
Dynamic Reservoir Data Assimilation With
an Efficient, Dimension-Reduced Kalman

Filter
Dongxiao Zhang, SPE, U. of Oklahoma; Zhiming Lu, Los Alamos Natl. Laboratory; Yan Chen, SPE, U. of Oklahoma

Summary
Kalman filter-based methods have been widely applied for assim-
ilating new measurements to continuously update the estimate of
state variables, such as reservoir properties and responses. The
standard Kalman filtering scheme requires computing and storing
the covariance matrix of state variables, which is computationally
expensive for large-scale problems with millions of gridblocks. In
the ensemble Kalman filter (EnKF), this problem is alleviated with
sampling from a limited number of realizations and computing the
required subset of the covariance matrix at each update. However,
the goodness of the (ensemble) covariance approximated from the
limited ensemble depends on the number of realizations used and
the representativity of a given ensemble. In this study, we propose
an efficient, dimension-reduced Kalman filtering scheme based on
Karhunen-Loeve (KL) and other orthogonal polynomial decompo-
sitions of the state variables. We consider flow in heterogeneous
reservoirs with spatially variable permeability. The reservoir re-
sponses such as pressure are measured at some locations at various
time intervals. The aim is to dynamically characterize the reservoir
properties and to predict the reservoir performance and its uncer-
tainty at future times. In our scheme, the covariance of the reser-
voir properties is approximated by a small set of eigenvalues and
eigenfunctions using the KL decomposition and the reconstruction
of the covariance from the KL decomposition can be done when-
ever needed. In each update, the forecast step is solved using the
KL-based moment method, giving a set of functions from which
the mean and covariance of the state variables can be constructed,
when needed. The statistics of both the reservoir properties and the
reservoir responses are then updated with the available measure-
ments at this time using the auto- and cross-covariances obtained
from the forecast step. The new approach is illustrated on a hetero-
geneous reservoir with dynamic measurements and the results are
compared with those from the EnKF method, in terms of accuracy
and efficiency.

Introduction
Owing to the high cost associated with direct measurements of reser-
voir properties, for instance permeability and porosity, the number
of direct observations is always limited. However, the reservoir
exhibits a high degree of spatial variability at all length scales re-
sulted from its intrinsically complicated nature. This combination
of significant spatial heterogeneity with a relatively small number
of direct observations leads to uncertainty in characterizing reser-
voir properties, which in turn results in uncertainty in estimating or
predicting the corresponding reservoir responses.

Large efforts have been made to take advantage of all the avail-
able observations, both the limited number of direct measurements
of reservoir properties and a larger amount of observations of reser-
voir responses, to obtain better estimates of the primary parame-
ters of the reservoir, thereby reducing the uncertainty associated
with model predictions. These methods are usually named as his-
tory matching, in which the best estimate of reservoir properties is
obtained by minimizing the mismatch between the estimation and
the observation. The gradient-based approach, a commonly used
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method in the traditional history matching, needs substantial com-
putational effort to calculate the gradient of the objective function,
either with the adjoint method or other techniques in order to search
for the minimum.

Recently, a number of sequential history matching methods have
been proposed, which is basically extended from the optimal esti-
mation theory of the Kalman filter. These methods include the Ex-
tended Kalman filter (EKF), the Ensemble Kalman filter (EnKF),
and their variants. The common ground of these methods is their
capability of incorporating observations sequentially, which results
in a significant reduction of the number of data dealt at a certain
time. An up-to-date system, consisting of an estimate of the un-
known properties and the corresponding uncertainty is provided by
these sequential methods.

The fundamental difference among these methods is how the
statistics of the system state is propagated in time. The EKF uses
the first-order linearization and needs to keep track of the whole co-
variance matrix, which is computationally expensive for large-scale
problems. The EnKF employs a Monte Carlo method in which the
covariance matrix is updated from a small-sized ensemble (a small
number of realizations). The EnKF can alleviate the closure prob-
lem imbedded in the EKF and can better handle large-scale, highly
nonlinear problems (Evensen, 1994, 2003).

Kalman filter method is only optimal when the dynamic system is
linear and the state variables have Gaussian statistics. By using the
Monte Carlo method as the forecast step and obtaining the statistics
from the ensemble, the EnKF relaxes the linearity assumption to a
certain extent. However, the update step of the EnKF still depends
on the first two statistical moments and thus the EnKF is only sub-
optimal in the presence of strong nonlinearity and non-Gaussianity.
There are other types of filter schemes analyzing the full probability
distribution to obtain the maximum likelihood estimate. But ow-
ing to its straightforward conceptualization, relatively low compu-
tational cost and satisfactory performance, the EnKF has been used
in a large number of applications in various fields such as meteorol-
ogy, oceanography, hydrology, and reservoir engineering (Evensen,
1994, 2003; Mclaughlin, 2002; Nævdal et al., 2005; Wen and Chen,
2005; Liu and Oliver, 2005; Gu and Oliver, 2005; Chen and Zhang,
2006).

The size of the ensemble is crucial for the performance of the
EnKF since the standard deviation of the sampling errors of the
Monte Carlo method converges slowly with the sample size N (ap-
proximately equal to 1/

√
N). In general, a small ensemble induces

a large sampling error; a large ensemble leads to computational in-
efficiency. Various methods have been proposed to reduce the sam-
pling error associated with the small-sized ensemble in the EnKF,
such as double ensemble Kalman filter (Houtekamer and Mitchell,
1998), ensemble square root filter (Whitaker and Hamill, 2002), en-
semble Kalman filter with forgetting factor (Anderson and Ander-
son, 1999). These methods showed promising results even with
relatively small number of ensemble members. On the other hand,
these methods are application dependent and some parameters are
difficult to quantify. Extra effort may need to tune these parame-
ters for obtaining reasonable results. The representativity of a given
sized ensemble is another factor that controls the performance of
the EnKF. If the ensemble members ideally sample the main di-
rections of the probability space, the ensemble can better represent
the underlying probability distribution, thus leading to better EnKF
estimates. Although some initial ensemble selection and ensem-
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ble resampling schemes have been proposed (Xiu and Karniadakis,
2003; Evensen, 2004; Wen and Chen, 2005), the EnKF is usually
carried out with randomly generated ensemble and the performance
of the EnKF with a small-sized ensemble may vary with the partic-
ular realizations.

