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Upscaling of reactive mass transport in fractured rocks
with multimodal reactive mineral facies

Hailin Deng,1,2 Zhenxue Dai,1 Andrew Wolfsberg,1 Zhiming Lu,1 Ming Ye,2

and Paul Reimus1

Received 6 July 2009; revised 18 November 2009; accepted 16 December 2009; published 4 June 2010.

[1] This paper presents a methodology for upscaling matrix‐material transport parameters
in fractured‐flow dominated systems with multimodal reactive mineral facies. The
upscaling method provides a theoretical and practical link between controlled experimental
results at the laboratory/bench scale and multikilometer field scales at which contaminant
remediation and risk assessment are actually conducted. As sorption reactions in matrix
are in part determined by mineral properties, a new conceptual model is developed to
reflect the hierarchical structure of reactive mineral facies at the microform, mesoform, and
macroform scales. The conceptual model of hierarchical reactive matrix mineral facies
is integrated with a dual‐porosity model for simulating diffusion of solutes out of fractures
and sorption onto the matrix minerals. By assuming that sorption reactions primarily occur
in the rock matrix, we develop a multimodal spatial random function for characterizing
both the tortuosity (physical heterogeneity) and sorption coefficient (chemical
heterogeneity) at different scales in the rock matrix. The effective tortuosity at the field
scale is derived by volume averaging of mass transfer coefficient for a conservative
species. Subsequently, using a sorbing species (e.g., uranium), we derive the equations for
upscaling the sorption coefficients in a saturated, fractured‐rock system for field‐scale
simulations. The effective field‐scale tortuosity and sorption coefficient are related to their
mean, variance, integral scale, and domain size along a pathway through a three‐
dimensional flow field. The upscaled values increase with the integral scale and are larger
than their geometric mean. Simulations conducted with upscaled sorption coefficients and
tortuousities are compared very well with high‐resolution Monte Carlo simulations
capturing the parameter spatial variations. Results of this study can be extended to explore
scale dependence of other important transport parameters for fractured‐rock solute transport.
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1. Introduction

[2] A significant challenge in groundwater flow and
reactive transport modeling is to develop scale‐appropriate
parameters to represent physical and chemical hetero-
geneities that impact solute migration estimates. Upscaling
of transport parameters for porous media has been studied
for decades, and various upscaling methods have been
developed [Cushman et al., 2002, and references therein].
Upscaling transport parameters for fractured porous media
presents particular challenges due to the medium complexity
and heterogeneity [Tsang and Neretnieks, 1998; Steefel et
al., 2005; Neuman, 2005]. In fractured‐rock systems, the
mass transfer coefficient which quantifies the mass transfer
between fracture and matrix is one of the most important
transport parameters because it links both physical hetero-

geneity (reflected through tortuosity and diffusion) and
chemical heterogeneity (through sorption coefficient). In
practice, it is not uncommon that the values of tortuosity and
sorption coefficient measured from column experiments are
used directly, without upscaling, for field‐scale reactive
transport modeling [Dai et al., 2009]. However, without
using scale‐justified effective parameters, field‐scale mod-
eling may lead to inaccurate simulations of physical and
chemical processes.
[3] The retardation of a solute relative to the fracture flow

velocity is due to diffusion out of fractures and sorption on
matrix minerals. Multiple factors affect these processes,
including the fracture aperture, the fracture volume fraction,
the matrix porosity and tortuosity, and the type and surface
area of matrix minerals. In this study, we focus on matrix
material tortuosity and the sorption coefficient for hetero-
geneous physical and chemical processes, respectively,
along a migration pathway. Since the matrix sorption
coefficient is closely related to mineral properties, scaling
behaviors of the sorption coefficient can be explained by
studying the spatial variability of reactive mineral facies at
different scales [Zavarin et al., 2004; Allen‐King et al., 2006;
Dai et al., 2009]. A systematic quantification method for
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upscaling the sorption coefficient based on mineral spatial
distributions is needed to link the distributions of reactive
minerals in the field‐scale modeling to lab column‐scale
measurements. In this study, a new methodology is devel-
oped for upscaling the matrix tortuosity and sorption coeffi-
cient in fractured rocks using indicator geostatistics and
transition probability models postulated to incorporate a
hierarchical distribution of the reactive mineral facies.
[4] Since the late 1990s, many interesting investigations

about spatial‐scale relationships of transport parameters in
porous media have been conducted at various scales ranging
from pore scale and column experiments to field tracer tests
[e.g., Rubin, 1997; Ginn, 1999; Xu et al., 1999; Davis et al.,
2004; Dai and Samper, 2006; Dai et al., 2006; Kwicklis et
al., 2006; Robinson et al., 2007]. Scale dependence has been
found in various transport parameters such as diffusion
coefficients [Liu et al., 2007; Zhou et al., 2007; Dai et al.,
2007a], geochemical reaction rates [Lichtner, 1993; Meile
and Tuncay, 2006; Li et al., 2007], sorption coefficients
[Liu et al., 2008; Dai et al., 2009], and retardation factors
[Rajaram, 1997; Samper and Yang, 2006; Dai et al., 2009].
Using the spectral approach within the Lagrangian frame-
work, Rajaram [1997] derived analytical expressions of
effective retardation factors in temporal and spatial domains
by assuming a spatial correlation between hydraulic con-
ductivity and retardation factor. His research reveals that the
values of retardation factor change with scales, and the
effective retardation factor is approximately its arithmetic
mean when the temporal and spatial scales are sufficiently
large. Similar conclusions were reached by Fernàndez‐
Garcia et al. [2005] through a study on the effective retar-
dation factor of heterogeneous porous media. More studies
on the scaling of the retardation factors in porous media can
be found by Robin et al. [1991], Tompson [1993], Burr et al.
[1994], Cvetkovic and Dagan [1994], Chao et al. [2000],
and Andersson et al. [2004].
[5] For fractured rocks, scaling effects of transport para-

meters have been studied using the continuous‐time random
walk and memory functions [e.g., Berkowitz and Scher,
1998; Cvetkovic et al., 2004; Frampton and Cvetkovic,
2007], and the dual‐porosity model with mass transfer
coefficients [e.g., Huang and Hu, 2001; Hu and Huang,
2002; Reimus et al., 2003]. Among conceptual and mathe-
matical models developed for reactive transport modeling in
fractured rocks, the dual porosity model is widely used [e.g.,
Robinson, 1994; Reimus and Callahan, 2007]. In the dual‐
porosity model, the primary pathway for groundwater flow
is assumed to be through fractures, and the water in the
saturated, matrix material is considered immobile. Solutes
move between the matrix and the fractures via the processes
of matrix diffusion and they may react with the matrix
minerals (we assume that the surface area of fracture
coating minerals is substantially smaller than that of matrix
minerals accessible after diffusion occurs). Solute storage
time in the matrix depends on the matrix volume and the
sorption reaction rates between fractures and immobile
minerals. The combination of matrix diffusion and matrix
sorption processes retards field‐scale solute transport relative
to nonreactive, fracture‐flow‐only migration rates, resulting
in breakthrough curves with long tails [Robinson, 1994].
[6] The governing equations of the dual‐porosity model

