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[11 Simulated contaminant breakthrough curves (BTC) are often used to predict mass
arrival at compliance boundaries at waste storage sites. In numerical simulations that
involve uncertainties on input parameters such as randomly heterogeneous rock properties,
Monte Carlo simulations are commonly utilized and the mean breakthrough curve is often
calculated from the arithmetic average of all realizations. The arithmetic mean
breakthrough curve in general overestimates the mass flow rate at early and late time but
underestimates the peak mass flow rate. The averaged breakthrough curve usually does not
resemble any of individual breakthrough curves. The reason is that BTCs vary not only on
amplitude but also on dynamics (time) and therefore it is not appropriate to take the
arithmetic average directly. In this study, we consider each BTC as a random curve, and use
time-warping techniques to align all curves in a time-warped space, compute the sample
mean of the curves in the time-warped space, and transform the means back to the original
time space. We show that all BTCs are aligned based on the percentile of mass reaching the
compliance boundary, and the functional average is the percentile average of all BTCs. The
confidence interval of the sample mean curve is estimated using the perturbation approach.

The functional average provides an additional metric that can be used to characterize the
breakthrough behavior in addition to more traditional median and arithmetic average
curves. The method is illustrated using transport simulations at the Material Disposal Area
G, Los Alamos National Laboratory (LANL) in New Mexico.

Citation: Lu, Z., and P. H. Stauffer (2012), On estimating functional average breakthrough curve using time-warping technique and
perturbation approach, Water Resour. Res., 48, W05541, doi:10.1029/2011WRO011506.

1. Introduction

[2] Monte Carlo simulation (MCS) is widely used in
simulating flow and transport in field-scale applications
and in numerically validating stochastic theories. MCS
involves generating a large number of realizations, solving
the flow or transport problem with each generated parame-
ter realization, and computing statistics of the solutions
over all realizations. These statistics are calculated using
direct arithmetic “averaging,” either with equal weights
for equal probable realizations in conventional MCS or dif-
ferent weights for bias-sampled realizations in importance
sampling MCS [Lu and Zhang, 2003a]. It is well known
that the arithmetic average is the best linear unbiased esti-
mator (BLUE) when L, norm, which is based on the
method of least squares, is used to measure the distance
between elements in the sample space, but L,-norm is sen-
sitive to outliers [Lin and Li, 2007; Bektas and Sisman,
2010].

[3] Arithmetic averaging has been widely and success-
fully used in groundwater hydrology to approximate the en-
semble mean of some quantities, such as hydraulic head.
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However, it may not be appropriate to approximate the en-
semble mean of some other quantities, for example, break-
through curves, although it has typically been utilized in
the literature to calculate the mean breakthrough curve [Hu
et al., 2004; Zhang et al., 2007; Govindaraju and Das,
2007; Riva et al., 2008 ; Pan et al., 2009 ; Dai et al., 2009].
The mean breakthrough curve computed from arithmetic
averaging in general overestimates the mass flow rate at
earlier time (early arrival) and later time (long tailing), but
it underestimates the mass flow rate at intermediate time.
More importantly, it may underestimate the peak mass
flow rate, which may be very critical for some hydrologic
applications. Hu et al. [2004] observed similar differences
between results from their stochastic model and MCS, and
ascribed these differences to the first-order accuracy of the
stochastic model and insufficient realizations of MCS.

[4] However, such differences may stem from improper
calculation of the mean breakthrough curve from MCS. As
an example, Figure la illustrates two normalized cumula-
tive breakthrough curves, C; and C,, and their arithmetic
average. The arithmetically averaged curve has a different
pattern from the two original breakthrough curves. The
mass flow rate corresponding to these two breakthrough
curves, as well as their arithmetic average, are shown in
Figure 1b. It is noted that the averaged mass flow rate has
two peaks, which is not reasonable, because both original
curves have a single peak. The reason for disagreement in
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the pattern between the arithmetic average and the original
breakthrough curves is that the breakthrough curves vary in
shape (both amplitude and time progression), and it has
been shown that the pointwise arithmetic mean is an inad-
equate estimate of the mean curve if the curves vary in
both amplitude and time progression [Gasser et al., 1984
Kneip and Gasser, 1992 ; Wang and Gasser, 1997, 1999].

[s] Several methods have been proposed to deal with
random curves, and most of these methods are based on the
concept of time warping. Time warping (or curve align-
ment, time synchronization) is a technique that warps the
time axis so that each warped individual curve approxi-
mately coincides with the mean behavior of the ensemble
of curves. The structure averaging method [Kneip and
Gasser, 1992] aligns each individual curve to the average
location of common features (peaks, troughs, inflection
points) observed in sample curves. In the time-shift model
of Silverman [1995] each individual curve is considered as
the result of a random time shift. Liu and Muller [2004]
treated each observed curve as a realization of a bivariate
random process with one component for the random time-
warping function and the other for a random amplitude
function, and derived the functional mean curve and its
confidence intervals. They proved several important prop-
erties of the functional average, including the variance-
minimizing property and some asymptotic properties.

