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Hydraulic fracturing has been used widely to stimulate production of oil, natural gas, and geothermal
energy in formations with low natural permeability. Numerical optimization of fracture stimulation often
requires a large number of evaluations of objective functions and constraints from forward hydraulic
fracturing models, which are computationally expensive and even prohibitive in some situations.
Moreover, there are a variety of uncertainties associated with the pre-existing fracture distributions
and rock mechanical properties, which affect the optimized decisions for hydraulic fracturing. In this
study, a surrogate-based approach is developed for efficient optimization of hydraulic fracturing well
design in the presence of natural-system uncertainties. The fractal dimension is derived from the
simulated fracturing network as the objective for maximizing energy recovery sweep efficiency. The
surrogate model, which is constructed using training data from high-fidelity fracturing models for
mapping the relationship between uncertain input parameters and the fractal dimension, provides fast
approximation of the objective functions and constraints. A suite of surrogate models constructed using
different fitting methods is evaluated and validated for fast predictions. Global sensitivity analysis is
conducted to gain insights into the impact of the input variables on the output of interest, and further
used for parameter screening. The high efficiency of the surrogate-based approach is demonstrated for
three optimization scenarios with different and uncertain ambient conditions. Our results suggest the
critical importance of considering uncertain pre-existing fracture networks in optimization studies of
hydraulic fracturing.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Hydraulic communication is a key factor for determining
hydrocarbon or thermal energy recovery sweep efficiency in an
underground reservoir. Sweep efficiency is a measure of the
effectiveness of heat, gas or oil recovery process that depends on
the volume of the reservoir contacted by an injected fluid. In the
petroleum industry, hydraulic fracturing techniques have been
used for over 60 years to increase hydraulic communication and
stimulate oil and gas production (Britt, 2012). Artificial (stimu-
lated) hydraulic fractures are usually initiated by injecting fluids
into the borehole to increase the pressure to the point where the
minimal principal stress in the rock becomes tensile. Continued
pumping at an elevated pressure causes tensile failure in the rock,
forcing it to split and generate a fracture that grows in the
direction normal to the least principal stress in the formation.
ll rights reserved.
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Hydraulic fracturing activities often involve injection of a fractur-
ing fluid with proppants in order to better propagate fractures and
to keep them open (Britt, 2012). The design of fracturing treatment
should involve the optimization of operational parameters, such as
the viscosity of the fracturing fluid, injection rate and duration,
proppant concentration, etc., so as to create a fracture geometry
that favors increased sweep efficiency. The net present value (NPV)
introduced by Ralph and Veatch (1986) as the economic criteria, is
usually used as an objective for optimal fracturing treatment
design. Some studies have been reported to use a sensitivity-
based optimization procedure coupled with a fracture propagation
model and an economic model to optimize design parameters
leading to maximum NPV (Balen et al., 1988; Hareland et al., 1993;
Aggour and Economides, 1998). Nevertheless, this procedure,
requiring brute-force parameter-sensitivity analysis, is tedious
and incapable of exploring parameter space globally, which could
potentially lead to the problem of converging to a local minimum
of the objective function.

Rueda et al. (1994) optimized fracturing variables, including the
injected fluid volume, injection rate, fluid and proppant type, by
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applying a mixed integer linear programming (MILP) approach,
which also lacks a global optimization capability. Mohaghegh et al.
(1999) proposed a surrogate-based optimization approach by
using a genetic algorithm to fit the dataset generated from a
fracturing simulator that models both fracture propagation and
proppant transport. Surrogate-based optimization refers to the
idea of speeding optimization processes by using fast surrogate
models. Surrogate-based optimization approaches have been
extensively studied in the past decade for applications in various
fields (e.g., Queipo et al., 2005; Wang and Shan, 2007; Forrester
and Keane, 2009). Ensemble surrogate methods are also actively
studied to achieve more robust approximation by surrogate
models (Goel et al., 2007; Sanchez et al., 2008). Queipo et al.
(2002) applied a neural network algorithm to construct a “surro-
gate” of the NPV for an optimal design of hydraulic fracturing
treatments. The objective function (NPV) was trained as a function
of inputs by a synthetic dataset produced from a high-fidelity
physics model, which integrated a fracturing simulator, a proppant
transport and sedimentation model, a post-fracturing production
model, and an economic model. This surrogate-based procedure is
computationally less expensive for obtaining global minimum
without executing physics-model simulations, which are compu-
tationally prohibitive in some optimizations. However, none of
these studies has considered optimizing the hydraulic fracturing of
a pre-existing fracture network, which is a very common feature of
rocks (Odling, 1992). Moreover, uncertainties of geomechanical
properties and of the pre-existing fracture networks, resulting
from the geologic architecture and fracture properties, such as
fracture density, length, and orientation, etc. (Reeves et al., 2008),
have not been rigorously studied for the optimization of hydraulic
fracturing treatment.