For high-resolution, large-scale problems, the dimension of the
state is fairly large. One of the major problems of various Kalman
filter-based methods is how to efficiently approximate the state er-
ror covariance matrix with a dimension-reduced approach in each
update. The EnKF is one type of dimension-reduced approaches
since the number of ensemble members is in general smaller than
the dimension of the state. There are other attempts that estimate the
state error covariance matrix by selecting its principal modes, and
several of such methods are given next. The reduced rank square
root filter (RRSQRT) (Verlaan and Heemink, 1997) is based on the
factorization of the error covariance matrix where only the leading
eigenvectors are selected in order to reduce the dimension of in-
terest. The singular evolutive Kalman filter (SEEK) (Pham et al.,
1998) approximates the state error covariance matrix by a singular
lower-rank matrix. In this approach, the correction to the state is
only made to the directions of the growing error and the directions
of the correction change with time according to the model evolution.
Partially orthogonal ensemble Kalman filter (POEnKF) and com-
plementary orthogonal subspace filter for efficient ensemble (COF-
FEE) (Heemink et al., 2001) combine the RRSQRT and the EnKF
together to obtain variance reduced estimation. RRSQRT is used as
a variance reducer containing the information of the leading eigen-
values while the remaining state is represented by the EnKF.

In this work, a new type of dimension-reduced data assimila-
tion method is proposed based on Karhunen-Loeve (KL) expan-
sion and orthogonal polynomial decompositions, which will be re-
ferred to as Karhunen-Loeve-based Kalman filter (KLKF) in this
paper. The major difference between KLKF and other dimension-
reduced methods mentioned previously is that the approximation to
the high-dimension covariance matrix is not performed directly as a
matrix manipulation. The KL expansion is performed on the reser-
voir properties, to obtain the principle modes of the major source
of the uncertainty, based on which an efficient KL-based moment-
equation (KLME) approach is used to solve the stochastic flow
equations (Zhang and Lu, 2003; Lu and Zhang, 2004, 2006). In
order to construct the state error covariance, the covariance of reser-
voir properties is efficiently approximated by a small set of eigen-
values and eigenfunctions attributed to the mean square conver-
gence of the KL decomposition; the covariance of reservoir re-
sponses is approximated by the coefficients of the polynomial ex-
pansions, the cross-covariance of the reservoir properties and re-
sponses is approximated by the eigenvalues, eigenfunctions and the
coefficients of the polynomial expansions. In the later sections de-
tailed formulations will be given on the construction of the covari-
ance matrices. Compared to the full covariance matrix, approximat-
ing the covariance based on a finite number of modes represents a
significant reduction in the random dimensions.

In KLKF, the forecast step is completed with the KLME method,
from which the mean and covariance of the state variables can be
constructed, when needed. The statistics of both the reservoir prop-
erties and reservoir responses are then updated with the observa-
tions available at the measurement time using the auto- and cross-
covariance obtained from the forecast step. A synthetic 2D example
is used to demonstrate the capability of this new method and to com-
pare the results with those from the traditional EnKF method. Our
results show that the Karhunen-Loeve-based Kalman filter (KLKF)
is capable of significantly reducing the required computational re-
sources with satisfactory accuracy, which indicates the potential ap-
plicability of this approach to high-resolution, large-scale predictive
models.

Statement of Problem
We consider transient fluid flow in heterogeneous reservoirs satis-
fying the following governing equation:

∇ · [Ks(x)∇h(x, t)]+g(x, t) = Ss
∂h(x, t)

∂t
, . . . . . . . . . . . . (1)

subject to the initial and boundary conditions:

h(x,0) = H0(x), x ∈ D, . . . . . . . . . . . . . . . . . . . . . . . . . . (2)

h(x, t) = H(x, t), x ∈ ΓD, . . . . . . . . . . . . . . . . . . . . . . . . . (3)

Ks(x)∇h(x, t) ·n(x) = −Q(x, t), x ∈ ΓN , . . . . . . . . . . . . (4)

where g(x, t) is the source/sink term, h(x, t) = P(x)/(ρg)+x3 is the
pressure head (P being pressure, ρ density, g gravitational accelera-
tion factor and x3 elevation), H0(x) is the initial head in the domain
D, H(x, t) is the prescribed head on Dirichlet boundary segments
ΓD, Ks(x) = k(x)ρg/µ is the hydraulic conductivity (k is the intrin-
sic or absolute permeability and µ is the fluid viscosity), Q(x, t) is
the prescribed flux across Neumann boundary segments ΓN , n(x) is
an outward vector normal to the boundary ΓN , and Ss is the specific
storage. In this study, the hydraulic conductivity Ks(x) is consid-
ered as a random space function, while specific storage Ss is treated
as a deterministic constant. We usually work with log transformed
hydraulic conductivity Y = lnKs. Note that the (co)variance of the
log hydraulic conductivity is the same as that of the log absolute
permeability lnk because Y (x) = ln[ρg/µ]+ ln[k(x)] with ρ, g and
µ being known constants.

Since Ks(x) is a random function, the flow equations become
stochastic partial differential equations, which can be solved with
various approaches, such as the moment-equation method (Zhang,
2002) and Monte Carlo simulation. In this study the KL-based
moment-equation (KLME) method is used in the KLKF. A brief
description of the KLME will be given later. As a comparison, the
Monte Carlo method is used in the EnKF.