[6] In this study, we provide an alternative way to derive
the functional mean curves and confidence intervals using
the combination of the time-warping technique and the per-
turbation approach. We further prove that, by defining the
transformation function as the integral of the original BTC
normalized by the area under the curve, the functional aver-
age is indeed the percentile average. This work differs from
that of Liu and Muller [2004] in two aspects. First, by rec-
ognizing that the forward transformation function is a cu-
mulative distribution function and that the time-warping
function (the inverse of the forward transformation func-
tion) is a quantile (or percentile) function, we show that the
functional average in this case is, in fact, a percentile aver-
aging, which has very clear physical meaning. Second, our
derivation is more concise by using the combination of the

time-warping technique and the perturbation approach. The
applicability of the methodology is demonstrated using
breakthrough curves from Monte Carlo transport simula-
tions for the Material Disposal Area G at Los Alamos
National Laboratory, Los Alamos, New Mexico.

2. Mathematical Formulation

[71 Suppose we observed (simulated) a number of
(instantaneous) breakthrough curves (also called the resi-
dence time distribution) (Z—(tg), i=1,M,j=1,n;, at cer-
tain compliance boundaries in Monte Carlo transport
simulations, where M is the number of curves, and #; is the
number of observed values on the i-th curve, and ¢; is the
observation time for i-th curve at j-th time. With no loss of
generality, we assume that all curves are observed at the
same N times #;, j = 1, N (otherwise, one may interpolate
curves such that all curves have observed values at the
same discrete observation times). One simple way, which
is often used in the literature, to obtain the mean break-
through curve is by averaging all of these breakthrough
curves (C(1)) =~ 3™ C,./M. As stated previously, this
pointwise average or the cross-sectional average of curves
is not a good estimate because these curves vary in both
time and amplitude [Gasser et al., 1984 ; Kneip and Gasser,
1992 ; Wang and Gasser, 1997].

[s] We start by following Liu and Muller [2004] and
consider each observed (or simulated) curve as a stochastic
process taking from the space of the observed process
(curves)

W ={(t. Y[, € (0,7} € L*([0, 7)) x L*([0, T]), (1)
where ¢ € [0, 7] is the absolute time, Y () is the observed
curve, and L*[0, 7] is the space of the square integrable
functions. Any observed process (¢,Y[f],z€[0,T]) € W
can be considered as a realization generated from a bivari-
ate stochastic process

S ={(X[r], Y[r]), 7 € [0,1]} € L2([0,1]) x L*([0,1]),  (2)
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where 7 € [0,1] is referred to as synchronized time or
warped time, S the synchronized time space (or time-
warped space), and X (7) is called the time-warping trans-
formation function, which is an invertible monotonic
increasing function that maps the synchronized time
7 € [0,1] back to the absolute time ¢ € [0, T]. Y(7) can be
interpreted as a random amplitude function. As long as
Y(7) is single-valued (i.e., for any 7, Y(7) has a single
value) and X (7) is an invertible monotonic increasing func-
tion, any pair of realizations of X(7) and Y(7) uniquely
determine one realization of (¢, Y[f]) in the observed time
space as,

Y(t) =YX '), Vtelo,T]. 3)
Conversely, mapping from W to S is nonunique, i.e., for
any observed curve (¢, Y[f]) € W, there may be many dif-
ferent ways to derive (X[r], Y[7]) € S, 7 € [0, 1].

[9] To better understand the idea of the functional aver-
age, we take the geometric mean of the log hydraulic con-
ductivity as an example because the concept is the same. It
is well accepted that hydraulic conductivity K; in a single
lithofacies follows a lognormal distribution. If we take M
hydraulic conductivity measurements, Kj;, we usually do
not use their arithmetic mean Ky = (1/M)> Y, K.
Instead, we take the logarithm transformation of these
measurements, f; = In(Kj;), calculate the arithmetic mean

of the log-transformed values (f) = (1/M)X",f, and
then find the geometric mean of the hydraulic conductivity
by back transformation K = e!/). It should be noted that
the geometric mean depends on the mean of the log-trans-
formed variable only and it is not the same as
(ef) = /) 7/? (07 is the variance of log conductivity),
which is the arithmetic mean. Similarly, the functional
averaging procedure includes three steps: time-warping (or
time-synchronizing) the curves, which transforms all
curves to the time-warped space, averaging the time-
warped curves in the time-warped space, and transforming
the means back to the original time domain using the mean
curves in the time-warped space.

2.1.

[10] The purpose of time warping is to align curves,
which is accomplished by a forward time transformation,
denoted as 7 = ®y(¢) : [0, T] — [0, 1]. The subscript Y(¢)
in ®;(¢) implies the dependence of this mapping function
on observed curve Y (7). In other words, a different map-
ping function is used for a different observed curve. This
function maps absolute time ¢ € [0,7] to warped time
7€[0,1], and must be monotonically increasing. One
example of the forward transformation function is [Liu and

Muller, 2004]
/ [Y (o)) dt
0

/ " FoPa
0

where p > 0 is a parameter that weighs the importance of
the peaks of the curve. However, the physical meaning
of this transformation is not clear unless p = 1.