It has been demonstrated from field studies that fluid flow in
fractured rock is primarily controlled by the fracture geometry and
the interconnectivity between fractures (Long and Witherspoon,
1985; Cacas et al., 1990). A fractal is a self-similar geometric set
(Mandelbrot, 1982) with Hausdorff–Besicovitch dimension exceed-
ing the topological or Euclidian dimension, which is called fractal
dimension. It is well recognized that natural fracture networks are
fractal over a wide scale range (Barton, 1995; Bonnet et al., 2001),
and fractal dimensions have been demonstrated to be efficient
metrics for natural fracture patterns (e.g., LaPointe, 1988; Barton,
1995; Berkowitz and Hadad, 1997).

In this work, a surrogate-based optimization approach is
proposed for optimizing hydraulic fracturing design in the pre-
sence of uncertainties in a pre-existing natural fracture network
and its geomechanical properties. A state-of-the-art 2-D hydraulic
fracturing code, GEOS-2D (Fu et al., 2012), is used to simulate
dynamic fracture propagation within a pre-existing facture net-
work. Instead of integrating physical models and economic models
to maximize NPV as the objective function, we focus on physical
criteria, that is, the optimal hydraulic fracture propagation under
uncertain natural conditions. The fractal dimension of the con-
nected fractures can be derived from the post-fracturing network
simulated by GEOS-2D to represent the network density and
connectivity. More importantly, the scale-invariant feature of
fractals allows observations from the core scale to be applied in
another scale (e.g., reservoir scale). Therefore, the fractal dimen-
sion is chosen as the objective function to optimize the hydraulic
fracturing well design. While a line, square, and cubic have the
integer dimensions of 1, 2, and 3, respectively, the fractals in this
study, which are applied to linear fractures in a 2-D plane, have a
non-integer fractional dimension between 1 and 2.

In this paper, both non-parametric and parametric algorithms
are used to construct surrogate models. Both types of surrogate
models are quantitatively evaluated for prediction performance by
cross-validations, and the best quality model is then selected for
optimization. BOBYQA (Powell, 2009), a powerful and efficient
derivative-free nonlinear optimization algorithm, is applied to drive
a global search on the surrogate-modeled response surface. Com-
pared to previous studies, our optimization methodology includes
advances in (1) incorporating uncertain pre-existing natural fracture
networks, (2) constructing both non-parametric and parametric
surrogate models and conducting rigorous quality evaluations,
(3) applying the high-efficient state-of-the-art optimizer, BOBYQA,
and (4) deriving the scale-invariant fractal dimension as the objective
function.
2. Surrogate-based optimization approach

The proposed surrogate-based approach includes the following
key steps (Fig. 1).
1.
 Populate sample points in parametric space.

2.
 Setup numerical models and run simulations on those sample

points generated in the previous step.

3.
 Calculate the objective function from the simulated results.

4.
 Construct and validate surrogate models using the data from

the previous steps for predication.

5.
 Perform optimization using selected surrogate model.

2.1. Sampling in parameter space

As shown in Fig. 1 and Table 1, an 11-dimensional parameter
space is constrained by the ranges of the 11 input parameters.
Latin Hypercube Sampling (LHS) procedure is used to draw N
samples in the designed space following probability distribution
functions (PDF) for each parameter. LHS is an effective stratified
sampling approach in a high-dimensional space ensuring that all
portions of a given partition are sampled (McKay et al., 1979). Each
point in the parameter space represents a deterministic vector for
the 11 input variables. Fig. 1 shows an example of a 3-D parametric
space, in which N¼800 sample points are generated from the
uniform distribution within specified parameter ranges.

2.2. Hydraulic fracturing simulations

In this step, the computationally expensive physical models are
constructed and executed N times with each input configuration
sampled in the previous step. On each sample point, an initial
fracture network is generated and the corresponding hydraulic
fracturing is simulated. The initial discrete fracture network is
generated with fracture lengths controlled by the Pareto distribu-
tion (Odling, 1997)

PðL4 lÞ ¼ C⋅l−a ð1Þ
where P is the probability of a fracture of length larger than l, C is a
constant that depends on the minimum fracture length in the
system, which is assumed to be 5% of the domain size (100 m)
in this study, and a is the power law exponent varying between
1 and 3 for natural fracture networks (Davy, 1993; Renshaw, 1999;
Reeves et al., 2008). Typically, the mean fracture length of the
fracture network increases as a decreases. Natural fracture net-
works usually consist of two fracture sets with most fractures in a
set oriented in the same direction (LaPointe and Hudson, 1985;
Ehlen, 2000). In this study, the fracture orientation refers to the
angle between the fracture and the maximum principal stress
direction (east). The orientation of the first fracture set ranges
between 01 and 1351, while that of the second set is always 451
more than the first one. For example, the orientation of the first
fracture set in the pre-existing fracture network shown in Fig. 1 is



Table 1
Preliminary experiment: parameter importance ranking for the fractal dimensions of opened fractures in post-fracking networks according to Sobol’ total sensitivity indices.