are given below for describing solute transport in fracture

and matrix material, respectively [Tang et al., 1981; Sudicky
and Frind, 1982; Reimus et al., 2003]:
[7] Fracture
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where subscripts f and m denote the fracture and matrix
domains, respectively; C is concentration (mg/L); v is flow
velocity (cm/s); Dm = D0t is the matrix diffusion coefficient,
which is the product of the free water diffusion coefficient
(D0) and the matrix tortuosity (t); Df is the dispersion
coefficient in the fractures (cm2/s); Rm is the retardation
factor in the matrix, Rm = 1 + (r/�)Kd for linear sorption
reaction; Rf is the fracture retardation factor (assumed to be
1 here); r is the matrix bulk density (g/cm3); � is matrix
porosity; Kd is the sorption coefficient (cm3/g), which is the
ratio of the sorbed concentration of a chemical species in
the solid phase to its dissolved concentration in water; b is
the fracture half aperture (cm); and h is porosity within the
fractures. The x axis is defined in the direction of fracture
flow, while y is normal to the flow direction, representing
diffusive transport into the matrix material. Based on these
governing equations, a mass transfer coefficient CMT is
defined as [Reimus et al., 2003]

CMT ¼ �

�b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rm�D0

p
: ð2Þ

CMT is a lumped parameter to describe the rate of a par-
ticular solute transferring between fracture and rock matrix.
The mass transfer coefficient is a key variable for the
proposed upscaling methods described in section 4.
[9] The scaling effect of the matrix sorption coefficients

for a chemical species is closely related to the spatial vari-
ability of reactive mineral facies [e.g., Zavarin et al., 2004;
Allen‐King et al., 2006], because different spatial distribu-
tions of the reactive mineral facies determine different cor-
relation lengths, composite means, and variances of tortuosity
and sorption coefficient, which in turn result in different
covariance functions for sorption coefficients. Allen‐King
et al. [1998] applied a sedimentary facies‐based approach
to characterize the heterogeneity and correlation of the per-
chloroethene (PCE) sorption coefficient at the Borden site.
Their results show that the facies‐based method is very
useful for linking the sorption coefficient heterogeneity with
the site sedimentary structures. At the Nevada Test Site,
Zavarin et al. [2004] studied the heterogeneity of radionu-
clide sorption coefficients in volcanic rocks with different
mineral facies. The covariance of uranium sorption coeffi-
cients, computed theoretically using surface complexation
reaction equations, measured mineral contents, and assumed
site exposure in vertical boreholes at that site fits an
exponential function well (Figure 1) [Stoller‐Navarro Joint
Venture, 2009].
[10] Spatial distributions of reactive mineral facies in

sediments are often composed of hierarchical structure,
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which can be decomposed into successively nested, inter-
acting, physical subunits with multiple levels of tree‐like
structures of reactive mineral distributions [Cushman, 1990].
The hierarchical structures of mineral facies can be charac-
terized using indicator geostatistics together with transition
probability models [Dai et al., 2004, 2005; Ritzi et al., 2004].
Specifically, when a reactive mineral facies is made up of
multiple reactive minerals that have very different mean
sorption coefficients for a chemical species, the reactive
mineral facies is characterized by a multimodal statistical
distribution for the sorption coefficients. Because the trans-
port parameters are spatially heterogeneous at various
scales, one must characterize the spatial distributions of the
mineral facies and the physical and chemical heterogeneities
that control sorption processes.
[11] In the following sections a conceptual model is first

developed for characterizing the reactive mineral facies with
hierarchical structures. On the basis of the conceptual
model, analytical expressions for upscaling the matrix tor-
tuosity and sorption coefficients are then derived from the
volume averaging of mass transfer coefficients between
heterogeneous matrix and fracture. The upscaling equations
provide effective transport parameters such as matrix tor-
tuosity and sorption coefficient from the bench to field or
modeling grid scales. Monte Carlo simulations are finally
designed to verify the upscaling methods. In this study, only
linear sorption reactions are considered between reactive
minerals and dissolved uranium in water [e.g., Davis et al.,
2004]. We also assume that the linear sorption coefficients
of uranium follow a lognormal distribution in each reactive
mineral assemblage. The upscaling method is not limited to
uranium, and can be easily extended to other contaminants
and types of reactions.

2. Conceptual Model for Hierarchical Structure
of Multimodal Reactive Mineral Facies

[12] Geochemical reactions in groundwater depend not
only on aqueous‐phase chemical species and physiochem-
ical conditions (e.g., temperature, salinity, oxygen fugacity,
pH, and Eh), but also on reactive mineral facies and their

spatial distributions. In fractured rocks, reactive minerals
adsorbing contaminants on their surfaces play a critical role
in retarding contaminant migration rates. Because different
reactive minerals have different sorption capacities, spatial
variability of the reactive minerals significantly affects the
sorption process and thus contaminant transport. From small
to large scales, the reactive minerals constitute reactive
mineral assemblages, which in turn form reactive mineral
facies. As an analog to sedimentary facies with hierarchical
architecture [Scheibe and Freyberg, 1995; Dai et al., 2004],
a hierarchical structure of mineral facies is constructed to
analyze spatial distributions of reactive mineral facies in the
matrix material and to upscale the matrix sorption coeffi-
cient in fractured rocks.
[13] Figure 2 illustrates the multiscale conceptual model

developed based on a simplified synthesis of uranium
transport in altered fractured volcanic rocks [Stoller‐
Navarro Joint Venture, 2009]. This conceptual model can
be easily extended to other contaminants in other geological
media. The volcanic rocks described here are pyroclastic
rocks composed of ash flow tuffs and ashfall deposits of
generally rhyolitic composition with some rhyolitic lava
flows and basaltic rocks. The silica‐rich ash flow and ashfall
tuffs can be composed of more than 80% glass when orig-
inally deposited, with the remainder including original
phenocrysts and lithic fragments. However, posteruption
processes such as welding, devitrification, zeolitization,
carbonatization, and argillization significantly alter the
mineralogy and reactive transport properties of the volcanic
rocks. Generally, the altered volcanic rocks display very
consistent mineralogy that tends to change with type and
intensity of alteration, i.e., a certain mineral association
corresponds to a certain overlap of alteration types.
[14] As depicted in Figure 2, the distributions of reactive

mineral facies are characterized in a three‐tiered hierarchy
with a population of uranium sorption coefficients at each
hierarchical level. This hierarchy is an organized framework
of sorption reactions between reactive minerals and dis-
solved uranium in water. However, the conceptual model
and methods developed in this paper are not limited to the
particular organization used for uranium sorption reaction
and can be extended to be suitable to different reactions and
different chemical species.