Time Warping

1/p

By (1) = , )
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[11] For any breakthrough curve Y(¢), we assume that

fo t)dt >0, or otherwise one may need either to
1ncrease the value of T such that this condition is satisfied
or to exclude this realization if there is no mass reaching
the compliance boundary at the timescale of interest. We
scale the breakthrough curve by the area under the curve:

Y (1)
/T Y(f)dt ©)
0

and note that this function satisfies ¢y(¢) >0,

fo ¢y(t)dt = 1, which means that this function can be con-
sidered as a probability density function. We define the
forward transformation function as,

:Awmm ©)

which is a cumulative distribution function. In paﬂicular for
instantaneous breakthrough curves, one has fo NHdt =1,
and the transformation becomes @ ( fo dt which is
the cumulative breakthrough curve.

[12] The time-warping transformation function X (7) can
be chosen as the inverse of @5 ():

inf {(I) (t) > 7}, (7

t€[0,7T]

and

X(r) = @;1(7) =

and the amplitude of the curve is
Y(r) = Y (X[r]), ®)

where for simplicity the subscript ¥ in X and Y has been
dropped (unless otherwise confusion may occur), but the
dependence of these two functions on Y is implied.

[13] The transformation function ®3(¢) in (6) is a special
case of (4) at p = 1. However, by recognizing that it is a cu-
mulative distribution function, now it has a clear physical
meaning, i.e., the percentage of the cumulative mass
arrived at the compliance boundary at time #. Since ®(¢) is
a cumulative distribution function, its inverse X(7) is
called the quantile function or percent point function in sta-
tistics. For any 79 € [0, 1], Xy (7o) is the (1007¢) percentile
of the travel time d1str1but10n for the corresponding break-
through curve Y(¢). For instance, X;(0.5) is the median
(50th percentile) of the travel time distribution for Y ().
This is the key to understanding the physical meaning of
the time-warping function, which will be explained later.

[14] Equation (8) implies that the transformation does
not change the magnitude of the curve, but the curve
is stretched at different rates determined by percentile
function X (7). Note that the mapping from (7, Y[f]) to
(X[r], Y[]) in (7) and (8) is nonunique in the sense that dif-
ferent types of transformation ®; will map to a different
pair of (X[r], Y[r]). However, once the function ®;(¢) is
chosen, the mapping is uniquely defined.

[15] For each individual observed curve Y,,(¢), m=1,M,
@y () can be calculated from (6), the time-warping trans-
formatlon function Xm( ) is determined by the inverse of
Dy (1) as X, (1) = (T) and the new curve in the time-

warped space is Ym( ) Y (X [7]).
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[16] Figure 2 illustrates how two observed curves (red
and blue curves) are converted to curves in the warped time
space. The two observed curves have a single peak but dif-
fer in both their amplitudes and positions in the time axis
(Figure 2a). If we want to find the “average” of these two
curves, it may not be appropriate to take the arithmetic av-
erage of two curves directly because the direct average will
yield a two-peak curve (the green curve in Figure 2a),
which has a different pattern from the two original curves.
To compute the functional average, we first compute the
forward time transformation functions ®; (¢), shown in
Figure 2b, which are the integral curves of the original
curves, normalized by the total area under the original
curves. As stated previously, the forward transformation
functions ®; (¢) are cumulative breakthrough curves. The
time-warping transformation functions X (7) are depicted
in Figure 2c, which are the inverse of curves in Figure 2b.
The converted curves (amplitude) are shown in Figure 2d,
where two curves have been aligned in the time axis. The
dashed line segments in these plots demonstrate how the
final curves in the time-warped space in Figure 2d are
obtained. For V7 € [0,1], say 7= 0.4, one first locates
the corresponding ¢ = 9.0 for the first curve from X (7) in
Figure 2¢ (or equivalently from ®,[f] in Figure 2b), then
finds the value of Y(9.0) = 0.18 from Figure 2a, and

(@)
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finally assigns this value to ¥;(0.4) = 0.18. This procedure
can be implemented efficiently.

2.2. Mean Curve

_[17] It is worth noting from ¥ (¢) = Y(X~'[#]) in (3) that
Y (¢) is a stochastic function itself with an argument that is
also a stochastic process. To derive the sample mean curve,
we denote u = X ~!(#) and expand the equation at (u) using

a Taylor expansion up to the first order [Lu and Zhang,
2003b]

— -1 _ dl ! dzl AV
V() = YOl = Y(0) = ¥ () + 5 1< WG] 0
©)
or equivalently in terms of X:
- dy d’y )
YO) =Y(w)+—-| X' +-=| X)° (10)
X ) dXx? o)

We define the functional mean as the ensemble mean of the
first term in (10),

(11)

——— Arithmetic Average
Functional Average
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Figure 2. An example illustrating the procedure of finding functional average curve: (a) two original
curves; (b) transformation function ®(¥); (c) time-warping transformation function X(7), and (d) trans-
formed curves Y(7) in time-warped space. The arithmetic average and functional averages are also com-

pared in Figure 1a.
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where the symbol & stands for functional averaging. It has
been shown [Liu and Muller, 2004] that the functional av-
erage (Y (¢)), has the smallest total deviation to sampled
curves, if the square of distance is defined as,

1 1
%Miaaﬁwwr&mﬂhﬁémm—nmwn
(12)

where Y, and Y, are two sampled curves, and (X;[7], ¥, [7])
and (X3[7], Y2[7]) are their corresponding curves in the
time-warped space.