Parameter name PDFa Min Max Sample#1 Indices Rank

11. Fluid viscosity (Pa s) Log–U 0.0001 0.001 0.00025 0.51 1
6. Injection pressure/sh U 1 2 1.7 0.43 2
1. Fracture orientation (deg) U 0 135 25 0.050 3
2. Initial fracture numbers U 50 500 250 0.031 4
7. Young’s modulus (GPa) U 5 50 31 0.026 5
4. Minimum principal stress sh (MPa) U 10 15 10.1 0.022 6
5. Stress anisotropy (sH/sh) U 1 2 1.3 0.014 7
9. Poisson’s ratio U 0.1 0.5 0.2 0.0024 8
3. Fracture power law exponent U 1 3 1.8 0.001 9
8. Joint friction coefficient U 0.5 1.2 0.7 0.0 10
10. Fracture toughness (MPa m0.5) U 0.2 2.0 1.0 0.0 11

a U and Log-U denote uniform and log-uniform distribution.

Parameter set
11. Fluid viscosity
10. Fracture toughness
09. Poisson's ratio
08. Joint friction coefficient
07. Young's modulus
06. Injection pressure/ σh
05. Stress anisotropy (σH/σh)
04. Minimum principal stress σh 
03. Fracture power law index
02. Fracture numbers
01. Fracture orientation

11-D input parameter space (3D shown)
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Fig. 1. Surrogate-based modeling approach for simulated hydraulic fracturing.
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251 from the input sample, hence that of the second set is 701,
with 451 from the first set.

Hydraulic fracturing under injected fluid pressure is simulated
using an explicitly coupled hydro-geomechanical code, GEOS-2D,
developed at Lawrence Livermore National Laboratory (Fu et al.,
2012). This code couples a solid solver, a flow solver, a joint
module, and a re-meshing module, and is capable of dynamically
simulating fracture propagation in a pre-existing fracture network.
Fig. 1 presents the simulated fracture distribution after hydraulic
fracturing with an injection well located at (0, 0), at sample point
1 with parameter values provided in Table 1.

2.3. Fractal dimension calculation

The fractal dimension of fractures opened by pressurized fluids
can be reasonably representative of the density and connectivity of
the network. Owing to self-similarity of fractals, the fractal
dimension calculated from borehole samples can be extrapolated
to reservoir-scale fracture networks. Due to these attractive
features, the fractal dimension calculated from the simulated
post-fracturing distribution is used as objective function of surro-
gate models for optimization. The box-counting method is used to
measure the fractal dimension of the fracture network (Barton and
Larsen, 1985; Chilès, 1988; Walsh and Watterson, 1993). It involves
overlaying the fracture network with a sequence of grids with
varying cell size r, and counting the number of occupied cells N(r).
The number of cells of side length r needed to cover the fracture
network is approximated as a power law relation

NðrÞ ¼ k⋅ð1=rÞD; ð2Þ
where k is a constant and D is the fractal dimension. By log-
transforming the both sides, we obtain

LogðNðrÞÞ ¼D⋅Logð1=rÞ þ LogðkÞ: ð3Þ
Thus, the fractal dimension D can be derived as the slope of the

line linearly regressed from a series of size r and the corresponding
N(r). Fig. 1 shows that the fractal dimension of the simulated
network is 1.725 from the well-fitted regression line with an R2

value of 0.9963.

2.4. Surrogate-based optimization

Since surrogate models can be quickly constructed once the
expensive training dataset is generated, we build alternatives from
which the best one is selected according to the model validation
results. The selected surrogate model is then used for evaluating
objective functions for optimization or for other analyses.

2.4.1. Surrogate model construction
The calculated fractal dimensions, paired with the correspond-

ing sample inputs, constitute the training data set for construction
of the non-linear relations between them. For n paired observa-
tions, the model is given by

Yi ¼ f ðxiÞ þ εi; i¼ 1 to N: ð4Þ
Here, xi is the input variable vector of sample i, Yi is the response
observation (calculated fractal dimension), f ðxiÞ is the mean response,
εi is the error, and N is the sample number. Generally speaking, there
are two kinds of fitting methods, namely, parametric and non-
parametric regression. The parametric approaches, such as Gaussian
Process (GSP) and Polynomial Regression (PRG), presume a uniform
global function form between input variables and the response
variable, and require the estimation of a finite number of coefficients
(Williams and Rasmussen, 1996; Draper and Smith, 1998), while non-
parametric approaches, such as Multivariate Adaptive Regression
Splines (MARS), use different types of local models in different
regions of the data to construct the overall model (Friedman, 1991).
In our approach, we build MARS, GSP, and PRG models and
determine which one performs the best by follow-up validation.
Various PRG models are also built with different order and different
number of input variables that are the most sensitive ones ranked by
global sensitivity analysis to be discussed in the next section. The
first, second, and third order PRG including Nv input variables can be
expressed as