2.1. Reactive Minerals at Microform Scale

[15] Reactive minerals at the microform scale (10−6 to
10−2 m) refer to any minerals that are sensitive to one or a
group of specified geochemical reactions. As shown in
Figure 2a, the reactive minerals represent the lowest level of
the hierarchical structure, equivalent to the scale of mineral
grains in a rock thin section. In general, an individual
mineral occurs at scales less than 1 cm in natural rocks. The
smaller the mineral grain size, the larger the mineral surface
area. Minerals with large surface areas usually have relatively
large sorption coefficients [Stumm and Morgan, 1995]. For a
given type of reactive mineral, the variation in uranium
sorption coefficients is dependent not only on grain size and
shape, but also on texture, crystal structure, variability of
chemical composition of the minerals, and fluctuation in
physical and chemical conditions under which the sorption
reaction takes place [Stumm and Morgan, 1995]. Since pure
reactive mineral separates are obtained from synthesis or the

Figure 1. Covariance of uranium sorption coefficient (Kd)
fits an exponential function well in the vertical direction
(modified from Stoller‐Navarro Joint Venture [2009]).
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separation process, their sorption coefficients can be mea-
sured in tubes under controlled physiochemical conditions
after the reactive mineral size and surface area are determined.
Different reactive minerals usually have different sorption
coefficients for uranium, as displayed by the four histograms
shown in Figure 2a (data summarized from Zavarin et al.
[2004] and Stoller‐Navarro Joint Venture [2009]). For
example, hematite has a higher uranium sorption coefficient
than calcite because hematite has a larger reactive surface
area per volume due to more reactive sites and smaller grain
sizes.
[16] In altered volcanic rocks, the reactive minerals

influencing mobility and fate of uranium include primary
minerals, formed through crystallization during accumula-
tion and eruption of magma, and secondary minerals,
formed by alteration and weathering after eruption. The

primary reactive mineral considered in this study is hematite
and the secondary reactive minerals are smectite, zeolite,
Fe‐oxides, and calcite. Figure 2a shows four reactive
minerals: hematite, zeolite, smectite, and calcite, of which
hematite includes all kinds of Fe‐oxides from alterations.
[17] The primary volcanic glass, which comprises up to

80% weight of the volcanic rocks, is not considered as a
reactive mineral for uranium sorption [Stoller‐Navarro Joint
Venture, 2009]. The microcrystalline quartz and feldspar
from devitrification of the glass and other primary minerals
(e.g., feldspar, hornblende, pyroxene, and olivine) are not
considered as reactive minerals because they have extremely
low sorption coefficients for uranium. Although these non-
reactive minerals have little impact on uranium sorption
reactions, the nonreactive minerals make up a large volu-
metric proportion of the rocks. Therefore, the spatial dis-

Figure 2. Hierarchical structure of reactive mineral facies. The distributions of uranium matrix sorption
coefficients for reactive minerals are abstracted from Zavarin et al. [2004] and Stoller‐Navarro Joint
Venture [2009].
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tributions of the nonreactive minerals can result in hetero-
geneous patterns of the reactive minerals and in turn affect
the statistical properties (e.g., proportion and correlation
length) of the reactive minerals.

2.2. Reactive Mineral Assemblages at the Mesoform
Scale

[18] In practice, when one cannot obtain purely separated
minerals for column experiments to measure sorption
coefficients, one must use reactive mineral assemblage to do
column experiments. A reactive mineral assemblage at the
mesoform scale (10−2 to 101 m) is an association of coex-
isting nonreactive and reactive minerals for one or a group
of specified geochemical reactions. The mesoform scale
ranges from a hand specimen or experimental column to a
small rock outcrop (Figure 2b). Usually, a certain mineral
assemblage corresponds to a certain geochemical process by
which it was formed. For example, zeolitization results in
zeolite, with minor amounts of smectite and hematite. On
the other hand, different types of alterations may overlap to
different degrees in space, resulting in a close spatial asso-
ciation of several different reactive minerals in the altered
volcanic rocks. Different reactive mineral assemblages can
be composed of the same nonreactive and reactive minerals,
but with very different volumetric proportions of each reac-
tive mineral. Therefore, different reactive mineral assem-
blages have different capacities for controlling one or a group
of specified geochemical reactions. Besides the reactive
mineral assemblages (RMA) in the altered volcanic rocks,
there can be one or several nonreactive mineral assemblages
(NRMA). Table 1 summarizes the RMAs that are composed
of reactive minerals and nonreactive minerals for uranium
sorption in altered volcanic rocks, in which five RMAs have
been identified and one NRMA is distinguished as a part of

the primary magmatic mineral assemblage (PMMA) [Stoller‐
Navarro Joint Venture, 2009].
[19] Owing to different statistical distributions of the

uranium sorption coefficients among different reactive mi-
nerals (Figure 2a), the different RMA may have different
statistical distributions of uranium sorption coefficients. If
the mean difference of uranium sorption coefficients
between different reactive minerals is large enough, the
RMA composed of the reactive minerals will have a mul-
timodal statistical distribution for the uranium sorption
coefficients (Figure 2b). If an RMA consists of only one
kind of reactive mineral or several kinds of reactive minerals
with similar mean sorption coefficients, its sorption coeffi-
cient will have a single mode (close to the mean of the
reactive minerals) with a variance larger than that at the
microform scale.
[20] NRMAs have negligible uranium sorption coeffi-

cients and do not directly influence sorption capacities of
altered volcanic rocks. However, the spatial distributions of
NRMAs among RMAs do affect the spatial heterogeneity
of RMA distributions, and the latter cause the heteroge-
neity of the sorption coefficients at the larger scale, i.e., in
reactive mineral facies.
[21] Figure 2c displays the reactive mineral facies at the

macroform scale (101 to 103 m), the top hierarchical level.
The macroform scale is equivalent to the field scale, at
which the field reactive transport modeling, contaminant
remediation, and risk assessment are actually conducted. A
reactive mineral facies is a body of rock that is characterized
by a few reactive and nonreactive mineral assemblages for
one or a group of specified geochemical reactions. Volcanic
eruptions in a specified area during a specified period are
discontinuous and episodic, which results in multiple vol-
canic sequences in the area, each of which may have dif-
ferent types of rocks and alterations. Due to temporal and