[18] It should be emphasized that taking the ensemble
mean of (9) or (10) will yield the arithmetic mean, just as
taking the ensemble mean of hydraulic conductivity
K, = ¢/ in the above example leads to the arithmetic mean
Ky = (K) =é" 1+91/2 while the first-order approximation
of (Ky) is K¢ = e'/).

[19] To find the functional mean curve, we first find the
means of the curves in the time-warped space (X (7)) and
(Y (7)). As discussed earlier, any pair of (X[r], Y[7]) in the
time-warped space uniquely defines a curve in the original
time space. So the mean curve in the original time space
can be determined from ((X(7)),(Y(7))) using (11). To
estimate the ensemble means of X (7) and Y(7), one maps
all observed curves (t,Y,[f]), m=1,M, to their corre-
sponding curves in the warped time space as (X;,[7], Yin[7]),
m = 1, M, and then takes the arithmetic average:

1 4 1 &

X))~ X(1) ==> Xu(r); (Y(7)) =Y (7) = A—/[Z Y (7),

Mm:l
(13)

where the bars over the variables represent sample averag-
ing, and 1/M may be replaced by other weights for impor-
tant MCS sampling. This step is analogous to computing
the arithmetic mean of the log-transformed values (f) =
(1/M)S°M fi in the example in calculating the mean hy-
draulic conductivity. The functional mean (Y (¢)),, can be
approximated by

Vo () =Y(X'(1)).

(14)

[20] In our example shown in Figure 2, the average of
the curves in the time-warped space is calculated using the
arithmetic average for both the amplitude and time-warping
function (see Figures 2c and 2d). The dash-dotted segments
illustrate how the mean curve (black curve) in Figure 2a
is determined. For V¢ € [0,60], say =20 (Figure 2a),
one first finds the warped time 7 from the time-warp func-
tion (X) in Figure 2¢, 7=0.75 in this case, finds
(Y(0.75)) = 0.11 from Figure 2d, and then assigns this

value to Y (20) = 0.11 in Figure 2a. Like the original
curves, the functional average of the two curves has a sin-
gle peak, and thus is physically more reasonable.

[21] We should emphasize that the essence of the func-
tional averaging is that different observed curves are trans-
formed using different mapping functions. As stated above,
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the magnitude of the curve does not change at all during
the mapping process. Therefore, if one uses the same map-
ping function ®(¢) (thus, the same X|[7]) for all curves, it is
equivalent to stretching all curves in the same way. It is
easy to show that

Vo) =YX '[1) = %Z %X 1)
; =1 (15)
_ AL/IZ V(X)) = Y.

Here we used the relationships Yi(7) = Y;(X[r]) and
X () = X~(¢) in this particular case. This equation indi-
cates that using the same mapping function for all observed
curves will result in the arithmetic average. Intuitively, if
one stretches all curves the same way, computes the mean
curve from the stretched curves, and then shrinks the mean
curve back, the final mean curve will be the same as the
mean curve calculated directly from the original observed
curves.

[22] What is the physical meaning of this functional av-
erage? Recall that each X;(7) is the percentile function of
the travel time distribution corresponding to curve Y;(¢).
For any 7y € [0, 1], X;(7¢) is the (1007¢)th percentile of its
travel time distribution of Y;(¢), and Y;(7o) = Y:(Xi[70]) is
the probability density at the (1007()th percentile. There-
fore, the arithmetic average X (7o) is the average of times
(over all realizations) that represent the same (1007()th
percentile in the original curves, while Y(7¢) is the average
of probability density at the times that have the percentile
1007¢. In other words, both averages X(7) and Y(r) are
computed based on the percentile.

[23] The functional average can provide information that
may be lost by traditional arithmetic averaging. Such cases
include times when the functional average peak concentra-
tions are higher than the arithmetic average concentrations,
especially when the increase in concentration leads to
crossing of a dose threshold. Another instance where the
functional average is useful is in system-level modeling
where breakthroughs are carried forward to represent
groundwater contributions to part of a larger calculation. In
such instances, one might want a representative curve to
use to do simple preliminary analysis with, and using either
the median or functional average would better represent the
expected system behavior of the groundwater component
of the system model. Finally, we note that the functional
average contains information that can be used to calculate
average travel times using inverse methods, whereas the
arithmetic mean cannot be used in such a fashion. Thus, the
functional average provides an additional metric that can
be used to characterize the breakthrough behavior in com-
bination with more traditional median and arithmetic aver-
age curves.