f 1ðxÞ ¼ β0 þ ∑
Nv

i ¼ 1
βixi;

f 2ðxÞ ¼ f 1ðxÞ þ ∑
Nv

i ¼ 1
∑
Nv

j ¼ i
βijxixj; ð5Þ

f 3ðxÞ ¼ f 2ðxÞ þ ∑
Nv

i ¼ 1
∑
Nv

j ¼ i
∑
Nv

k ¼ j
βijkxixjxk;

where β0, βij, βijk are coefficients to be estimated. Higher order PRG
can be formulated by adding higher-order terms. With more input
variables included in higher order PRG, the fitting is better, but the
number of coefficients increases, which must be less than the
number (N) of observations (training dataset). Because of the limited
training data, there is a trade-off between the order of PRG and the
number of included variables for the best fit.

2.4.2. Global sensitivity analysis
Sensitivity is a measure of the contribution of an independent

variable to the total variances of the dependent variable. Sensitiv-
ity analysis of a model system can be used as the following
purposes.
1.
 Parameter screening: fix one or more of the input variables
with negligible influence on the output variability.
2.
 Variable prioritization: rank input variables according to their
sensitivity indices.
3.
 Variable selection for reducing uncertainty: invest money to
measure those sensitive variables that can reduce output
uncertainty to maximum extent.

There are numerous methods for sensitivity analysis (Frey and
Patil, 2002), among which the Sobol’ (1993) method is used to
drive global sensitivity analysis of input variables for the output
variable, i.e., the fractal dimension. Sobol’ method is a variance-
based sensitivity analysis, which decomposes the variances of the
output into fractions attributed to each input (first-order indices)
and their interactions (second- or higher-order indices). These
fractions are interpreted as the sensitivities. Sobol’ total sensitivity
measures the contribution to the output variances of each input
variable, including all variances caused by its interactions with any
other input variables in all the orders. Using the training dataset,
Sobol’s total sensitivity indices can be calculated to measure the
relative importance of each input variable to the output of the
hydraulic fracturing system. In this study, the sensitivity analysis
for the preliminary experiment screens out the non-sensitive
parameters to reduce the parameter dimension for the 2nd stage
experiment of optimization. The selection of input variables from
the reduced-dimension parameter space in the PRG models is also
based on the parameter ranking by Sobol’ indices.

2.4.3. Model validation and selection
A well-fitted surrogate model does not necessarily mean that it is

good for prediction. It is easy to over-fit data by including too many
degrees of freedom. One way to measure the predictive ability of a
surrogate model is to test it using a test dataset, which is split from
the sample data and not used in training. Nevertheless, it will limit



Horizontal Injection well 

Fig. 2. An example of a horizontal well (center at y¼0 m and length¼40 m) placed
in a pre-existing network (orientation ¼0o and number ¼250). The red solid line is
horizontal injection well with uncertain location and length along left y-axis. The
pre-existing fracture orientation and number of natural network are also uncertain.
The maximum and minimum principal stress are assumed x- and y-direction,
respectively. (For interpretation of the references to color in this figure caption, the
reader is referred to the web version of this article.)
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the data available for constructing the surrogate models. Alterna-
tively, the popular leave-one-out cross-validation (LOOCV) method
can make use of the available sample data much more efficiently
(Picard and Cook, 1984). Given N input samples, a surrogate model is
constructed N times efficiently, each time leaving out one of the input
sample from training, and using the omitted sample to test the
model. The generalization error of the LOOCV can be estimated using
the root mean square error (RMSE)

RMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

i ¼ 1ðYi−f
ð−iÞ
i Þ2

N

s
ð6Þ

where Yi represents the ith response observation (calculated fractal
dimension), and f ð−iÞi denotes the prediction (interpolated fractal
dimension) tested by sample i using the surrogate model fitted by
all the other N-1 samples. The surrogate model with a minimum
RMSE is selected for optimization.

2.4.4. Optimizer
Bound Optimization BY Quadratic Approximation (BOBYQA)

algorithm is applied to search the minimal objective function
(negative fractal dimension) of the surrogate model f ðxÞ; x∈RN ,
where RN is the N-dimensional parameter space constrained by
the range of each input variable. BOBYQA is a powerful numerical
optimization solver for derivative-free nonlinear problems, subject
to simple bound constraints (Powell, 2009). In the case studies,
optimal hydraulic fracturing design parameters and natural field
properties corresponding to the minimal objective function are
found on the response surface using BOBYQA optimizer.