The hydraulic conductivity Ks(x) is assumed to follow a log nor-
mal distribution. We work with the log transformed variable Y (x),
given as:

Y (x) = ln[Ks(x)] = Y (0)(x)+Y ′(x), . . . . . . . . . . . . . . . . (5)

where Y (0)(x) is the mean, representing a relatively smooth unbi-
ased estimate of the unknown random function Y , and Y ′(x) is the
zero-mean fluctuation.

Suppose we have NY direct measurements of the log hydraulic
conductivity Y1,Y2, · · · ,YNY taken at locations x1,x2, · · · ,xNY and Nh
pressure head measurements h1,h2, · · · ,hNh located at χ1,χ2, · · · ,χNh ,
both measured at some time intervals. The aim of this study is to
provide an efficient algorithm to characterize reservoir properties by
dynamically incorporating these measurements when they become
available. During the data assimilation process the stochastic dif-
ferential flow equation is solved forward with time; the mean and
the fluctuation of hydraulic conductivity are modified together with
the pressure head to honor the observations at various times sequen-
tially, for obtaining up-to-date estimates of hydraulic conductivity
field and the corresponding uncertainty.

Karhunen-Loeve Decomposition
For the Gaussian stochastic process Y (x,ω) = ln[Ks(x,ω)], where
x ∈ D and ω ∈ Ω (a probability space), the covariance function
CY (x,y) =< Y ′(x,ω)Y ′(y,ω) > is bounded, symmetric, and pos-
itive definite, thus it can be decomposed as:

CY (x,y) =
∞

∑
m=1

λm fm(x) fm(y), . . . . . . . . . . . . . . . . . . . . (6)

where m is the index of modes, λm and fm are eigenvalues and or-
thogonal deterministic eigenfunctions, respectively. λm are sorted
in the descending order and the corresponding eigenfunctions fm
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exhibit a decreasing characteristic scale as the index m increases.
The mean removed stochastic process Y ′(x,ω) can be expanded
with the KL expansion as:

Y ′(x,ω) =
∞

∑
m=1

ξm(ω)
√

λm fm(x), . . . . . . . . . . . . . . . . . . (7)

where ξm are orthogonal standard Gaussian random variables, i.e.,
< ξm >= 0 and < ξiξ j >= δi j, where δi j is the Kronecker delta
function. It has been shown that the KL expansion is of mean square
convergence and may be well approximated with a finite summa-
tion. In our study, the KL expansion is truncated up to the first M
terms (M modes). The number of modes required for accurately ap-
proximating Y ′(x,ω) depends on the ratio of the correlation length
to the dimension of the domain (Zhang and Lu, 2003).

KL-based Moment Equations
We assume that the pressure head can be formally expressed as an
infinite series: h(x, t) = h(0) + h(1) + · · · , where the order of each
term is with respect to σY , the standard deviation of Y . Only the
first two terms h(0) and h(1) are used in this work, thus the KLKF
method proposed here is based on the first-order approximation of
the pressure head. By substituting the expansions of h(x, t) and
Y into Eq. 1, we obtain the governing equations for zeroth- and
first-order pressure head terms h(0) and h(1) as well as their corre-
sponding boundary and initial conditions (Zhang, 2002; Zhang and
Lu, 2003). We further assume that the first-order head term can
be expressed as a polynomial expansion in terms of the orthogonal
Gaussian random variable ξm,m = 1,2, · · · ,M:

h(1)(x, t) =
M

∑
m=1

ξmh(1)
m (x, t) . . . . . . . . . . . . . . . . . . . . . . . (8)

After substituting this expansion and the KL decomposition of
the log hydraulic conductivity, i.e., Eq. 7, into equations for the
first-order term h(1) and recalling the orthogonality of the Gaus-
sian random variables ξm, m = 1,2, · · · ,M, we obtain M sets of de-
terministic governing equations for the coefficients h(1)

m (x, t). It is
worthwhile to point out that the zeroth-order head equation and the
M sets of equation for the coefficients h(1)

m (x, t) (in total, M +1 sets
of equation) have the exactly same structure as the original flow
equation (Lu and Zhang, 2006). By changing the input parameters,
the KL-based moment equations can be solved easily with existing
codes.

Once the coefficients h(1)
m (x, t) are solved, the head covariance

as well as the cross-covariance between the head and the log hy-
draulic conductivity, required in the data assimilation process, can
be approximated up to first order in terms of σ2

Y as:

CY h(x,y, t) =
M

∑
m=1

√
λm fm(x)h(1)

m (y, t), . . . . . . . . . . . . . (9)

Ch(x, t;y,τ) =
M

∑
m=1

h(1)
m (x, t)h(1)

m (y,τ). . . . . . . . . . . . . . (10)

Data Assimilation Methodology
Data assimilation is a process consisting of a series of update steps,
each of which represents the time when observations become avail-
able and/or the updating process is operated. At each update step
the current system state is combined with the new observations for
the sake of obtaining a minimum variance estimation. In this sec-
tion, the time symbol t is suppressed, since the discussion is based
on any fixed update step. Similar to the EnKF, the KLKF requires
to compute (some subsets of) the covariance functions CY , CY h, and
Ch, as presented in Eqs. 6, 9, and 10. This implies that the eigen-
values λm, the eigenfunctions fm and the first-order head coeffi-
cient h(1)

m have to be updated at each update step together with the

mean hydraulic conductivity field Y (0) and the zeroth-order head
h(0). Certainly, at each update step, the covariance function of the
log hydraulic conductivity is nonstationary and its eigenvalues and
eigenfunctions have to be solved numerically. It is well-known that
solving the eigenvalue problem is computationally demanding for
large-scale problems. For this reason, we developed an algorithm
that requires solving the eigenvalue problem at the first time step
and then efficiently updating the eigenvalues and eigenfunctions at
the subsequent update steps.