[24] Again, we use the example shown in Figure 2 to illus-
trate the idea of the percentile average. The percentile func-
tions X; and X, in this example are depicted in Figure 3b.
For any fixed percentile, say the 40th percentile as indi-
cated in the figure, the times corresponding to this percen-
tile can be read from Figure 3b as X;(0.4) =9.0 and
X,(0.4) = 21.6, respectively, which yields the average
X(0.4) = 15.3. The magnitude of the functional mean at
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Figure 3. An example illustrating the concept of the percentile averaging: (a) two original curves; (b)

time-warping transformation function X(7).

t =153, ¥(15.3),, = 0.113, is then computed by the aver-
age of ¥1(9.0) = 0.17 and Y,(21.6) = 0.056.

[25] In many transport models, breakthrough curves
were derived by the particle-tracking method. Suppose we
run M simulations, N particles are released in each simula-
tion, and 7}; denotes the travel time for the j-th fastest parti-
cle reaching a compliance boundary in the i-th simulation.
For convenience, we assume that for any given i, Tj;
j =1,N, are distinct, i.c., Ty < Ty for j < k. Each par-
ticle’s arrival contributes 100/N percentile. In this discrete
case, percentile averaging is equivalent to ranking averag-
ing of particles, i.e., an averaging of travel time over all
fastest particles, second fastest particles, and so on. One
computes the average of the j-th fastest particle over all
M model runs T.; = (1/M)>-" | T;, and then the percen-
tile average breakthrough curve can be constructed from
the histogram of 7, ;, j = I, N.

2.3. Uncertainty of the Sample Mean Curve

[26] Although the unknown population mean curve is
not a random curve, the sample mean curve is a random
curve that depends on a finite number of sampled curves. It
has been shown that the functional sample mean is point-
wise asymptotically normal [Liu and Muller, 2004]:

VM(Y (0) = (F(1)).) = <00, (16)
where £(¢) follows a normal distribution with zero mean
and a variance to be determined later.

[27] Subtracting (11) from (10) and ignoring the second-
order term yields an equation for perturbation of Y (¢):

! _ v dy /
Yi(e) =Y () + <X>X, (17)
from which one derives the variance
ay ar| |’
63.(1) = 63y ((w)) t2 5 &3y (W) + X } G (),
(X) (x)
(18)

where (1) = (X(7))"". It can be shown that this equation is
equivalent to (35) of Liu and Muller [2004], but here it is
derived concisely from the perturbation approach. The one-
point covariances &%y, 02y, and G%, are defined in the
time-warped space and calculated as,

oy (7) :—_1m:l (19)
M

() = S (Nl - TER, Va@ TR, Qo)
m=1

Por(r) = s S Kalr] = X (] = VW) 21)

These definitions are slightly different from those by Liu
and Muller [2004], in which X,,(7) = (1/m)>_1~, X; and
Yu(7) = (1/m)>"1, Y; are used instead of sample means
X(7) and Y (7). When the number of samples is large, such
differences only have a very small impact on the results.
The confidence interval of the functional sample mean can
be constructed as [Liu and Muller, 2004],

Yo(t) = @71 (1 —a/2),/82 () /M,

Fol+ o1 - a/zn/aé(r)/M}

where @ is the cumulative probability function of the stand-
ard normal distribution, and « is the level of desired
confidence.

22)

3. Numerical Implementation

[28] For a given set of sampled curves Y,, m=1,M,
the numerical implementation for calculating the functional
or percentile average can be outlined as follows:
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[29] 1. Interpolate original curves Y, (¢), m =1, M, if
needed, such that all curves have values at the same obser-
vation points t;, i = 1, N.

[30] 2. Calculate the normalized curve and the forward
transformation function ®; (¢), m =1, M, using (5) and
(6). Note that ®; () has a range of [0, 1].

[31] 3. Compute functions X,,(7) by numerical inverse of
@y (). This is done by finely discretizing the domain [0, 1]
into N, segments 7, 0 = 79 < 71 < -+ < 7y, = 1, and for
each 7; finding an index k such that 7; > <I>;m(tk) and
7; < @ (ty1). The value of # is then assigned to
X (Ti) = lg.

[32] 4. Determine functions Y, (7) by assigning
Yu(7i) = Yu(t), i = 1,N,, where #; has been determined
in the previous step.

[33] 5. Calculate means (X (7;)) and (Y (7)), i = I, N,,
in the time-warped space using X,(7;) and Y,(7),
m=T1,M. _

[34] 6. Evaluate the functional average Yq(f;) =
(Y(7x)), where k is such an index that # > (X (7)) and
5 < (X(rin)).

[35] 7. For instantanecous BTCs, one may need to scale
the functional average curve such that the area under the
curve is one.

[36] 8. Compute (co)variances o%y, 0oy, and 0%, using
(19)—(21), and construct the confidence interval using (22).