2.5. Implementation

The proposed approach was implemented in a Python code
that couples the hydraulic fracturing simulator GEOS-2D (Fu et al.,
2012) with the uncertainty quantification tools contained within
the PSUADE code (Tong, 2009). PSUADE (Problem Solving envir-
onment for Uncertainty quantification And Design Exploration) is
a suite of uncertainty quantification modules capable of addres-
sing high-dimensional sampling, parameter screening, global
sensitivity analysis, response surface analysis, uncertainty assess-
ment, numerical calibration, and optimization (Hsieh, 2007;
Wemhoff and Hsieh, 2007; Sun et al., 2012). The computationally
expensive hydraulic fracturing simulations for generation of the
synthetic training dataset (GEOS-2D) are executed using the high
performance computing facilities at Lawrence Livermore National
Laboratory (LLNL). The hundreds of runs are distributed to a LLNL
cluster equipped with Intel 6-core Xeon X5660 processors, 96
nodes, and RAM with 48 GB/node. The box-counting method for
deriving fractal dimension of connected fractures from the post-
fracturing distribution is implemented in a Fortran code.
3. Case study: hydraulic fracturing well design optimization

In this section, the developed surrogate-based approach is
applied to optimizing the hydraulic fracturing well design (loca-
tion and length) in a 2-D domain under uncertain natural-system
conditions. To reduce the dimensionality of the input parameter
space, preliminary simulations are performed to generate a train-
ing dataset used to conduct global sensitivity analysis for para-
meter screening. The input parameter sampling and numerical
simulations are presented in Fig. 1 and Table 1. Based on N¼800
observation pairs, Sobol’ total sensitivity indices are derived and
parameter importance is ranked (Table 1). Of the Nv¼11 input
parameters, two operational ones, working fluid viscosity and
injection pressure, are found to be the most important for effective
fracturing. The four least sensitive parameters with Sobol’ indices
less than 0.01 are screened out. The remaining variables—two
parameters related to pre-existing network, fracture orientation
and number, and three parameters related to rock mechanical
properties, Young’s modulus, minimum principal stress, and stress
anisotropy, are included for the optimization experiment
described below.

3.1. Experimental design

As illustrated in Fig. 2, a horizontal injection well is placed in
an experimental 2-D physical domain along its left-most boundary
(along the y-axis). The pertinent design parameters of interest here
include the length of the open (perforated) injection interval (any-
where from 0 to 40 m) and its center lying between y¼−20 and
20 m. The design parameters and the five most important natural-
system parameters determined above, are treated as uncertain
parameters. A total of 529 input samples are drawn from the
seven-dimensional parameter space using the LHS sampling method.
Two of the seven parameters, fracture orientation and the number of
fractures in the pre-existing network, are fed into the pre-existing
fracture model and the remaining five are applied to the hydraulic
fracturing model. Instead of injection pressure, injection rate is used
as the source term of the fracturing model. The total injection rate is
fixed at 0.25 m3/s, and is averaged over the perforated well length,
which is subdivided into 2-m long injection nodes. As a result, the
injection rate applied on each injection node decreases linearly with
increasing horizontal-well length.

3.2. Synthetic dataset analysis

For each of 529 input samples, pre-existing network are
generated and GEOS-2D models are executed, and nine snapshots
of post-fracturing network distributions are exported in nine
sequential time steps from which the fractal dimensions are



Fig. 3. Global sensitivity of fractal dimension to the 7 input parameters for 9 sequential injection time steps. The 9 parameter sequences are ordered according to the last one.
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derived. Mean values of the 529 fractal dimensions increase with
the injection time or fluid volume (Fig. 3a), suggesting that
fracture networks keep growing with the continuous injection of
fluid. The time series of the mean fractal dimensions also indicate
that their growth rates are very high initially, and gradually
decreases to nearly zero from 11.4 to 51.1 s, suggesting that the
economic benefit of hydraulic fracturing declines with time. The
probability distribution of the 529 fractal dimension results in the
last snapshot at 51.1 s shows that most of them are between
1.5 and 1.7, and the value with highest possibility (10%) is around
1.65 (Fig. 3b). The corresponding cumulative probability indicates
that about 25% of 529 fractal dimensions is less than 1.5, 50% less
than 1.6, and 75% less than 1.65. Only 10% of these fracture
dimension values are above 1.7 and the maximum value is 1.79.
The nine sets of 529 observation pairs consisting of the seven
input variables and the corresponding fractal dimension are
served as the training and testing dataset for surrogate models.