Updating Mean Hydraulic Conductivity Field. At the update
step, the updated mean and covariance of Y upon incorporating new
observations can be derived from the cokriging technique:

(c)Y (0)(x) = Y (0)(x)+
NY

∑
i=1

αi(x)[YObs(xi)−Y (0)(xi)]

+
Nh

∑
i=1

βi(x)[hObs(χi)−h(0)(χi)] , . . . . . . . . . (11)

(c)CY (xi,x j) = CY (xi,x j)−
NY

∑
n=1

αn(xi)CY (xn,x j)

−
Nh

∑
n=1

βn(xi)CY h(x j,χn)

i = 1,2, ...NY , j = 1,2, ...NY , . . . . . . . (12)

where the quantities with (without) superscript (c) stands for the
values after (before) incorporating observations at this time step,
and αi and βi are weighting functions, representing the relative im-
portance of each measurement Y (xi) and h(χi) in predicting the
value of (c)Y (0)(x) at location x. The weighting functions are so-
lutions of the following cokriging equations:

NY

∑
i=1

αi(x)CY (xi,x j)+
Nh

∑
i=1

βi(x)CY h(x j,χi) = CY (x,x j)

j = 1,2, ...NY , . . . . . . (13)

NY

∑
i=1

αi(x)CY h(xi,χ j)+
Nh

∑
i=1

βi(x)Ch(χi,χ j) = CY h(x,χ j)

j = 1,2, ...Nh . . . . . . . (14)

The observations YObs(xi) and hObs(χi) may include noises:

YObs(xi) = Y t(xi)+ζiσY N , i = 1,2, ...NY , . . . . . . . . . (15)

hObs(χi) = ht(χi)+ζiσhN , i = 1,2, ...Nh , . . . . . . . . . . (16)

where Y t(xi) and ht(χi) are (unknown) true values, ζi are Gaus-
sian random variables with zero mean and unit variance, and σY N
and σhN are the standard deviations of measurements errors of the
log hydraulic conductivity Y (x) and pressure head h(χ), which are
assumed to be known.

Since the set of eigenfunctions is complete, αi and βi can be ex-
panded on the basis of these eigenfunctions:

αi(x) =
∞

∑
m=1

αim fm(x), i = 1,2, ...NY , . . . . . . . . . . . . . (17)

βi(x) =
∞

∑
m=1

βim fm(x), i = 1,2, ...Nh . . . . . . . . . . . . . . . (18)

The equations for αim and βim can be derived from Eqs. 13 and
14 with Eqs. 17 and 18 by multiplying fm(x) on the both sides, and
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integrating the equations with respect to x over the domain D:

NY

∑
i=1

αimCY (xi,x j)+
Nh

∑
i=1

βimCY h(x j,χi) = λm fm(x j) , . . (19)

NY

∑
i=1

αimCY h(xi,χ j)+
Nh

∑
i=1

βimCh(χi,χ j) =
√

λmh(1)
m (χ j) , (20)

where the cross-covariance CY h(xi,χ j), auto-covariance of pressure
head Ch(χi,χ j) and auto-covariance of log hydraulic conductivity
CY (xi,x j) are given by Eqs. 9, 10 and 12, respectively.

Updating Pressure Head Fields. The zeroth-order pressure head
can be updated with both types of observations in the same manner:

(c)h(0)(x) = h(0)(x)+
NY

∑
i=1

µi(x)[YObs(xi)−Y (0)(xi)]

+
Nh

∑
i=1

ηi(x)[hObs(χi)−h(0)(χi)] , . . . . . . . . . (21)

where µi and ηi are subject to:

NY

∑
i=1

µi(x)CY (xi,x j)+
Nh

∑
i=1

ηi(x)CY h(x j,χi) =CY h(x j,x) , (22)

NY

∑
i=1

µi(x)CY h(xi,χ j)+
Nh

∑
i=1

ηi(x)Ch(χi,χ j) = Ch(x,χ j) . (23)

αim, βim, µi(x) and ηi(x) in Eqs. 19, 20, 22 and 23 can be com-
puted through solving a set of linear algebraic equations with the
same coefficient matrix. In this work, LU decomposition is used
to solve these equations, the decomposition needs to be done only
once, and all the coefficients can be obtained efficiently by chang-
ing the right-hand side vector. However, the condition number of
this coefficient matrix can be extremely large, especially after sev-
eral update steps, since assimilating observations results in a great
reduction of (co)variance. In the presence of the ill-conditioned
matrix the truncation error may be easily amplified and result in in-
stability. Dietrich and Newsam (1989) analyzed the cause of the
ill-conditioning and proposed that adding a relaxation term ε (or
an explicit error matrix) to the matrix can resolve this problem. In
general, a relatively large relaxation term improves the stability with
the price of losing information and slowing down the rate of conver-
gence, while a small value may lead to numerical instability. The er-
ror matrix can be obtained through a maximum likelihood approach
for the purpose of improving the conditioning and minimizing the
loss of information. Yeh et al. (1996) added a relaxation term to the
diagonal components of the matrix to reduce the condition number
of the matrix and assigned the relaxation term as a fraction of the
maximum value of the matrix. In this paper, a constant relaxation
term is added to the diagonal components of Ch(χi,χ j), which will
be discussed further with illustrative examples.