4. Application to Breakthrough Curves From
Field-Scale Simulations

[37] Breakthrough curves used in this example were cre-
ated during particle transport modeling for calculations
done in support of the Material Disposal Area (MDA) G
performance assessment (PA) [Stauffer et al., 2005b].
MDA G has been in operation since 1957 and is currently
the only active low-level waste repository at Los Alamos
National Laboratory (LANL). Since its initial operation, ra-
dioactive waste generated at the laboratory has been dis-
posed of in pits and shafts on the mesa top. Particle
transport simulations are used to estimate conservative spe-
cies breakthrough times as mass travels from the base of
the waste through the unsaturated zone, into the water table
aquifer, and finally to a compliance boundary that is a verti-
cal plane normal to the direction of groundwater flow that
lies 100 m downgradient from the disposal site boundary.
The numerical model of the site is composed of a variable
resolution 3-D finite-element mesh with rock strata defined
from a detailed geologic framework model [Stauffer et al.,
2005b]. Particles spend most of their travel time in the
rhyolitic Bandelier Tuff that forms the upper 60 m of the
mesa at MDA G.

[38] For the current analysis we examine uncertainty in
breakthrough related to uncertainty in four different strati-
graphic units of the Bandelier Tuff including three units of
the Tshirege Member (Qbt2, Qbtlv, Qbtlg) and the Otowi
Member (Qbo). More information on the geology of these
rocks can be found in the work of Stauffer et al. [2005a] and
references therein. The following hydrologic properties in
these units are considered as piecewise random functions:
the saturated hydraulic conductivity K, the pore size distri-
bution parameter «, the van Genuchten fitting parameter 7,
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the saturated water content 6, and residual water content
6,. The assumption on parameter distributions is consistent
with field observations [Springer, 2005]. Rock properties at
the site have relatively large variability. In particular, large
variability on the pore size distribution parameter o and
fitting parameter n will have a significant effect on flow
and solute transport [Lu and Zhang, 2002].

[39] The realizations of rock properties are generated
using the Latin hypercube sampling (LHS) method [McKay
et al., 1979]. This method is commonly used to reduce the
number of runs necessary for MCS to achieve a reasonably
accurate random distribution. For each realization, we first
create a steady state flow simulation with 1 mm yr~' back-
ground infiltration over the surface of the 3-D model, fol-
lowed by a transport simulation, using the convolution-
based particle tracking (CBPT) method [Robinson et al.,
2010] implemented in finite element heat- and mass-
transfer code (FEHM) [Zyvoloski et al., 1997]. The CBPT
method was developed to simulate resident or flux-
averaged solute concentrations in groundwater models. The
method is valid for steady state flow and linear transport
processes such as sorption with a linear sorption isotherm,
diffusion into matrix rock, and first-order decay. The
method combines a deterministic component to treat advec-
tion and a random-walk component to simulate dispersion.

[40] There may some other sources (besides the uncer-
tain rock properties) that contribute to the uncertainty of
the breakthrough curve, such as reconstruction of concen-
tration breakthrough curves from a discrete number of par-
ticles [Fernez-Garcia and Sanchez-Vila, 2011]. In each
simulation, 15,625 particles were uniformly released in a
1 m cube at a depth corresponding to the waste burial depth
near the center of the site. The effect of the total particle
number has been checked visually to make sure that the
breakthrough curves appear to be meaningful. The number
of particles reaching the compliance boundary plane as a
function of time are used to determine the breakthrough
curves. Four quantities of interest (5th and 95th percentiles,
mean, and median breakthroughs) from 1000 realizations
were examined to assess the convergence of these realiza-
tions. The study indicated that these four quantities from
100 realizations are very close to those from 1000 realiza-
tions, indicating that 100 LHS realizations are approaching
convergence to the 1000 LHS Monte Carlo simulations,
and that 1000 realizations are sufficient to achieve the
convergence.

[41] The breakthrough curves from 1000 realizations are
shown in Figure 4a. It is seen from the figure that there is a
large variability on these breakthrough curves because of
large variations on hydraulic properties. The difference
between these BTCs can be larger than one order of magni-
tude on the time axis. In several realizations, the particles
move so slowly that only a small portion of particles reach
the water table at 200,000 yr. These realizations have a sig-
nificant impact on the moments of the breakthrough curves.
It should be noted that, except for several curves mentioned
above, the area under each individual breakthrough should
be one, although it appears that the areas for different curves
are different because of the log scale on the time axis.

[42] Some of the statistics are plotted in Figure 4b. These
statistics include direct arithmetic average (labeled as mean
in the figure), 5 percentile, 50 percentile (median), and 95
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Figure 4. (a) Breakthrough curves derived from transport simulations using 1000 realizations of

hydrologic properties, and (b) statistics of these curves: median curve, arithmetically averaged curve,

5-, and 95-percentile curves.

percentile. For any point at the time axis, the direct arith-
metic average was computed by averaging (vertically) over
all of the curves. The percentile curves were derived by
connecting their percentile value among 1000 values at all
time ¢, i = 1, N. For example, at each time #;, one finds the
median among all 1000 values at this time, and then con-
nects the median values from all times, which is the median
curve. Note that the arithmetic average and these percen-
tiles may not coincide with any particular breakthrough
curve. The results confirm the conclusion from our previ-
ous study that the median curve performs better than the
mean curve in reducing earlier arrival and long tailing
[Stauffer and Lu, 2012].