3.3. Global sensitivity analysis

All seven input variables are normalized between zero and one,
based on their upper and lower bounds. For each input sample,
fracture distributions at nine sequential injection time steps were
generated, from which the corresponding fractal dimensions are
derived. Fig. 4 shows the global sensitivity of nine sets of fractal
dimensions to the seven input variables sorted by the last set. For
all the nine time steps, the variability of fractal dimensions is
largely influenced by the initial fracture number and well length
(Sobol’ indices40.5), and moderately by the other 5 input vari-
ables, indicating that the initial fracture number is the key
uncertain parameter influencing post-fracturing conditions. Injec-
tion lengths (and the corresponding averaged injection rate) are
the key contributors to the variability of fractal dimensions at the
earlier injection stages, while initial fracture number becomes the
key contributor at the later stages. Well center location strongly
affects the fractal dimension (Sobol’ indices¼0.4), while becoming
marginally important (Sobol’ indices¼0.1) as injection proceeds.
Overall, two stress parameters, minimum principal stress, stress
anisotropy, and fracture set orientation, influence the objective
somewhat more than Young’s modulus does. The sensitivity
information inferred above is used to rank variable prioritization
to be included in PRG models below.

3.4. Surrogate models evaluation

Non-parametric MARS, parametric GSP and 11 PRG models
with various parameters and orders are constructed for the nine
snapshots, each using 529 observation pairs (input parameters
versus fractal dimension). Table 2 shows the comparison of MARS,
GSP and 11 PRG models constructed for the post-fracturing
distribution (i.e., the last snapshot). The natural-system para-
meters included in PRG models are determined according to the
importance ranking by Sobol’ indices (Fig. 3). For examples,
minimum principal stress is dropped off for the 6-parameter
PRG model, and Young’s modulus is further excluded from the 5-
parameter PRG model, because the two parameters are ranked as
least important for fracturing at the final time step. In terms of
fitting error, the more coefficients that are included, the higher the
accuracy of PRG models becomes. In fact, when the number of
coefficients is greater than 125, PRG models fit the training dataset
better than the MARS model does. Nevertheless, the predictive
ability, tested against a new dataset, will usually get worse as more
terms are included, due to over-fitting. As shown in Table 2, the
RMSE of cross-validation for each surrogate model confirms that
the best fitted PRG model with 461 coefficients turns out to be the
worst in prediction performance, and the quadratic PRG, with
seven variables and just 35 estimated coefficients, had the best
prediction performance among 11 PRG models. Finally, the MARS
model is selected for optimization due to its better prediction
performance than both GSP and the best PRG model.

To illustrate the surrogate model quality regarding fitting and
validation, the scatter plots of fractal dimension simulated by
surrogate models versus GEOS-2D from 529 sample inputs are
compared between MARS model and the best-fitted, but worst-
validated PRG model (5-order 6-parameter) (Fig. 5). The closer the
points are to the diagonal line, the better the surrogate model
matches the physical model. It is seen that the points are clustered
closely along the diagonal line for the PRG model fitting
(RMSE¼0.00805), but are significantly scattered for cross-
validation (RMSE¼0.401). Conversely, points in both the MARS



Table 2
Evaluation of surrogate models for fracture network at final time.

Construction method Estimated Coefficients RMSE

Fitting Validation

MARS – 0.0257 0.0410
GSP – 0.0278 0.0428
1-order 7-parameter PRG 7 0.0473 0.0483
2-order 6-parameter PRG 27 0.0390 0.0458
2-order 7-parameter PRG 35 0.0378 0.0436
3-order 5-parameter PRG 55 0.0326 0.0452
3-order 6-parameter PRG 83 0.0300 0.0458
3-order 7-parameter PRG 119 0.0283 0.0462
4-order 5-parameter PRG 125 0.0258 0.0506
4-order 6-parameter PRG 209 0.0221 0.0589
5-order 5-parameter PRG 251 0.0184 0.0568
4-order 7-parameter PRG 329 0.0169 0.0865
5-order 6-parameter PRG 461 0.00805 0.4010

Mean: 1.58

Std: 0.112

Fig. 4. Statistics of 529 derived fractal dimension: (a) mean for 9 injection time or
volumes and (b) PDF and CDF at finial time (51.1 s or 12.8 m3 injected fluid volume).
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fitting and cross-validation scatter plots are moderately spread with
0.0257 and 0.0410 of RMSE, respectively.

3.5. Horizontal well design optimization

The problem of interest is to find the favorable fracture-
stimulation well design variables, namely, well center y location
and the perforation length, in the presence of natural-system
uncertainty. To investigate how natural-system uncertainty affects
optimal well design, three optimization cases with sequentially
decreasing natural-system uncertainty are performed for the last
snapshot at an injection time of 51.1 s. Case A searches the
minimum objective function (maximum fractal dimension) in a
7-D parameter space, with two design variables and with five
natural-system variables treated as uncertain. Case B is adapted
from case A, with the uncertainty reduced by fixing the fracture
orientation and number, which are two parameters describing the
pre-existing fracture network. In case C, only well location and
length are allowed to vary within the specified ranges during the
optimization process, by further fixing the three geomechanical
variables affecting fracture propagation, minimal principal stress,
stress anisotropy, and Young’s modulus. The objective function to
be minimized is the negative fractal dimension. All the three
optimization cases are efficiently conducted using surrogate mod-
els without rerunning the expensive physics-based GEOS-2D, due
to the flexibility of our surrogate-based approach. The BOBYQA
optimizer, coupled with the selected MARS models, is executed for
the three inverse problems.

