ 1; b1 ¼
ki=x, b2 ¼ kw=x; and b3 ¼ kI=x are the dimensionless distances. Simi-
larly, for a sorbing particle, substituting (12) and (14) into Eq. (21)
and integrating over x obtain:

T ¼ RTp �
qbKG

d KGJa
n2 �v2

1

XN

i¼1

p2
i r

2
i kG2ðb1Þ

(
þ
XN

i¼1

pið1� piÞr2
i kwiG2ðb2Þ

þ 1
2

XN

i¼1

XN

j¼1

ðmi �mjÞ2pipjkIG2ðb3Þ
)

ð23Þ

where G2(b) = 2b2(e�b � 1) + 2be�b + 1. Integration method used for
Eqs. (22), (23) can be found in Appendix C. Finally, the scale depen-
dent effective R for isotropic multimodal porous media is computed
by:

~RðxÞ ¼ T=Tp; ð24Þ
6. Discussion and conclusions

In order to illustrate the scale dependence of retardation factors
with the above derived equations, we build a synthetic example in
which the parameter values of the three RMAs are extracted from a
real case (see Table 1). The time-dependent effective R for the RMF
is plotted in Fig. 2A for three cases of correlations between K and
Kd: positively correlated (a = 1), uncorrelated (a = 0), and nega-
tively correlated (a = �1). In all three cases, the effective R
increases monotonically with time, but starting with different val-
ues and at different growth rates. Fig. 2A shows that the effective R
values of the two correlated are larger than that of uncorrelated
case, in particular in the early time due to contribution from the
cross-covariance between v1 and R (Eq. (12)). As expected, the
effective R in the three cases converges to the arithmetic mean of
R when time is sufficiently large.

Spatial variation of the effective R is plotted in Fig. 2B for the
three cases with the same parameters given in Table 1. In the
uncorrelated case the effective R keeps constant, whereas in case
of the positive correlation the effective R rapidly increases within
the distance of 100 m and then gradually increases with distance.
In the case of negative correlation, the effective R rapidly decreases
at the first 100 m, and then gradually decreases with distance. For
both positive and negative correlation cases, however, the effective
R approaches to the arithmetic mean when the distance is suffi-
ciently large.

Fig. 2C shows the time-dependent effective R changes with the
indicator correlation length (kI) when the time is fixed at 1000 d. In
the case of positive correlation, the effective R increases to a max-
imum at about 15 m, and then gradually decreases until kI reaches
1000 m, and finally decreases slowly with kI. In the case of negative
correlation, the effective R reaches its maximum at kI = 200 m, and
then gradually decreases until it approximates to a minimum at
kI > 10000 m. Under the situation of non-correlation, the effective
R keeps constant until kI = 100 m, then gradually decreases with
kI until reaching its minimum at about 50000 m. Although the
effective R decreases to a minimum for three cases, it reaches to
different minimums. This reflects the different contribution from
the cross-covariance function. Fig. 2D reveals the spatial scale-
dependent effective R increases with kI in the case of negative cor-
relation, but decreases with kI in the case of positive correlation. If
there is no correlation between K and Kd, the effective R does not
changes with kI.

Fig. 3 shows that the scale-dependent effective retardation fac-
tors do not change much with variances of the hydraulic conduc-
tivity. However, they do change greatly with variances of the
sorption coefficients, especially when the variances are larger than
0.1 for RMA 1 and great than 0.3 for RMA 2 (Fig. 4).

Our results above focus on methodology for upscaling retarda-
tion factor, which is different from the study of Dentz and Castro
(2009). They derived an analytical expression for effective trans-
port equation based on CTRW formulation, which describes the
behavior of the ensemble averaged concentration of a sorping sol-
ute. Dentz and Boster (2010) employed a three-step method to
average two types of anomalous transport. This two studies did
not formulate effective retardation factor while they developed
effective transport equations. Direct comparison of our results with
theirs is beyond the scope of this paper. In future, using our equa-
tions of effective retardation factor to model reactive transport can
be directly compared with the results of Dentz and Castro (2009)
and Dentz and Boster (2010).