Similar to the zeroth-order head term, the first-order pressure
head is updated by:

(c)h(1)(x) = h(1)(x)−
NY

∑
i=1

µi(x)Y ′(xi)

−
Nh

∑
i=1

ηi(x)h(1)(χi) . . . . . . . . . . . . . . . . . . . . (24)

Because both Y ′(x) and h(1)(x) can be expanded based on ξm, by
substituting Eqs. 7 and 8 into Eq. 24, instead of updating h(1)(x)

directly, the coefficients h(1)
m (x) can be updated as:

(c)h(1)
m (x) = h(1)

m (x)−
NY

∑
i=1

µi(x)
√

λm fm(xi)

−
Nh

∑
i=1

ηi(x)h(1)
m (χi) . . . . . . . . . . . . . . . . . . . . (25)

It can be shown that to the first order, Eq. 25 recovers the usual
cokriging equation for the head convariance similar to Eq. 12.

Updating Eigenvalues and Eigenfunctions. Because of the non-
stationarity of the covariance matrix given in Eq. 12, the conditional
eigenvalues and eigenfunctions have to be solved numerically. Here
we follow the method in Lu and Zhang (2004) with some modifica-
tion to incorporate the influence of the pressure head measurements.

By definition, the eigenvalues (c)λm and their corresponding eigen-
functions (c) fm(x) can be solved from the following Fredholm equa-
tion of the second kind:Z

Ω

(c)CY (x,y)(c) f (x)dx = (c)
λ

(c) f (y) . . . . . . . . . . . . . . (26)

Since the set of eigenfunctions fm(x) computed at the previous
update step is complete, the eigenfunctions (c) fm(x) at the current
step can be expanded in terms of fm(x) as:

(c) fm(x) =
M

∑
p=1

dmp fp(x), m = 1,2 , · · · , M , . . . . . . . . (27)

where the coefficient matrix D = (dmp)M×M is to be determined.
Substituting this expression and Eq. 12 into Eq. 26, multiplying
fm(y) on the both sides of the derived equation, and integrating it
with respect to y over domain D, yields:

λmdm −
M

∑
k=1

(
NY

∑
i=1

αikλm fm(xi)+
Nh

∑
i=1

βik
√

λmh(1)
m (χi)

)
dk

= (c)
λmdm, m = 1,2 , · · · , M . . . . . . . . . . . . . . (28)

It can also be expressed in a succinct matrix form as:

(A− (c)
λI) = 0 , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (29)

where

akm = λmδkm −

(
NY

∑
i=1

αikλm fm(xi)+
Nh

∑
i=1

βik
√

λmh(1)
m (χi)

)

is the components of A =(akm)M×M , (c)λ = diag
[
(c)λ1, · · · , (c)λM

]
,

and I is an M×M identity matrix. Therefore, the problem of finding
the eigenvalues and eigenfunctions of a nonstationary covariance
matrix (c)CY (x,y) of size N ×N reduces to the problem of finding
the eigenvalues (c)λ and eigenvectors d of an M×M matrix for M
times, where N is the number of gridblocks and M is the number of
modes. Note that the number of gridblocks N is usually much larger
than the number of modes M. Conditional eigenvector (c) fm(x) cor-
responding to each conditional eigenvalue (c)λm can be constructed
through dmp in Eq. 27. The updated eigenvalues and eigenvectors
as well as the updated pressure head terms in Eqs. 21 and 25 are fed
into the KLME forward model for the next forecast step.

Since directly solving the Fredholm equation is computation-
ally expensive, the proposed algorithm for updating the conditional
eigenvalues and eigenfunctions at each update step has a significant
advantage, because we only need to solve the Fredholm equation
for a stationary covariance function at the first timestep rather than
at each subsequent assimilation step for a nonstationary covariance
function.
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Karhunen-Loeve-Based Kalman Filter. The methodology de-
scribed in the previous section has a different format from the tradi-
tional Kalman filter, where the Kalman gain and the update step are
formulated as:

K = P f HT [HP f HT +R]−1 , . . . . . . . . . . . . . . . . . . . . . (30)

Su = S f +K[dObs −HS f ] , . . . . . . . . . . . . . . . . . . . . . . . (31)

Pa = [I−K]P f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (32)

where K is the Kalman gain, H is the observation operator, R is the
observation error covariance matrix, dObs is the observation vec-
tor, S f is the forecast state vector, Su is the updated state vector,
and P f is the covariance matrix of the forecast state vector. In
fact, the cokriging based updating scheme is exactly the same as
the traditional Kalman filter at each step. If we define the state vec-
tor as S = [Y (x1), · · · ,Y (xN),h(x1), · · · ,h(xN)], the corresponding
Kalman gain can be constructed with the coefficients αi(x), βi(x),
µi(x) and ηi(x) described before:

K =
[

Kα Kβ

Kµ Kη

]
2×N,NY +Nh

,

Kα = [α1(x), α2(x), · · · αNY (x)]
Kβ = [β1(x), β2(x), · · · βNh(x) ]

Kµ = [µ1(x), µ2(x), · · · µNY (x)]
Kη = [η1(x), η2(x), · · · ηNh(x) ] , . . . . . . . . . . . . . . . . (33)

where N is total number of gridblocks and NY and Nh are respec-
tively the number of log hydraulic conductivity and pressure head
measurements.

The major difference between the KLKF approach and the cok-
riging method is that the KLKF is a sequential or on-line method,
while cokriging is a statistical interpolation method, which only op-
erates at a fixed time. Sometimes cokriging is performed iteratively
to account for the possible nonlinear effects in order to obtain a rea-
sonable estimation, but the iteration is still based on a certain time
(Yeh et al., 1996). The KLKF uses the KLME method for advanc-
ing the system with time and incorporates the observations at the
time when they become available to adjust the model state. After
the current update step, the updated reservoir responses are taken as
the initial conditions for the next forecast step. The updated model
is then run until the next set of observations becomes available, at
which the update step will be performed again.

Illustrative Examples
In this section, we use a synthetic 2D example to demonstrate the
applicability of the KLKF method for estimating the hydraulic con-
ductivity field by assimilating pressure head and hydraulic conduc-
tivity measurements. The results are compared with those of the
EnKF method in terms of both computational cost and accuracy.