Fig. 6 depicts the optimization processes, which involves
searching the minimal objective function for each of the three
cases. It is seen that the number of evaluations of the surrogate
model required to satisfy the convergence criteria (10−6) is 337,
269 and 994, respectively. Each of the optimizations requires
hundreds of model evaluations and can be completed in less than
a minute, while a single realization conducted with the GEOS-2D
code costs tens of hours. Moreover, a physics-based model is
usually not as smooth as its surrogate, implying that a greater
number of model evaluations are required for convergence than
required by surrogate-based optimization. As a result, the high-
efficient surrogate-based optimization approach can make the
otherwise computationally prohibitive procedure practically
achievable. An example of an expensive procedure is Bayesian
stochastic joint inversion modeling using hard (borehole core) and
soft data (geophysical survey), which usually entails expensive
Markov Chain Monte Carlo sampling. Another advantage of the
surrogate-based approach is its high degree of flexibility. Once the
training data is generated from the expensive physics-model
simulations, numerous surrogate models can be constructed and
validated for optimization within a very short time.

The optimal values of the parameter sets corresponding to the
minimum objectives are listed in Table 3. Case A represents a
scenario in which the hydraulic fracturing treatment is designed
with minimal knowledge of the targeted field; thus, a wide range
of the natural-system properties must be accounted for. The
optimal location of the well center is found to be 4.31 m on the
y-axis, and the optimal well length is 0.08 m. This indicates that, to
obtain a maximum fractal dimension, the fluid should be injected
in just one injection node at y¼4 m, and at the rate of 0.25 m3/s,
if fracturing is to be optimized for this level of natural-system
uncertainty. With the entire injection rate concentrated at one
node, the maximum possible hydraulic pressure is achieved,
which confirms our intuition about what will maximize the
growth of the fracture network.

Case B assumes that both the fracture orientation and fracture
number of the pre-existing network are already determined to be
11 and 2501, respectively, on the basis of borehole core data or
other geophysical measurements. The optimal well design para-
meters (position and length) are found to be 5.09 m and 21.3 m,
which corresponds to a hydraulic fracturing scheme where fluid is
injected into 11 nodes, centered at y¼5 m, with each injected at a
rate of 0.25/11¼0.0227 m3/s. Unlike case A, where all of the fluid
injection (and pressurization) is concentrated in one node, pres-
surization in case B is distributed along 11 nodes, suggesting that



Fig. 5. Scatter plots of fractal dimension simulated using surrogate model data versus physical model from 529 input samples: the comparison of fitting (red dots) and cross-
validation (blue dots) between MARS and 5-order 6-parameter PRG surrogate models. The tighter the points clustered along diagonal, the closer the surrogate model data
match the physical model data. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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both the distribution and magnitude of pressure are important for
creating a favorable fracturing network, and must be traded off
given the limited total injection volume. The maximum fractal
dimension is 1.622, which has been significantly reduced from
1.872 in case A, demonstrating the importance of considering
uncertainty of the pre-existing fracture network for optimizing the
hydraulic fracturing treatment. Sensitivity analysis has shown that
the fractal dimension is highly sensitive to the initial fracture
number (Fig. 3), so it is reasonable to conclude that the large
decrease of fractal dimension from case A to B results from the
large reduction of the initial fracture number from 486 to 250. It is
also seen that fracture orientation and Young’s modulus differ a lot
from case A to B, but since they were found not to strongly affect
fractal dimension, they are not likely to be the main contributors
to its decrement.

Case C is designed to investigate the optimal well injection scheme
given full knowledge of the natural system, with all five natural-
system properties fixed as listed in Table 3. The optimized well
injection design parameters turn out to be similar to those in case B,
suggesting that uncertainty of the three rock mechanical parameters
has a small influence on the optimization results. On the other hand,
the comparison with case A shows that the uncertainties of the two
input variables for pre-existing fracture network can lead to a big
difference in the optimization results. These findings demonstrate the
importance of addressing uncertainty of the pre-existing fracture
network, rather than addressing that of the rock geomechanical
properties in optimizing hydraulic-fracturing treatments, which was
lacking in previous studies. The moderate decrement of maximal
fractal dimension from case B to C is believed primarily caused by the
increment of stress anisotropy from 1.0 to 1.2, based on the fact of its
relatively small sensitivity to the other varied rock properties (Fig. 3).
The 2-D response surface for case C is shown in Fig. 7. Apparently,
multiple local minimal objective functions exist, with the global
minimum being found using the BOBYQA optimizer.