When collating our study with those by Dentz and Castro
(2009) and Bolster and Dentz (2012), we noticed that our defini-
tion of retardation factor is different from theirs in CTRW. Ours is
derived from traditional advection–dispersion equation (ADE). It
is defined as R = 1 + (qb/n)Kd. Dentz and Castro (2009) defined the
retardation factor (they called retardation coefficient) as
R ¼ ½nþ ð1� nÞKd�=�n while Bolster and Dentz (2012) gave another
definition for retardation factor, R = 1 + Kd. It is not clear that how
different modeling results can be caused by different definitions of
retardation factor.

In general, this study shows from a new theoretical angle that
the correlation between K and Kd can significantly affect the effec-
tive R in temporal and spatial domain. The temporal and spatial
scale-dependent R originated from the physical and chemical het-
erogeneity and the correlation of K and Kd. When the temporal and
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spatial scales are relatively small, scaling effect of the effective
retardation factors is relatively large. The chemical heterogeneity
has greater influence on scale-dependent effective retardation fac-
tor than the physical heterogeneity does. The results from this
study provide a methodology to develop effective transport param-
eters for field-scale modeling at which remediation and risk assess-
ment is actually conducted.
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The conceptual model and its corresponding mathematical
model derived in this study can be tested with field data or by
Monte Carlo simulations, as Deng et al. (2010) did for fractured
porous media. On the other hand, because the physical and chem-
ical heterogeneities in aquifer have significant influences on uncer-
tainty quantification of flow and transport (for instance, Ye and
Khaleel, 2008; Deng et al., 2009), the conceptual model from this
study provides a new one for uncertainty assessment and model
selection that requires multiple different conceptual models (Ye
et al., 2008) for heterogeneous porous media.

The methodology developed in this study can be applied to non-
stationary porous media with hierarchical mineral distribution.
Upscaling from RMA to RMF, even to assemblage of RMF is equiv-
alent to classic stochastic upscaling approach from the local to the
regional scale. Our upscaling procedure bridges lab bench scale to
field scale through quantitatively linking multimodal reactive min-
eral distribution with scale-dependence of parameters. Therefore,
our methodology provides new insights into the origin of the effec-
tive retardation factor and has significant practical implications in
reactive transport modeling at field scale.
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Appendix A. Derivation of spectrum density of fluctuations in
ln K

Considering a simple exponential function for autocovariance of
lnK, that is:
Cff ðnÞ ¼ r2
f e�

n
k ðA1Þ

The spectrum density Sff of fluctuations in lnK is evaluated by
taking the Fourier transform of Eq. (9). Substituting A1 into Eq.
(9), then it yields:
Sff ðkÞ ¼
1

ð2pÞ3
ZZZ 1

�1
e�ik�nr2

f e�
n
kdn ðA2Þ

Integration of A2 is implemented in a spherical coordinate sys-
tem. The scalar product k � n = kn cos h, where h is the angle be-
tween wave number vector k and the separation vector n.
Expressing the element volume dn in spherical coordinates (n, h,
a), and integrating A2 results in:
Sff ðkÞ ¼
1

ð2pÞ3
Z 1

n¼0

Z p

h¼0

Z 2p

a¼0
r2

f e�
n
ke�ikn cos hn2 sin hdadhdn

¼
r2

f k
3

p2ð1þ k2k2Þ
ðA3Þ

A3 is the spectrum density for unimodal porous media. For the
multimodal porous media, the multimodal covariance function of
lnK (Eq. (10)) is easily integrated to obtain corresponding spectrum
density (Eq. (11)) by using A3 three times for three exponential
terms.
Appendix B. Derivation of cross-covariance of v1 and R (Eq.
(12))

Continue to consider the unimodal porous media from above; its
cross-covariance can be expressed as below by substituting A3 into
Eq. (8), then taking Fourier transform of (8) and integrating result in