The flow domain is a square of size Lx = Ly = 800 m, uniformly
discretized into 40×40 square elements, as shown in Fig. 1. Start-
ing at t = 0 day, a pumping well with a volumetric flow rate of 150
m3/day is placed at (260 m, 240 m) and an injection well with the
same flow rate is placed at (560 m, 540 m). These two wells are ac-
tive throughout the whole study period with constant flow rates. The
two lateral boundaries are no-flow boundaries, while the left and the
right are Dirichlet boundaries with prescribed pressure head of 202
m and 198 m, respectively. Storage coefficient is assumed to be a
constant taken as 0.0001.

The log hydraulic conductivity field is treated as a Gaussian ran-
dom function with zero mean and unit variance. Thus, the geomet-
ric mean of the saturated hydraulic conductivity is KG = 1.0 m/day.
The unconditional hydraulic conductivity field is also assumed to be
second-order stationary characterized by the separable exponential
covariance function, which is defined as

CY (h) = σ
2
Y exp

[
−|hx|

λx
−
|hy|
λy

]
, . . . . . . . . . . . . . . . . . (34)
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Fig. 1—The flow domain and the observation locations of lnKs
(the nine filled squares) and the pressure head (all the 25
squares). The circle and triangle are the pumping and injection
well, respectively.

where correlation lengths λx = 200 m, λy = 100 m, variance σ2
Y =

1.0, and h = (hx,hy)T is the separation vector.
In this synthetic example, we generate an unconditional log hy-

draulic conductivity field using the aforementioned statistics and
take this field as the reference field (see Fig. 2). We then take nine
samples from this reference field at selected locations as shown in
Fig. 1 (filled squares) and consider these samples as direct mea-
surements of the log hydraulic conductivity field. We run a forward
simulation using the reference field and take 25 pressure head mea-
surements at selected locations (all the well locations in Fig. 1) with
specified time intervals. The log hydraulic conductivity measure-
ments are assumed to be perfect. While the pressure head obser-
vations are noisy and the error follows a normal distribution with
mean equal to zero and standard deviation equal to 0.05 m.
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Fig. 2—The reference lnKs field.

For this model setup, the fluid flow reaches steady state at about
t = 10 day. This period is chosen as the simulation duration, which
is subdivided into 50 equally sized timesteps of 0.2 day interval.
The pressure head measurements are available at an equally spanned
period with ∆t = 0.6 day. The hydraulic conductivity measurements
are assimilated with the first set of pressure head measurements at
t = 0.2 day, and after that only pressure head measurements are as-
similated every 0.6 day up to 10 day. For both the EnKF and the
KLKF methods, the initial pressure head is assumed to be known
without uncertainty.
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Karhunen-Loeve-Based Kalman Filter. The KLKF is initialized
with statistics slightly different from the reference. The mean of the
log hydraulic conductivity is still zero while the variance is set to
be 1.2. Separable exponential covariance function was used with
correlation lengths λx = 220 m, λy = 120m.

50, 100 and 200 modes has been used for testing the KLKF. Be-
fore showing results obtained from KLKF with different number of
modes involved, it is of interest to examine how much energy is
carried by these leading modes. Fig. 3 shows the normalized eigen-
values (λm/D, where D is the size of the domain) with respect to
the indices of the modes and the fraction of energy contained by the
cumulative eigenvalues ( ∑

m
λm/(Dσ2

Y ) ) as a function of the modes

included. The magnitude of eigenvalues decreases with the increase
of the index of the modes, and by using the first 100 modes, we can
capture about 85% energy of the system of correlation length to
domain size ratios λx/Lx = 220/800 and λy/Ly = 120/800. As a
general rule, the number of modes needed decreases as such ratios
increase.
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Fig. 3—The normalized eigenvalues and their normalized accu-
mulative values.

Two commonly used metrics are used to quantify the goodness
of the estimates. The root mean square error (RMSE) shows the
deviation of the estimated mean Y field from the reference field,

RMSE =

√√√√ 1
N

N

∑
i=1

[Y ∗(xi)−Y t(xi)]2 . . . . . . . . . . . . . . . (35)

where Y ∗(xi) stands for the estimated mean values and Y t(xi) stands
for the reference values.

The SPREAD is the estimated uncertainty represented by the en-
semble, which can be defined as:

SPREAD =

√√√√ 1
N

N

∑
i=1

VARen(xi) . . . . . . . . . . . . . . . . . . (36)

where VARen(xi) is the ensemble variance for point xi. The esti-
mated uncertainty of the KLKF can be computed similarly with the
calculated variance instead of the ensemble variance.

Fig. 4 and Fig. 5 show the RMSE and SPREAD of the KLKF
with 50, 100, and 200 modes involved, where a relaxation term
ε = 0.3 is used for all these three cases. It is seen that overall
the RMSE decreases as more observations are incorporated in time
while the RMSE for KLKF with 50 modes exhibits some oscilla-
tions. The KLKF with 200 modes gives the lowest RMSE since
with more modes included the hydraulic conductivity field can be
better characterized. The RMSE quantifies the deviation of the esti-
mation from the reference (Eq. 35) and the SPREAD gives the esti-
mated variation of the estimation (Eq. 36). For a good estimate, the

SPREAD should be similar to the RMSE. From Fig. 4 and Fig. 5,
it can be seen that the SPRAD systematically underestimates the
RMSE. It is worthwhile to note that although the KLKF with 100
and 200 modes gives similar RMSE, the KLKF with 200 modes
shows a better estimation of the uncertainty.
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Fig. 4—The RMSE for the KLKF with different number of modes
used.
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Fig. 5—The SPREAD for the KLKF with different number of
modes used.