Table 1. Reactive Mineral Assemblages That Are Composed of Reactive Minerals and Nonreactive Minerals for Uranium Sorption in
Altered Volcanic Rocksa

RMA Typical Lithology Major Alteration RM NRM
Identification

Criteria

Zeolite RMA
(ZRMA)

Bedded tuff,
nonwelded tuff

Zeolitization
Argillization

Ze, Smt Glass, Qtz, Fl >20% Ze
Ze > clay
<10% glass

Vitric mafic‐rich RMA
(VMRRMA)

Nonwelded
ash flow tuff,
bedded/ashfall
tuff

Argillization
Carbonatization
Zeolitization

Smt, Cc,
Ze,
Fe‐oxides

Glass, Fl, Bi,
Hb, Hm, Mt,
Px

>30% glass
<10% clay
<8% Ze
>1.5% Bi + Hb

Vitric mafic‐poor RMA
(VMPRMA)

Nonwelded
ash flow tuff,
bedded/ashfall tuff

Argillization
Zeolitization
Carbonatization

Smt, Ze, Cc Glass, Fl, Qtz >30% glass
<10% clay
<20% Ze
<1.5% Bi + Hb

Devitrified mafic‐rich RMA
(DMRRMA)

Welded ash flow tuff Devitrification
Argillization
Carbonatization
Zeolitization

Smt, Ze,
Cc,
Fe‐oxides

Glass, Fl Qtz, Bi,
Hm Mt, Hb, Px

<20% glass
>60% Qtz + Fl
<17% Ze
>1.5% Bi + Hb

Devitrified mafic‐poor RMA
(DMPRMA)

Welded ash flow tuff Devitrification
Zeolitization
Carbonatization

Smt, Ze,
Cc,
Fe‐oxides

Glass, Fl, Qtz <20% glass
>60% Qtz + Fl
<15% Ze
<1.5% Bi + Hb

Primary magmatic mineral
assemblage (PMMA)

Ash flow tuff
Bedded tuff
Ashfall tuff

No alterations Magmatic
hematite

Glass, Fl, Qtz,
Bi, Hm, Mt,
Hb, Px

No alteration minerals (clays,
Ze, Smt, Cc, and secondary
Fe‐oxides)

aRM, reactive minerals; NRM, Nonreactive minerals; Qtz, quartz; Fl, feldspar; Bi, biotite; Hb, hornblende; Mt, magnetite; Px, pyroxene; Hm, hematite;
Ze, zeolite; Smt, smectite; Cc, calcite. Modified from Wolfsberg et al. [2002].
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spatial variability of alteration and devitrification of the
volcanic rocks within a specified eruption sequence, the
spatial distributions of reactive mineral assemblages are
heterogeneous within the volcanic formations. The concept
of reactive mineral facies is thus introduced as an associa-
tion of the reactive mineral assemblages to describe the
alignment patterns of the assemblages.
[22] Three types of reactive mineral facies are summa-

rized in this study on the basis of types and intensity of
distinct alteration and of different degrees to which the
reactive mineral facies influence uranium sorption in the
matrix [Wolfsberg et al., 2002]. They are devitrified reactive
mineral facies (DRMF), vitric reactive mineral facies
(VRMF), and zoelitization reactive mineral facies (ZRMF).
Figure 3 illustrates the relationship between each of the
reactive mineral facies and the reactive mineral assemblages
as defined in Table 1. For example, the DRMF is composed
of devitrified mafic‐rich (combined calcium, magnesium,
and iron mineral proportions >1.5%) and mafic‐poor (same
mineral proportions <1.5%) reactive mineral assemblages
(DMRRMA and DMPRMA) and vitric mafic‐rich reactive
mineral assemblage (VMRRMA). The multimodal reactive
mineral assemblages (Figure 2b) result in the multimodal
reactive mineral facies (Figure 2c).
[23] This conceptual model of the hierarchical structure of

the reactive mineral facies provides a basis for upscaling the
sorption coefficient. After all appropriate reactive mineral
facies are identified and their hierarchical structure is es-
tablished, a multimodal covariance function is developed for
upscaling sorption coefficient using indicator geostatistics
and a transition probability model [e.g., Journel, 1983; Ritzi,
2000; Ye and Khaleel, 2008] to describe distribution pat-
terns of reactive minerals and reactive mineral assemblages.

3. Spatial Statistics of Multimodal Tortuosity and
Retardation Factor

[24] Although the conceptual model above contains the
three hierarchical levels of the sorption coefficient, for the
purpose of demonstration, the upscaling equations devel-
oped below are only for two levels, i.e., from the reactive
mineral assemblages to the reactive mineral facies. These
equations can be easily extended to any number of hierar-
chical levels as suggested by Dai et al. [2005]. Consider a
domain W filled with N reactive mineral assemblages of
mutually exclusive occurrences. Denoting the volumetric
proportion of the kth reactive mineral assemblage as pk,

then
PN
k¼1

pk = 1. Let X(x) be a multimodal spatial random

variable for either log tortuosity (lnt) or log retardation
factor (lnRm). It can be expressed as

X xð Þ ¼
XN
k¼1

Ik xð ÞXk xð Þ; ð3Þ

where Xk(x), k = 1;N represents the property X(x) of
different reactive mineral assemblages k at location x, and
Ik(x), k = 1;N is an indicator of spatial random variable
defined within the domain W as

Ik xð Þ ¼ 1; if reactivemineral assemblage k occurs at location x

0; otherwise

�
:

ð4Þ

Following Ritzi et al. [2004] and Huang and Dai [2008],
the composite mean MX and composite variance sX

2 of the
property are calculated via

MX ¼
XN
k¼1

pkmk ; ð5Þ

�2X ¼
XN
k¼1

pk�
2
k þ

1

2

XN
k¼1

XN
i¼1

pkpi mk � mið Þ2; ð6Þ

where mk and sk
2 are the mean and variance of Xk(x) for

the reactive mineral assemblage k, respectively.
[25] Taking two locations, x and c, separated by a dis-

tance vector h’ in the ’ direction, the transition probability
tki(x, c) is defined as the conditional probability for the
reactive mineral assemblage i occurring at location c, given
the other reactive mineral facies k occurs at location x:

tki x;cð Þ ¼ Pr Ii cð Þ ¼ 1jIk xð Þ ¼ 1f g
¼ Pr Ii cð Þ ¼ 1 and Ik xð Þ ¼ 1f g=Pr Ii cð Þ ¼ 1f g: ð7Þ

Assuming that both covariance function (Figure 1) and
transition probability are exponential [Dai et al., 2007b],
and that the cross‐covariances are negligible [Lu and Zhang,
2002; Dai et al., 2004], the composite covariance function