Cv1RðnÞ ¼
qb

n2 KG
d KGJa

Z Z 1

�1

Z
eik�n 1� k2

1

k2

 !
r2

f k
3

p2ð1þ k2k2Þ2
dk ðB1Þ

Set I is equal to the integration term of B1, then

I ¼
ZZZ 1

�1
eik�n 1� k2

1

k2

 !
r2

f k
3

p2ð1þ k2k2Þ2
dk ðB2Þ

Now changing to spherical coordinate system and defining:

k1 ¼ k cos b ðB3Þ

k1=k ¼ cos h cos xþ sin h sin x cos a ðB4Þ

dk1dk2dk3 ¼ k2 sin hdkdadh ðB5Þ

where x is the angle between the separation vector n and the direc-
tion of mean flow k1, and h is the angle between n and k. Note that
the x and n stand for coordinates of the autocovariance function,
whereas k, h, and a are spherical coordinates in wave number space.
Substitute B3, B4 and B5 into B2, it yields:

I¼
r2

f

kp2

Z 1

k¼0

Z 2p

a¼0

Z p

h¼0
1�cos2 hcos2 x�sin2 hsin2 xcos2 a
hn

�2coshcosxsinhsinxcosa� k2k4

ð1þk2k2Þ2
eikncosh sinhdkdhda

)
ðB6Þ

Let cos h = y and use the relation of eikny ¼ cos knyþ i sin kny, B6
becomes B7 after several steps of operation:

I¼
r2

f

kp2

Z 1

k¼0

Z 2p

a¼0

�
Z 1

y¼�1
ð1�y2 cos2 xÞ�ð1�y2Þsin2 xcos2 a
h i k2k4
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coskny

( )
dkdyda

ðB7Þ

in which we have several integrations below:

Ia ¼
Z 1

0

k2k4

ð1þ k2k2Þ2
cos knydk ¼ p

4
k 1� jnyj

k

� 	
e�
jnyj
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Ib ¼
Z 2p

0
ð1� y2Þ sin2 x cos2 ada ¼ pð1� y2Þ sin2 x ðB9Þ

Ic ¼
Z 2p

0
ð1� y2 cos2 xÞda ¼ 2pð1� y2 cos2 xÞ

¼ pð2� 2y2 cos2 xÞ ðB10Þ

Of them, B8 can be found from Dwight (1961, p225: definite
integral 859.013). Substituting B8, B9 and B10 into B7 yields:

I ¼
r2

f

4

�
Z 1
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Expanding B11 results in
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In B12 the four integrations I1, I2, I3 and I4 are given below
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Substituting B13, B14, B15, and B16 into B12, which in turn goes
into B1, finally turns out:

Cv1RðnÞ¼
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When the separation vector is parallel to the flow direction,
x = 0, cosx = 1, then:

Cv1RðnÞ ¼
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Let n ? 0, the cross-variance of v1 and R for unimodal porous
media can be given below:

r2
v1R ¼ Cv1Rð0Þ ¼

2qb

3n2 KG
d KGJar2

f ðB19Þ

Using the same integration method for multimodal porous
media, the corresponding multimodal cross-covariance function
(Eq. (12)) can be obtained by using B18 three times for three expo-
nential terms.

In a similar way the covariance function of flow velocity (v1) for
unimodal porous media can be retrieved as following

Cv1v1 ðnÞ ¼
r2

f
ðKGJÞ2

n2 8 k
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h i
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The variance of flow velocity (v1) for unimodal porous media is
obtained when separation distance n ? 0, that is:

r2
v1
¼ Cv1v1 ð0Þ ¼

8
15

r2
f ðK

GJÞ2

n2 ðB21Þ
For multimodal porous media the covariance function of flow
velocity (Eq. (14)) can also be gained in a similar integration proce-
dure used above.

Appendix C. Derivation of equation for space dependent
effective retardation factor

For a passive or conservative particle, retardation factor R is
equal to 1. Eq. (21) is then reduced into one below:

dTp
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¼ 1
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1þ 1
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1
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ðC1Þ

Substituting B20 into C1 and integrating C1, it brings out the
travel time of the passive particle in unimodal porous media as:
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For a sobbing particle, substituting B18 and B20 into Eq. (21),
and then integrating yields:
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For multimodal porous media, similar integrations can be com-
pleted as shown in Eqs. (22) and (23).
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