Fig. 6 compares the reference field and the estimated mean log
hydraulic conductivity field from the KLKF with 100 modes at sev-
eral different times. It shows that with time (and available obser-
vations), the estimated field becomes closer to the reference field.

The relaxation term ε used in the KLKF reduces the condition
number of the coefficient matrix in Eqs. 19, 20, 22 and 23, and
therefore improves stability of the KLKF solution. Our numerical
experiments show that the performance of the KLKF is sensitive to
the choice of relaxation term when the number of modes is small,
for instance, being 50. However, reasonable results can be achieved
by cautiously choosing the relaxation term for the KLKF with 50
modes. With larger number of modes, the KLKF has satisfactory
performance as long as the relaxation term is changing within a rea-
sonable range. Results of sensitivity runs on the basis of 100 modes
are shown in Table 1. In our approach, the log hydraulic conduc-
tivity measurements are used only at the first assimilation step, and
the relaxation term is only added to the pressure head covariance
part. If the direct measurements are assimilated with the pressure
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Fig. 6—Comparison between the estimated mean lnKs from the
KLKF with 100 modes and the reference at different times: (a)
0.2 day, (b) 2.0 day, (c) 5.0 day and (d) 10.0 day.

TABLE 1—RMSE AT DAY 10 FOR KLKF WITH 100 MODES

ε 0.01 0.05 0.2 0.3 0.4 0.5 1.0
RMSE 0.632 0.621 0.608 0.621 0.653 0.633 0.676

head observations at every assimilation step, it is expected that re-
laxation terms need to be added to the diagonal components of both
log hydraulic conductivity and pressure head covariance matrices.

Two sensitivity runs have also been done for testing the perfor-
mance of the KLKF in the presence of the incorrect initial statistics.
As mentioned in the beginning of this section, all the results shown
so far are obtained with initial statistics slightly different from the
reference which showed a minor impact on the results. In the fol-
lowing two cases, we further weaken the accuracy of the initial
statistics. In the first case the initial mean is set to be −1.5 instead
of zero; in the second case the spatial correlation structure is re-
versed with λx = 120 m and λy = 220 m. All the other statistics for
these two cases are the same as the previous setting and the KLKF
with 100 modes is used for these sensitivity studies. The RMSE
evolution of these two cases is shown in Fig. 7. With the incorrect
prior mean the RMSE is large initially, but it drops about 50% with
only the first set of observation assimilated. For both of these two
cases KLKF is able to reduce the RMSE to a certain extent, while
the SPREAD still underestimates the RMSE.

Ensemble Kalman Filter. One thousand unconditional realizations
of the log hydraulic conductivity field are generated by Karhunen-
Loeve expansion (Zhang and Lu, 2003) for performing the EnKF.
The statistics for generating the initial ensemble is chosen to be the
same as the initial statistics for the KLKF, which is given in the
beginning of the last section.

Since the performance of the EnKF is realization dependent, on
the basis of the generated 1000 realizations we run 10 sets of the
EnKF with 100 ensemble members, 5 sets of the EnKF with 200
ensemble members and one run with all the 1000 realizations. For
the sake of comparison, the same relaxation term 0.3 is added to the
corresponding part of the matrix when performing the EnKF. Fig. 8
and Fig. 9 show the RMSE and the SPREAD for the EnKF runs.
The RMSE shows a large variation among different runs with the
same number of realizations used while the SPREAD has similar
behavior for different runs. As in the KLKF, the SPREAD under-
estimates the RMSE systematically. For instance, some runs of the
EnKF with 100 realizations exhibit oscillations after the first sev-
eral assimilation steps, while the ensemble spread keeps decreas-
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Fig. 7—RMSE and SPREAD of KLKF with 100 modes in the pres-
ence of incorrect initial statistics.

ing, indicating that the ensemble is converging to a wrong solution.
The EnKF with 1000 realizations (see Fig. 10) shows a satisfac-
tory match between the RMSE and the SPREAD. This implies that
the mean field can be approximated with a small set of realizations
or modes while for precisely estimating the associated uncertainty
more realizations or modes need to be considered.
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Fig. 8—RMSE and SPREAD for the EnKF with 100 realizations.
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Fig. 9—RMSE and SPREAD for the EnKF with 200 realizations.

Comparison of Accuracy. The ensembles with the best results
from the EnKF in the last section are selected to compare with
those of the KLKF. Fig. 11 compares the RMSE and the SPREAD
of the KLKF and the best EnKF results from the previously men-
tioned sets of runs. The KLKF with 100 modes gives better re-
sults in terms of both the RMSE and the SPREAD than does the
(best) EnKF with 100 realizations. The (best) EnKF shows the low-
est RMSE with 200 realizations, which is different from what we
would expect, since in general the more realizations used the better
estimation we would obtain. On the other hand, there exists a large
variation among the five ensembles of size 200 shown in Fig. 9.
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Fig. 10—RMSE and SPREAD for the EnKF with 1000 realiza-
tions.

This indicates that the performance of the EnKF not only depends
on the number of the realizations used but also strongly depends
on the representativeness of those realizations. The EnKF may be
made more efficient if the initial realizations can be somehow se-
lected more intelligently. In terms of the uncertainty estimation,
however, the EnKF with 1000 realizations and the KLKF with 200
modes outperform the EnKF with 200 realizations.
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Fig. 11—Comparison of the RMSE and the SPREAD between
the EnKF and the KLKF.