Figure 3. Sketch showing the composition of three reactive mineral facies based on reactive mineral
assemblages as defined in Table 1.
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for tortuosity (lnt) or the retardation factor (lnRm) is
expressed as [Dai et al., 2004]

CX h’
� � ¼ XN

k¼1

p2k�
2
ke

�h�
�k þ

XN
k¼1

pk 1� pkð Þ�2
ke

�h�
�y

þ 1

2

XN
k¼1

XN
i¼1

mk � mið Þ2pkpie�
h�
�I ; ð8Þ

where ly = lklI/(lk + lI), lk and lI are the integral scale
of the reactive mineral assemblage k and the indicator
correlation length, respectively. For a set of given para-
meters (Table 2), the composite covariance of the retar-
dation factor and the covariance for each reactive mineral
assemblage are shown in Figure 4, which illustrates the
relationship among the composite covariance and the
individual reactive mineral assemblage covariance.
[26] Table 2 lists synthetic parameters that are used to

illustrate the relationship among variables applied for up-
scaling (Figures 4–8 and 14) and Monte Carlo simulations
(Figures 9, 11, and 13). The ranges of synthetic parameters
are summaries based on representative column experiments

reported for altered volcanic tuffs [Wolfsberg et al., 2002;
Zavarin et al., 2004; Stoller‐Navarro Joint Venture, 2009].
In Table 2, the statistical values of composite parameters
stand for those of a reactive mineral facies, DRMF, made up
of three reactive mineral assemblages F1, F2, and F3, which
approximately represent DMRRMA, DMPRMA, and
VMRRMA, respectively (Table 1 and Figure 3).

4. Upscaling Retardation Factors and Sorption
Coefficients in a Multimodal Matrix

[27] In fractured rocks the mass transfer coefficient
defined in equation (2) is a lumped parameter that expresses
the transfer rate of a particular solute between fracture and
matrix. One approach to obtain the effective mass transfer

Table 2. Statistical Parameters for a Synthetic Field‐Scale Heterogeneous Matrix System

Assemblages pk Parameter mk sk
2 Mk

G lk (m) ly,k (m)

t −3.2 0.22 0.041 10 6.67
F1 0.60 Rm 3.1 0.30 22.20 12 7.50

Kd (cm
3/g) 0.53 – 1.70 – –

t −2.6 0.20 0.074 6 4.62
F2 0.15 Rm 4.8 0.12 121.51 8 5.71

Kd (cm
3/g) 2.27 – 9.64 – –

t −4.5 0.15 0.011 7 5.19
F3 0.25 Rm 4.6 0.10 99.48 9 6.21

Kd (cm
3/g) 2.06 – 7.88 – –

st
2 sRm

2 tG Rm
G ~� ~D (m2/s) ~Rm

~Kd (cm
3/g)

0.621 0.822 0.032 41.68 0.0374 2.48 × 10−11 49.31 3.87

r (g/cm3) � D0 (m
2/s) Kd

G (cm3/g) L (m) lI (m) lt (m) lRm (m)
2.50 0.20 6.64 × 10−10 3.25 1000 20 15.99 17.15

Figure 4. Covariances of retardation factors of reactive
mineral assemblage F1, F2, and F3 (the statistical para-
meters are from Table 2). The global or composite covari-
ance is calculated according to equation (8).

Figure 5. Effective sorption coefficient increases with the
composite variance of retardation factor for reactive mineral
facies, and variances of retardation factor for reactive min-
eral assemblages F1 and F2. The reactive mineral assem-
blage F1 (0.6) has larger volume proportion than F2
(0.15). Thus, an increase in variance of the retardation factor
for reactive mineral assemblage F1 has more significant
influences on effective Kd than that of reactive mineral
assemblage F2. For comparison, the geometric mean of
the sorption coefficient is about 3.25 cm3/g; the composite
variance of retardation factor used in Monte Carlo simula-
tion is 0.822 (Table 2).
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coefficient at the field scale (equivalent to reactive mineral
facies) is to upscale the mass transfer coefficient measured at
smaller scale (column experiment on reactive minerals or
tracer tests on reactive mineral assemblages) by simple
volume averaging (simplified from Rubin [2003, p.
163]):

~CMT ¼
~�

�~b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D0~�~Rm

q
¼ 1

L

Z
L

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D0�Rm

p
�b

dx; ð9Þ

where ~CMT is the effective mass transfer coefficient; ~� is
the effective matrix porosity; ~b is the effective half
aperture of the fracture; ~� is the effective matrix tortuosity;
~Rm is the effective retardation factor for matrix; x is the
spatial coordinate along the fracture; and L is the length

of a1‐D domain which is a simplified replace of volume
due to the constant matrix spacing and thickness. While a
simple volume average does not always accurately represent
an upscaled effective property, we employ this approach
here because (1) there is an expectation that the arithmetic
average consistently represents the effective mass transfer
coefficient based on previous results on the retardation factor
[Rajaram, 1997; Dai et al., 2009] and (2) the volume‐
averaged mass transfer coefficient leads to good agreement
with Monte Carlo simulation results presented in a later
section.
[28] We assume the tortuosity and retardation factor as

second‐order stationary random variables, and express them
as in equation (9) (the fracture porosity h is assumed to be 1,
i.e., open fractures). In the most general case, ~Rm, ~� , ~�, and ~b
would all be random variables in equation (9), and they may
be correlated with each other to varying degrees for a given
mineral facie. In this paper, we assume effective values of
matrix porosity and fracture aperture ( ~� and ~b) can be
estimated independently from measurements at smaller
scales, and we focus only on the dependence of the mass
transfer coefficient on ~Rm and ~� . Furthermore, even though
the sorption coefficient Kd is technically the fundamental
parameter describing contaminant‐rock interactions, we
consider ~Rm (which contains the added influence of matrix
porosity) to be the primary random variable describing
contaminant‐rock interactions here. The scale dependence
of contaminant transport on Kd is then inferred from the
dependence of Kd on ~Rm.
[29] ~Rm and ~� are assumed second‐order stationary ran-

dom variables, expressed as

ln � ¼ Z xð Þ and Z xð Þ ¼ MZ þ Z 0 xð Þ ð10aÞ

lnRm ¼ Y xð Þ and Y xð Þ ¼ MY þ Y 0 xð Þ: ð10bÞ

Figure 7. Effective sorption coefficient decreases with L/l,
the ratios of domain size to the integral scales of reactive
mineral assemblages F1 and F2, respectively, and decreases
with the domain size (L), in which the integral scale of reac-
tive mineral assemblages is unchanged. The geometric mean
of the sorption coefficient is about 3.25 cm3/g.