[43] Now we apply percentile averaging to 1000 break-
through curves. For each curve (¢, Y,,[f]), the forward trans-
formation function @ is computed from (6), which is the

cumulative breakthrough and also a cumulative distribution
function. As an example, Figure 5a shows 20 out of 1000
transformation functions or cumulative distribution func-
tions. The time-warping functions (Figure 5b) are their
inverse X,,(7) = ®>!. We should emphasize again that the
time-warping function X,,(7) is the percentile function. The
amplitude Y,,(7) is determined from Y,,(7) = Y, (X[7]).
The sample mean of time-warping functions is also
depicted in Figure 5b. In the time-warped space, all (ampli-
tude) curves are aligned (not shown). The sample means of
X(7) and Y(7) are computed from all 1000 samples and
they are used to derive the mean curve in the original time
space. The mean breakthrough curve from the percentile
average is compared with other curve statistics in Figure 6.
Compared to the arithmetic mean curve, the percentile
mean has a large, early arrival time and a short tailing.

a b
1o 50000 .
08 F 40000
06F 30000 |
= [ © i
S L > i
04 20000 |5
02F

]

0.010

10
Time (years)

Figure 5.

(a) Twenty out of 1000 forward transformations (cumulative distribution functions) and

(b) their time-warping functions (percentile functions). The sampling average of 1000 percentile

functions is also shown (thick curve).

8of 11



WO05541 LU AND STAUFFER: FUNCTIONAL AVERAGE BREAKTHROUGH CURVE W05541
4.0E-04 3 1.0
e —e— 5 Percentile z
I ———— Median =
B S ——— Arithmetic Average o
B ! \._ m—— Percentile Average Jc:.() 081+ /
- 3.0E-04 B i \ Lower Bound 8 : :
:"% i I \ ————— Upper Bound = 1
5 L : "\‘ ——— 95 Percentile % I
2 o 0p04f . % oor i
g r o | I — - — - = 5 Percentile
% L E + ———— Median
8 L E 04t | ———— Arithmetic Average|
m - =T | e Percentile Average
1.0E-04 | g 1 Lower Bound
- O | — Upper Bound
- = . —cre——e = 95 Percentile
L d[;]) 0.2 / o from(T) ,
- = /' o from(T) g
0.0E+00 5 = g B : from (T),,
. / /
Time (years) © 0 - 2 OF : !
Z '0103 10* 10°

Figure 6. Comparison of various averages of the break-
through curves from Monte Carlo simulations.

More importantly, the arithmetic mean averaging may
underestimate the peak mass flow rate.

[44] The confidence interval (upper and lower bounds)
of the sample mean curve with a confidence level of 0.95 is
also shown in Figure 6. It should be noted that the confi-
dence interval of the sample mean curve is different from
the confidence interval of the Monte Carlo BTCs. The latter
can be constructed using the sample mean curve plus/minus
a few standard deviations (only if the distribution is normal,
which is not the case for BTCs), or constructed using per-
centiles (such as 2.5 and 97.5 percentiles) of Monte Carlo
BTCs. This is widely used for BTC analysis, and then most
of the BTC realizations will fall into this confidence inter-
val, provided that the confidence interval was constructed
from a sufficiently large number of realizations. However,
in our approach, we are trying to find the average of any
number of BTCs (such as two curves in Figure 1), and we
may not have enough curves to determine the confidence
interval that will envelope most of curves. Instead, we pro-
vide a confidence interval for the sample mean curve,
which means that, if one takes another set of realizations
with the same sample size and computes the functional av-
erage curve, at the probability of 0.95, the sample mean
curve will fall in the confidence interval given in the figure.
This confidence interval of the sample mean curve is differ-
ent from that for the Monte Carlo BTCs in that both the
lower and upper bounds of the confidence interval for the
sample mean curve are functions of the number of realiza-
tions, and therefore does not require a large number of real-
izations to construct the interval. For example, if one only
has a small number of realizations, the interval will be
much wider and as the number of realizations increases, the
interval will become narrow and eventually the upper and
the lower bounds will overlap. From the statistical point of
view, the sample mean curve follows a normal distribution
and therefore the confidence interval can be constructed by
plus/minus a few standard errors (depending on the desired
accuracy) to the sample mean curve, as indicated in equa-
tion (22).

[45] We can also apply the percentile averaging method
to cumulative breakthrough curves. Figure 7 compares

Time (years)

Figure 7. Comparison of various averages of the cumula-
tive breakthrough curves from Monte Carlo simulations.

various statistics of cumulative BTCs, including some con-
ventional curve statistics: the arithmetic mean, 5th-, 50th-,
and 95th-percentile curves, percentile mean curve and its
upper and lower bounds, as well as several other curves
that will be explained later.