The contours of the mean log hydraulic conductivity fields esti-
mated from the KLKF with 100 and 200 modes and from the EnKF
with 1000 realizations are shown in the left panel of Fig. 12. Com-
pared to the reference field (shown in Fig. 2), all these three cases
are able to identify the major patterns of the reference field. The
estimated variance fields are shown in the right panel of Fig. 12.
Comparing the KLKF results with 100 modes and 200 modes re-
veals that the estimated variance is higher if more modes are in-
cluded in data assimilation. The EnKF with 1000 realizations shows
the highest variances which is more consistent with the actual devi-
ations between the estimated mean and the reference, as illustrated
in Fig. 10. The major patterns of the estimated variance fields from
the KLKF and the EnKF are similar, where the variances are lowest
at the nine lnKs observation locations. Also the variances are lower
along the major flow pathes since more heterogeneities have been
explored in these regions.
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Fig. 12—The estimated mean lnKs fields and the correspond-
ing variance fields: (a) and (b) KLKF with 100 modes, (c) and
(d) KLKF with 200 modes and (e) and (f) EnKF with 1000 real-
izations.

Predictability. In order to test the predictability of the model af-
ter incorporating all the observations, we run a deterministic flow
simulation from t = 0 day to t = 20 day using the final estimated
mean log hydraulic conductivity field (at day 10) from the KLKF
with 100 modes as the initial input. The corresponding reference
pressure head fields are obtained by running the flow simulation us-
ing the reference hydraulic conductivity field. Again the initial and
boundary conditions are assumed to be known without uncertainty.
The calibrated pressure head at day 5 and the predicted pressure
head at day 20 are depicted in Fig. 13 by the dashed lines to com-
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pare with the reference pressure head fields shown by the solid lines.
Apparently, the estimated head fields match the reference very well.

Computational Efficiency. The computational time for both the
EnKF and the KLKF is the time required to run the forward models
(flow equations) plus some overhead of matrices manipulations for
the update step. For large-scale problems, the forward model run
(flow equations) is the major computational burden. If M modes are
used in the KLKF, the flow equation needs to be solved for M + 1
times (once for the zeroth-order head term h(0) and M times for the
first-order head terms h(1)

m ), while for the EnKF with the ensem-
ble size of K, the same equation needs to be solved for K times.
Since the CPU time for solving one pressure head term h(1)

m in the
KLKF is about the same as that for solving one realization in the
EnKF method, the computational efficiency for the two methods
simply depends on how many modes (or realizations) are needed
to approximate the statistics of the state. The illustrative example
showed that the KLKF can achieve satisfactory estimation with a
smaller computational cost.

Conclusions
The Kalman filter-based sequential data assimilation methods have
been widely used in various fields. These methods are capable
of updating the system parameters continuously and sequentially
with the availability of the measurements of the system responses.
Both the estimate and the corresponding uncertainty are advanced
in time.

In this study, a Karhunen-Loeve-based Kalman filter (KLKF) is
proposed to reduce the dimensionality of the uncertainty in imple-
menting the Kalman filter scheme to large-scale single-phase flow
problems. The permeability field is treated as a random spatial func-
tion and is decomposed using the KL expansion. The pressure head
is expanded using the perturbative polynomial expansion. On the
basis of these expansions, the higher-order terms are truncated and
the KLKF is based on the first-order approximation of the pressure
head. The KLKF utilizes only a small number of principal modes to
propagate the statistics of the state variables, which greatly reduces
the computational cost. Since the principal modes are chosen based
on the significance in terms of the uncertainty representation (the
magnitude of the eigenvalue of the major source of the uncertainty),
they can approximate the underlying probability distribution more
efficiently than would the same number of randomly generated re-
alizations. The forecast step of the KLKF can be solved accurately
and efficiently using the Karhunen-Loeve-based moment-equation
(KLME) method, which is suitable for parallel computing using ex-
isting flow models (Lu and Zhang, 2006). The update step is oper-
ated based on the state statistics given by the forecast step and the
observations.

A synthetic 2D example is investigated using the KLKF. The
results were compared with those of the ensemble Kalman filter
(EnKF), showing that with the same computational efforts the KLKF
is able to achieve better estimate than the EnKF. The example indi-
cates that the estimated hydraulic conductivity field using the KLKF
method with 100 modes is reasonably close to the reference hy-
draulic conductivity field and the pressure head predicted using the
estimated hydraulic conductivity field agrees well with the refer-
ence pressure head field. Although this dimension-reduced Kalman
filter is developed and demonstrated for single-phase flow, the gen-
eral idea of using Karhunen-Loeve and polynomial expansions to
represent random fields for reducing the random dimensionality is
applicable to multiphase flow.

Nomenclature
Ch = covariance of pressure head h
CY = covariance of Y = lnKs

CY h = cross-covariance between Y and h
d = observation vector
D = size of the simulation domain
fm = eigenfuction

h(0) = zeroth-order pressure head

h(1) = first-order pressure head
H = observation operator
K = Kalman gain

KG = geometric mean of hydraulic conductivity
Ks = hydraulic conductivity
M = number of modes used
n = an outward unit vector normal to boundaries
N = number of gridblocks

Nh = number of pressure head observations
NY = number of log hydraulic conductivity observations

P = covariance matrix
P = pressure
S = state vector

Ss = specific storage
t = time
x = Cartesian coordinate vector
Y = log hydraulic conductivity

Y ′ = zero-mean fluctuation of Y
ζ = standard Gaussian random variable
λ = eigenvalue
µ = fluid viscosity

ξm = orthogonal Gaussian random variables
ρ = fluid density
χ = Cartesian coordinate vector of head observation points

σhN = standard deviation of the h observation errors
σY N = standard deviation of the Y observation errors

σ2
Y = variance of the log hydraulic conductivity

ΓD = Dirichlet boundary segment
ΓN = Neumann boundary segment

Subscript
en = ensemble

Obs = observation

Superscript
(c) = conditioned

f = forecast
t = true

T = transpose
u = updated
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the estimated mean lnKs field from KLKF with 100 modes (dashed lines): (a) pressure head at day 5 and (b) pressure head at day
20.
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