Figure 8. Effective sorption coefficient increases with cor-
relation length of indicator variable and decreases with the
ratio of domain size to correlation length of indicator vari-
able, in which the domain size keep constant, L = 1000 m.
For comparison, the geometric mean of the sorption coeffi-
cient is about 3.25 cm3/g.

Figure 6. Effective tortuosity decreases with L/l, the
ratios of domain size to the integral scales of reactive min-
eral assemblages F1 and F2, respectively, and decreases
with the domain size (L), in which the integral scale of reac-
tive mineral assemblages remain unchanged. The geometric
mean of the tortuosity is about 0.032.
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Rearranging equation (9) and substituting equation (10) into
the rearranged (9) leads to

~�~Rm ¼ 1

L

Z
L
e
1
2 Y xð ÞþZ xð Þ½ �dx

� �2

ð11Þ

~�~Rm ¼ RG
m�

G

L2

Z
L

Z
L
e
1
2 Y 0 xð ÞþY 0 yð ÞþZ0 xð ÞþZ0 yð Þð Þdxdy

� �
; ð12Þ

where Rm
G = eMY and tG = eMZ are the geometric means of the

measurement‐scale retardation factor and tortuosity and y is
also a 1‐D spatial variable similar to x. Applying the Taylor
series expansion to the exponential term in equation (12),
assuming that the variance of Y(x) and Z(x) is smaller than 1,
and taking expectation of both sides of the equation, we
have

~�~Rm

	 
 ¼ RG
m�

G 1þ �2
Y þ �2Z
4

þ 1

4L2

Z
L

Z
L
CY x; yð Þ þ CZ x; yð Þð

��

þ !YZ x; yð ÞÞdxdy
�


; ð13Þ

where the operator h i denotes expectation, sY2 and sZ2, defined
in equation (6), are composite variances of log retardation
factor and log tortuosity, CY (x, y) = hY′(x)Y′(y)i andCZ (x, y) =
hZ′(x)Z′(y)i are the covariance of Y and Z defined in equation
(8), and wYZ (x, y) = hY′(x)Z′(x) + Y′(x)Z′(y) + Y′(y)Z′(y) +
Y′(y)Z′(x)i is the sum of one‐point and two‐point cross‐cov-
ariances between the retardation factor and the tortuosity.
Assuming that the random field of the retardation factor is
independent of that of the tortuosity, wYZ (x, y) = 0. This
assumption is often not valid in real systems because matrix
tortuosity may be positively correlated with matrix porosity
(e.g., Archie’s law [Archie, 1947]), and the matrix retardation
factor, in turn, is inversely proportional to matrix porosity (via
the definition Rm = 1 + (r/�)Kd). However, we make an
assumption of zero cross‐covariance here because our
example problem (described later) involves only a very small

cross‐covariance between the matrix retardation factor and
matrix tortuosity, and also because this assumption greatly
simplifies the subsequent derivations that serve to illustrate
the theoretical basis for a heterogeneity‐based‐scale depen-
dence. Although the case of nonzero cross‐covariance can be
handled easily within the theoretical framework developed
below, assumption of zero cross‐covariance allows for more
tractable derivations and explanations.
[30] For a nonreactive solute or tracer (such as bromine),

Rm = 1, sY
2 = 0, and CY(x, y) = 0. Substituting equation (8)

into equation (13) gives

~�h i ¼ �G

(
1þ �2

Z

4
þ 1

2L2
XN
k¼1

p2k�
2
k�

2
k

L

�k
� 1þ e�

L
�k

� �"

þ
XN
k¼1

pk 1� pkð Þ�2
k�

2
y

L

�y
� 1þ e�

L
�y

� �

þ 1

2

XN
k¼1

XN
i¼1

mk � mið Þ2pkpi�2
I

L

�I
� 1þ e�

L
�I

� �#)
: ð14Þ

This is the upscaling equation of the tortuosity for a multi-
modal matrix, which has a similar structure as the upscaling
equation of the matrix diffusion coefficient (Dm) by Dai et
al. [2007a]. When N = 1, equation (14) is reduced to the
expression for a unimodal matrix, the same as equation (10)
of Dai et al. [2009].
[31] Substituting the covariance expression for the Y(x)

and Z(x) from equation (8) into equation (13) and dividing
the effective tortuosity h~�i from both sides of the equation,
we get the upscaling expression for the retardation factor
as

~Rm

	 
 ¼ RG
m 1þ �G

~�h i
�2
Y

4
þ G

2L2

� �� �
; ð15Þ

where

G ¼
XN
k¼1

p2k�
2
Y ;k�

2
k

L

�k
� 1þ e�

L
�k

� �

þ
XN
k¼1

pk 1� pkð Þ�2Y ;k�2
y

L

�y
� 1þ e�

L
�y

� �

þ 1

2

XN
k¼1

XN
i¼1

pkpi mY ;k � mY ;i

� �2
�2
I

L

�I
� 1þ e�

L
�I

� �
: ð16Þ

Because ~Kd = (~Rm − 1) ~�/r, the effective sorption coeffi-
cient for the multimodal matrix is obtained as

~Kd

	 
 ¼ RG
m
~�

�
1þ �G

~�h i
�2
Y

4
þ G

2L2

� �� �
� 1

RG
m

� 

: ð17Þ

When N = 1, equation (16) becomes

G ¼ �2Y�
2
Y

L

�Y
� 1þ e�

L
�Y

� �
: ð18Þ

Figure 9. Comparison of the sampled and the theoretical
covariance of tortuosity for reactive mineral facies 2.
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Then, equations (15) and (17) are reduced to equations
(19) and (20),

~Rm

	 
 ¼ RG
m 1þ �2Y �

G

4 ~�h i 1þ 2�2
Y

L2
L

�Y
� 1þ e�

L
�Y

� �� �� 

ð19Þ

~Kd

	 
 ¼ RG
m
~�

�
1þ �2

Y �
G

4 ~�h i 1þ 2�2
Y

L2
L

�Y
� 1þ e�

L
�Y

� �� �
� 1

RG
m

� 

;

ð20Þ

the exact expressions for unimodal matrix, i.e., equations (11)
and (13) by Dai et al. [2009].
[32] When L → 1 or lY → 0, the random field of

retardation factor is not correlated, and the effective sorption
coefficient is

~Kd

	 
 ¼ RG
m
~�

�
1þ �2

Y �
G

4 ~�h i � 1

RG
m

� �
: ð21Þ

When L is sufficiently small or lk/L, ly/L, and lI/L are all
sufficiently large, the correlation length is much larger than
the domain size, and the effective sorption coefficient is