[46] It is seen from Figure 7 that the percentile mean
curve of the cumulative breakthrough curves is very similar
in shape to most of the individual curves from MCS, while
again the arithmetic average has a different shape with
nearly all sampled BTCs (not shown). Comparing to the
percentile average, the arithmetic average has an earlier
first-arrival time and a longer tailing. The median curve
(50th percentile), and the 5th- and 95th-percentile curves
are also plotted in the figure.

[47] Several other curves in Figure 7 are derived differ-
ently, where the 5th and 95th percentiles are percentile
curves for Monte Carlo BTCs; lower and upper bounds
represent the bounds for percentile average; (T),, (T)g,
and (T),, stand for the breakthrough curves created from
arithmetic, geometric, and median travel time, respectively.
Since any instantaneous BTC represents the time distribu-
tion of particles arriving at the compliance boundary, for
any fixed value on the vertical axis of cumulative BTCs,
say 0.5, we can determine the travel time for each BTC
realization and then the probability distribution of travel
time from 1000 realizations. As expected, x> goodness-of-
fit tests indicated that the travel time follows lognormal dis-
tributions (not shown). One can also compute statistics
of these travel times for any fixed value of the vertical axis,
in particular, the arithmetic mean, the geometric mean,
and the median of these travel times. From each of these
statistics, we can construct one breakthrough curve. For
instance, for each fixed value on the vertical axis, we calcu-
late the arithmetic average of travel times derived from
1000 BTC realizations, and reconstruct one BTC using the
arithmetic mean for all (discrete) values on the vertical
axis. The BTCs derived from this approach are compared
in Figure 7. It is noted that the BTC created from the arith-
metic mean travel time is nearly identical to the percentile
average of cumulative BTCs.
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[48] It is easy to see that the percentile average curve
derived from instantaneous BTCs is consistent with the
mean curve (circles in Figure 7, labeled as (T),) con-
structed from the arithmetic averaging of BTCs at any fixed
cumulative mass (vertical axis). This is due to the fact that,
the mean mass flow rate at any time #, (or percentile p,) on
the percentile mean curve of BTC realizations is the arith-
metic average of the mass flow rates at time ¢;, i = 1, 1000,
that stands for the same percentile p, on the i-th BTC, and
that any fixed value p (0 < p < 1) on the vertical axis of
the normalized cumulative BTC is equivalent to the
(100p)th percentile on its corresponding (instantaneous)
BTC.

5. Conclusions and Discussions

[49] In this paper, we derived the functional mean and its
confidence interval for random curves using a combination
of the time-warping and perturbation approach. One impor-
tant feature of the functional mean is its variance-minimizing
property. This methodology can be applied to any set of
random curves. In particular, for (instantaneous) break-
through curves generated from Monte Carlo transport simu-
lations, we recognize that the forward transformation
function ®(¢) is the normalized cumulative breakthrough
curve and it is also a cumulative distribution function of the
travel time, and that the time-warping function X (), which
is the inverse of the forward transformation function, is a
quantile (or percentile) function. The arithmetic average of
these time-warping functions for all BTC realizations in the
time-warped space indicates that our functional average in
this case is, in fact, a percentile averaging. Under this time-
warping function, the magnitude functions of breakthrough
curves are completely aligned. By percentile averaging, we
mean that the breakthrough curves are averaged not at the
actual time, as in calculating the traditional mean break-
through curve, but at the times that represent the same per-
centile in these BTC realizations. Since the normalized
cumulative breakthrough curve is a cumulative distribution
function of travel time, percentile averaging of the (instan-
taneous) breakthrough curves is equivalent to taking the av-
erage of cumulative breakthrough curves over any fixed
normalized cumulative mass (the vertical axis of the plot
for the cumulative breakthrough curves). As the result, the
most convenient way to compute the percentile mean BTC
is by taking the average of the cumulative BTCs according
to the same percent of mass arriving at the compliance
boundary.

[s0] The applicability of the approach was demonstrated
using BTCs created from Monte Carlo simulations of parti-
cle transport in the Bandelier Tuff at MDA G, Los Alamos,
where five parameters in four stratigraphic units are consid-
ered as random parameters that follow some prescribed
probability distributions.

[51] Comparing to the arithmetic mean breakthrough
curve, the functional mean breakthrough curve has several
advantages. The functional mean breakthrough resembles
most of the individual BTC realizations, while the arith-
metic mean breakthrough has a different shape with those
BTC realizations. In addition, the functional mean break-
through is not very sensitive to outliers. The arithmetic
mean breakthrough curve in general overestimates the

LU AND STAUFFER: FUNCTIONAL AVERAGE BREAKTHROUGH CURVE

W05541

mass flow rate at earlier time and late time but underesti-
mates the peak mass flow rate at intermediate time. More
importantly, it may underestimate the peak mass flow rate,
which may be very critical for some applications.

[52] Potentially, the time-warping technique may be
extended to some other applications in hydrology, such as
computing particles’ mean trajectory in particle-tracking
transport simulations, or evaluating statistics of concentra-
tion fields created from Monte Carlo simulations.

[53] Acknowledgment. This work was supported by Environmental
Programs at Los Alamos National Laboratory.
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