Fig. 8 plots the three post-fracturing distributions simulated using
the corresponding optimal input parameter sets. It is apparent that
the network connected by fluid injection for case A sweeps a larger
area than the other 2 cases, demonstrating that the fractal dimension
of opened fracture network is an appropriate indicator of the
potential energy sweep efficiency in the target field. The fractures
in case C propagate mainly along x-axis (maximum principal stress
direction) since the stress field is moderately anisotropic while the
stresses in case A and B are almost isotropic.
4. Summary and conclusions

A surrogate-based optimization approach involving high-
dimensional parameter space sampling, numerical physics-model
simulations, objective-function evaluation, surrogate-model con-
struction and validation, with the coupled execution of the optimizer
and surrogate models, is developed and implemented for optimizing
hydraulic-fracturing decision. For a strongly non-linear process, such
as hydraulic fracturing considered in this study, the surrogate model
constructed by the non-parametric MARS method is demonstrated to
have the best prediction performance according to the cross-valida-
tion, and hence was selected for optimizing the hydraulic fracturing
treatment. The 3 optimization cases, each requiring hundreds of
surrogate model evaluations to meet convergence tolerance, are
completed in less than oneminute, demonstrating the high efficiency
of the approach. A comparison study of 3 optimization cases is
conducted by varying the dimensionality of the parameter space
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without rerunning expensive physics-model simulations. Moreover,
additional optimizations using surrogate models can be performed
quickly and easily for particular purposes if necessary, for example,
reducing the uncertainty of an input variable by narrowing its range.

The comparison study shows the optimization results which
depend on the degree of uncertainty of the pre-existing fracture
networks. This indicates the importance of incorporating information
about pre-existing fracture networks into the process of optimizing
hydraulic fracturing treatment, which has been largely overlooked by
previous optimization studies in the literature. In contrast, the
influence of uncertainty in rock geomechanical properties on the
Table 3
Optimization of well center location and length for fracture network at final time.

Input sample space Case A: 7-D

Range Opt.

Fracture orientation 0–135 121
Initial fracture number 50–500 486
Minimum principal stress sh (MPa) 10–15 13.02
Stress anisotropy (sH/sh) 1.0–1.5 1.07
Young’s modulus (GPa) 5–50 38.33
Injection well center on y-axis (m) −20 to 20 4.31
Injection well length (m) 0–40 0.08
Maximum fractal dimension 1.872

Fig. 6. Minimal objective searching curve for optimization case with (a) 7 uncertain
parameters, (b) 5 uncertain parameters, and (c) 2 uncertain parameters. The
optimal parameter values for the 3 cases are proved in Table 3.
optimal injection scheme is found to be less important. These findings
suggest that the pre-existing fracture network, rather than the
geomechanical properties, should be the top priority to be character-
ized before designing a hydraulic fracturing treatment.

The statistical analysis of the training data and fracture net-
works for the three optimized hydraulic-fracturing cases indicates
that fractal dimension is a useful metric for quantifying the density
and connectivity of a fracture network. Furthermore, the scale-
invariant nature of the fractal makes it a universal indicator for the
fracture network across wide range of spatial scales, from core
through outcrop to aerial image scale. The successful incorporation
of fractal dimension into the efficient surrogate-based approach in
this study provides a useful solution for other inverse problems
that suffer from the heavy computational burden and multi-scale
measurements, such as the stochastic joint inversion problem.

The decreasing growth rate of the mean fractal dimension with
injection time implies the diminishing value of continuing the
hydraulic fracturing operation. Therefore, there exists a cost-
efficient time to stop the fracturing operation, that is, the injection
time and the rate need to be optimized for economic objective.
Although this paper is focused on incorporating uncertainty of the
natural system into optimization and hence only considers the
physical criterion as the objective function, the presented
surrogate-based optimization approach, can be modified to find
optimal injection rate and time by integrating an energy produc-
tion model and economic model to derive both physical and
economic criteria as the objective function.
Case B: 5-D Case C: 2-D

Range Opt. Range Opt.

1 – 1 –

250 – 250 –

10–15 13.27 12.5 –

1.0–1.5 1.00 1.2 –

5–50 48.65 25 –

−20 to 20 5.09 −20 to 20 5.09
0–40 21.3 0–40 21.9

1.622 1.547

Fig. 7. The visualized response surface with 2 uncertain design parameters, i.e.,
horizontal well center at y-axis and well length.



Fig. 8. The post-fracking network corresponding to the optimal parameter set
(values provided in Table 3) with (a) 7 uncertain parameters, (b) 5 uncertain
parameters, and (c) 2 uncertain parameters. The optimal parameters for the 3 cases
are provided in Table 3. The color of the fractures is based on the hydro-pressure.
Red indicates the maximum pressure, while blue denotes zero pressure, meaning
closed fractures which are not included in fractal dimension calculation. (For
interpretation of the references to color in this figure caption, the reader is referred
to the web version of this article.)
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