~Kd

	 
 ¼ RG
m
~�

�
1þ �2

Y �
G

2 ~�h i � 1

RG
m

� �
: ð22Þ

Equations (19) and (20) imply that if the composite variance
of the retardation factor is zero (the matrix being homoge-
neous), the effective retardation factor and effective sorption
coefficient are equal to their mean, respectively. This reveals
that the scale dependence of the reactive transport parameter
originates from medium heterogeneity. Figure 5 demon-
strates that the effective sorption coefficient increases with
the composite variance of the retardation factor of the
reactive mineral facies and increases with the individual
variance of the retardation factor in the reactive mineral
assemblage F1 and F2. Furthermore, the variance of the
reactive mineral assemblage F1 has a more significant
influence on the effective transport parameters than that of
F2 because F1 has a larger volumetric proportion (0.6) than
F2 (0.15). Figure 5 also indicates that the effective sorption
coefficients are always greater than the geometric mean of the
sorption coefficients (3.25 cm3/g). Note that the upscaling
equations of the effective sorption coefficients are derived
upon the linear perturbation assumption of the variance less
than unity.
[33] By using the data listed in Table 2, the effective

transport parameters are plotted with domain size (Figures 6
and 7) and integral scales of the reactive mineral assem-
blages (Figure 8). Figure 6 displays that the effective tor-
tuosity decreases with the domain size (L) and with the
ratios (L/l) of the domain size to the integral scale of the
reactive mineral assemblages F1 and F2 (for the latter,
the integral scales are constants). This is also the case for the
effective sorption coefficient (Figure 7). The same amount of
decrease in the effective sorption coefficients requires almost
the same amount of increase in the (L/l) ratios for the
reactive mineral assemblages F1 and F2. Figure 8 indicates
that an increase in the integral scale of the indicator variables
increases the effective sorption coefficients, and that the later
decrease with increase in the ratio of domain size to the
integral scale of the indicator variable. When the integral

scale of the indicator variables is relatively small (i.e., less
than about 30 m), the effective sorption coefficients are close
to the lower limit; when the integral scale of indicator vari-
able is very large, the effective sorption coefficients are close
to the upper limit. The lower and upper limits correspond to
values determined by equations (21) and (22). In general, the
values of the effective reactive transport parameters are
always larger than the geometric mean and increase with the
correlation length and decrease with the domain size.

5. Verification of Upscaling Equations With
Monte Carlo Simulations

[34] The developed upscaling equations for the matrix
sorption coefficient are verified using Monte Carlo (MC)
simulations. Multiple realizations of random fields for tor-
tuosity and the retardation factor at mesoform scales are first
generated for the MC simulations. Flow and transport si-
mulations are conducted for each realization using the
generalized double porosity model (GDPM) [Zyvoloski et
al., 2008]. Based on the statistics of the random fields lis-
ted in Table 2, the upscaled tortuosity and sorption coeffi-
cient are estimated for solving the flow and transport using
the governing equations (1a) and (1b). The breakthrough
curve of concentration computed from the upscaled para-
meters is compared with that of MC results to verify the
developed upscaling method.
[35] The three reactive mineral assemblages considered in

this study are DMRRMA, DMPRMA, and VMRRMA (see
Table 1 and Figure 3). The spatial distributions of the three
reactive mineral assemblages are simulated with Markovian
indicator simulator T‐PROGS [Carle, 1999; Dai et al.,
2007b]. Ten thousand indicator fields are generated for the
tortuosity and retardation factor. Because the spatial dis-
tributions of the tortuosity and retardation factor are differ-
ent in these three reactive mineral assemblages, each reac-
tive mineral assemblage is associated with 10,000 Gaussian
random fields of the two random variables (log tortuosity
and log retardation factor) created with Karhunen‐Loeve
method [Zhang and Lu, 2004], respectively. Then the tor-
tuosity random fields are used to generate the random fields
of matrix diffusion coefficient through Dm = D0tm; the
random fields of the retardation factor are converted to the
matrix sorption coefficient fields by Kd = � /r(Rm − 1).
Quality of the generated random fields is examined by
comparing the covariance calculated from the generated
realizations with the analytical exponential covariance
models. An example is plotted in Figure 9 for the tortuosity
of the reactive mineral assemblage 2. The sampled covari-
ance agrees well with the analytical one. Similar investiga-
tions are conducted for the generated indicator random fields
by comparing sampled and theoretical transition probability
matrix. The comparisons show that the specified means,
variances, mean lengths, and volumetric proportions are
honored in the realizations.
[36] The dual porosity model for flow and transport in

fractured rocks (equation (1)) is solved within a numerical
simulator Finite Element Heat and Mass (FEHM) [Zyvoloski
et al., 2008]. In our case, the 2‐D GDPM numerical model
has a length of 1000 m with a fracture spacing of 2 m and
aperture of 0.002 m (Figure 10). The fracture is discretized
into 1000 uniform elements of 1 m, resulting in 1001 frac-
ture nodes. Perpendicular to each fracture node, the matrix is
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discretized into 10 nonuniform elements (whose sizes range
from 0.001 to 0.4 m) with 11 nodes (the bottom matrix node
is connected with the fracture node). This results in 10,010
matrix nodes. The initial concentration in the fracture is set
to zero. At the first fracture node, the inflow water has a
fixed injection rate of 0.0023 kg/s with a normalized ura-
nium concentration of 1. The mean water residence time is
about 10 days while the longitudinal dispersivity in fracture
is assumed to be 10 m. The concentration breakthrough
curves are computed at the last fracture node (node 1001).
[37] Ten thousand MC simulations are conducted for

computing the concentration mean and variance at the last
fracture node. The 10,000 realizations are sufficient to yield
stable statistics. Figure 11a displays that the means and
variances of MC simulations on three different days (160,
500, and 2000 days) at the last nodes converge between
4000 and 8000 realizations. Figure 11b, plotted according to
equations (23) and (24) from Ballio and Guadagnini [2004],
further shows that the coefficients of variations (CV) for the
means and variances of 10,000 Monte Carlo simulations are
less than 3%:

CVmean ¼ 1

Cn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
k¼1

Ck � C10;000

� �2s
ð23Þ

CVvar ¼ 1

Sn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
k¼1

Sk � S10;000
� �2s

; ð24Þ

where Cn and Sn are the mean and variance of concentra-
tions for n Monte Carlo simulations, respectively.
[38] The mean breakthrough curve of Monte Carlo simu-

lations is plotted in the solid line in Figure 12. In order to
assess the upscaling equations, one more GDPM simulation
is implemented with the effective sorption coefficient and
tortuosity derived in this study. Figure 12 shows that the
breakthrough curve simulated with the effective sorption
coefficient matches well with the mean concentration of the
MC simulations. This result indicates that the effective
sorption coefficient is an accurate estimate for the field‐scale
modeling. However, the computed concentration break-
through curve using the effective sorption coefficient
slightly underestimates the concentrations at the early time
(from 50 to 300 days) when compared to the MC results.
The MC results at early time also display larger variances
than at later time (Figure 13). We believe that a contributing

factor to the early time misfit in Figure 12 is that the MC
simulations implicitly account for a small negative cross‐
correlation of ~Rm and ~� , which is assumed to be 0 in the
calculation of the effective mass transfer coefficient that was
used in the single “effective” simulation. Even though ~Rm

and ~� are randomly and independently generated for each of
the three individual mineral facies (according to the para-
meters of Table 2), they actually have a small overall neg-
ative cross‐covariance (∼0.2) because of the slight negative
correlation of the means and standard deviations of these
parameters when considered collectively over all three
mineral facies. A negative correlation results in a higher
breakthrough curve at an early time because it implies that a
larger ~Rm or ~� will tend to be offset by a smaller value of the
other parameter, thus decreasing the tendency for larger
values of the mass transfer coefficient that result in lower
breakthrough curves. The higher breakthrough curve asso-
ciated with a slight negative cross‐covariance is reflected in
the mean curve of the MC simulations in Figure 12, but not
in the “effective” curve. Also, independent simulations
confirmed that differences in breakthrough curves associated
with different mass transfer coefficients are greater at an

Figure 10. A conceptual illustration for the numerical
grids of a generalized dual‐porosity model. The fracture
length L = 1000 m and the fracture aperture 2b = 0.002 m.

Figure 11. (a) The mean and variance and (b) coefficients
of variations for the mean and variances change with the
number of Monte Carlo (MC) simulations.
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earlier time, which is consistent with the greater variance of
the MC breakthrough curves at early times in Figure 13.
[39] Another contributing factor to the early time misfit

may be the temporal dependence of the mass transfer
coefficient. As Carrera et al. [1998] and Haggerty et al.
[2000] suggested, multiple first‐order mass transfer rates
were needed to exactly reproduce a diffusion process.
However, because this study focuses on the spatial varia-
tions of the mass transfer coefficients, the upscaled tortu-
osity and retardation factor represent the averaging values of
these parameters in the spatial and temporal domain. This
averaging process may lead to the slight misfit at the early
time and the good fit at the late time. The overall good
match demonstrates that the upscaled effective parameters
represent the physical and chemical characteristics of the
heterogeneous domain.

6. Discussions

[40] The mass transfer coefficient between matrix and
fracture is positively proportional to the square root of the
product of the matrix tortuosity and retardation factor
(equation (2)). Because the upscaled matrix tortuosity and
retardation factor decrease as domain scale increases
(equations (14) and (15)), the effective mass transfer coef-
ficient must decrease with the increase of domain size.
Figure 14 illustrates that the effective mass transfer coeffi-
cients increase with correlation scale of an indicator variable
and decrease with the ratio of domain size to the indicator
correlation scale. The latter is equivalent to decreasing the
effective mass transfer coefficient as the domain size in-
creases. Reimus and Callahan [2007] reported two orders of
magnitude of decrease in mass transfer coefficients within a
scale of a few hundred meters [Reimus and Callahan, 2007,
Figure 4] based on data from transport experiments at the
lab scale and tracer tests at the field scale. The trend of their
results is consistent with our theoretical analysis, but with
one order of magnitude difference. In their study, the frac-
tures in the column experiments were different from those in
field tracer tests. Except for the scaling effect, the relatively
larger fracture apertures also contribute to the decreased
mass transfer coefficients in field tracer tests.

[41] The scaling methodology developed in this paper
may be extended to upscale weathering rates in modeling
regional and global climate change [Anderson et al., 2004]
due to the equivalence between mass transfer coefficients
and weathering rates in the fractured rock. Further study is
needed to develop upscaling methods to obtain effective
weathering rates, which can provide a more accurate pre-
diction for chemical weathering, and thus lead to deeper
insight into these processes and accumulated geochemical
data.
[42] There are several limitations implicit in our results,

which result from a simplified representation of the fracture‐
matrix system. Note that the upscaling methodology
developed in this study is limited to the case of parallel
fractures with constant apertures and at equal spacing, where
the heterogeneous field of the matrix tortuosity is assumed
to be independent of the retardation factor. Furthermore, it is
implicit that the porosity variations have already been
averaged out. In real fractured rock masses, additional
complications arise due to the spatial variations of the
aperture field within fractures, which leads to channeling
and preferential transport, which will typically lead to more
complex solute distributions in the rock matrix as well
[Neretnieks, 2006]. Complexity of the fracture network
topology is another factor that will require a more complex
theoretical analysis. In realistic fractured rock masses that
incorporate the above complexities, a more general
approach to deriving effective transport parameters could
involve starting from the local‐scale governing equations in
the fracture and matrix domains viewed as stochastic partial
differential equations (due to the random fields of fracture
aperture, matrix porosity, retardation, and tortuosity), and
employing upscaling techniques such as those employed by
Gelhar [1993] and Cvetkovic et al. [2007].

7. Summary and Conclusions

[43] The summary and conclusions drawn from this study
are given below as follows.
[44] 1) The transition probability model and indicator

geostatistics are used to characterize the physical and
chemical heterogeneities, represented by matrix tortuosity

Figure 12. Comparison of normalized concentration break-
through of MC simulations with that using the effective
tortuosity and sorption coefficient.

Figure 13. Evolution of the concentration variances
through time.
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and the retardation factor, within a framework of hierar-
chical‐scale conceptual models of reactive mineral facies.
[45] 2) Upscaling equations for tortuosity and the sorption

coefficient in fractured rocks with multimodal mineral facies
are developed by volume averaging of mass transfer coef-
ficients in the dual‐porosity model. These equations dem-
onstrate that the scale dependence of the reactive transport
parameters is inherited from the spatial heterogeneity of the
reactive mineral facies.
[46] 3) The effective sorption coefficient increases with

correlation length of indicator variable, and with the integral
scales and variances of retardation factor and tortuosity, but
decreases with domain size.
[47] 4) The upscaling equations are verified by Monte

Carlo simulations. The effective sorption coefficient devel-
oped in this study can be used to model linear sorption
reactions for transport in heterogeneous fractured rocks. The
upscaling equations provide accurate reactive transport
parameters for field‐scale modeling, which in turn results in
better insight into contaminant transport and fate in fractured
rocks, and thus is of practical significance.
[48] 5) The mass transfer coefficient for fractured rock is a

function of the matrix tortuosity, the retardation factor,
fracture aperture, and matrix porosity. The effective mass
transfer coefficient decreases with increasing domain size
like the effective tortuosity and retardation factor. Therefore,
using column‐scale mass transfer coefficients for calculating
field‐scale contaminant travel time may underpredict arrival
time and make a site’s long‐term performance appear too
favorable.
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