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Summary
Accurate modeling of flow in oil/gas reservoirs requires a detailed
description of reservoir properties such as permeability and poros-
ity. However, such reservoirs are inherently heterogeneous and
exhibit a high degree of spatial variability in medium properties.
Significant spatial heterogeneity and a limited number of measure-
ments lead to uncertainty in characterization of reservoir properties
and thus to uncertainty in predicting flow in the reservoirs. As a
result, the equations that govern flow in such reservoirs are treated
as stochastic partial differential equations. The current industrial
practice is to tackle the problem of uncertainty quantification by
Monte Carlo simulations (MCS). This entails generating a large
number of equally likely random realizations of the reservoir fields
with parameter statistics derived from sampling, solving determin-
istic flow equations for each realization, and post-processing the
results over all realizations to obtain sample moments of the so-
lution. This approach has the advantages of applying to a broad
range of both linear and nonlinear flow problems, but it has a
number of potential drawbacks. To properly resolve high-
frequency space-time fluctuations in random parameters, it is nec-
essary to employ fine numerical grids in space-time. Therefore, the
computational effort for each realization is usually large, espe-
cially for large-scale reservoirs. As a result, a detailed assessment
of the uncertainty associated with flow-performance predictions is
rarely performed.

In this work, we develop an accurate yet efficient approach for
solving flow problems in heterogeneous reservoirs. We do so by
obtaining higher-order solutions of the prediction and the associ-
ated uncertainty of reservoir flow quantities using the moment-
equation approach based on Karhunen-Loéve decomposition
(KLME). The KLME approach is developed on the basis of the
Karhunen-Loéve (KL) decomposition, polynomial expansion, and
perturbation methods. We conduct MCS and compare these results
against different orders of approximations from the KLME
method. The 3D computational examples demonstrate that this
KLME method is computationally more efficient than both Monte
Carlo simulations and the conventional moment-equation method.
The KLME approach allows us to evaluate higher-order terms
that are needed for highly heterogeneous reservoirs. In addition,
like the Monte Carlo method, the KLME approach can be imple-
mented with existing simulators in a straightforward manner, and
they are inherently parallel. The efficiency of the KLME method
makes it possible to simulate fluid flow in large-scale heteroge-
neous reservoirs.

Introduction
Owing to the heterogeneity of geological formations and the in-
complete knowledge of medium properties, the medium properties
may be treated as random functions, and the equations describing
flow and transport in these formations become stochastic. Stochas-
tic approaches to flow and transport in heterogeneous porous me-
dia have been extensively studied in the last 2 decades, and many

stochastic models have been developed (Dagan 1989; Gelhar
1993; Zhang 2002). Two commonly used approaches for solving
stochastic equations are MCS and the moment-equation method. A
major disadvantage of the Monte Carlo method, among others, is
the requirement for large computational efforts. An alternative to
MCS is an approach based on moment equations, the essence of
which is to derive a system of deterministic partial differen-
tial equations governing the statistical moments [usually the first
two moments (i.e., mean and covariance)], and then solve them
analytically or numerically. However, the computational cost for
the conventional moment method is still high. In computing the
pressure-head covariance up to first order in �2

Y, the variability of
the log hydraulic conductivity of the heterogeneous reservoir,
Y�ln[Ks(x)], one needs to solve sets of deterministic linear alge-
braic equations on a grid of N nodes for approximately 2N times:
N times for solving the cross-covariance between the pressure head
and the log hydraulic conductivity CYh and approximately N time
for the pressure head covariance Ch. Including high-order terms is
possible, but it will increase the computational effort dramatically.

To alleviate the computational burden, Zhang and Lu (2003)
developed a new approach that combines KLME and perturbation
methods. Specifically, using the new approach, with a much lower
computational cost, they were able to evaluate the mean pressure
head and the mean flux up to fourth order in �Y and the pressure-
head and flux variances to the third order in �2

Y. Yang et al. (2004)
applied this method to simulating water flow in unsaturated soils,
in which the permeability depends on the pressure head in a non-
linear manner. Lu and Zhang (2004a) developed a conditional
KLME method to incorporate permeability measurements in the
reservoirs. Chen et al. (2005) extended the KLME method to simu-
late two-phase flow problems (water and oil phases) in which the
constitutive relation between the relative permeability and the cap-
illary pressure follows an exponential model. All these studies are
limited to steady-state flow in 2D domains. In this study, we ex-
tend the KLME approach to transient fluid flow in the 3D space,
compare the KLME approach with both the Monte Carlo method
and the conventional moment-equation method (Zhang 2002; Li
et al. 2003; Li and Tchelepi 2003), and demonstrate the applica-
bility of this approach to simulating flow in large-scale heteroge-
neous reservoirs.

Statement of Problem
We consider transient fluid flow in heterogeneous reservoirs sat-
isfying the following equation:

� � �Ks �x��h�x, t�� + g�x, t� = Ss

�h�x, t�

�t
, . . . . . . . . . . . . . . . . (1)

subject to initial and boundary conditions

h�x, 0� = H0�x� , x ∈ D, . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)

h�x, t� = H �x, t�, x ∈ �D , . . . . . . . . . . . . . . . . . . . . . . . . . . . (3)

Ks�x��h�x, t� � n�x� = −Q�x, t�, x ∈ �N , . . . . . . . . . . . . . . (4)

where h(x, t) is the hydraulic pressure head, Ks(x) is the hydraulic
conductivity, g(x, t) is the source/sink term, Ss is the specific
storage, H0(x) is the initial pressure head in the flow domain D,
H(x, t) is the prescribed pressure head on the Dirichlet boundary
segments �D, Q(x, t) is the flux across Neumann boundary seg-
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ments �N, n is an outward unit vector normal to the boundary
���D∪�N, x�(x1, x2, x3)T is the Cartesian coordinate, and t is
the time. In this study, we consider Ks as a random function, while
all initial and boundary conditions as well as the specific storage
are assumed to be deterministic. Our aim is to estimate efficiently
the mean pressure head and its associated uncertainty. The mo-
ments of the flux can be obtained on the basis of the pressure-head
moments (Lu and Zhang 2004a), and the moments of the well flow
rates can also be obtained with the pressure statistics through the
Peaceman well models.

Karhunen-Loève Decomposition
The Karhunen-Loève decomposition of a log hydraulic conductiv-
ity field Y(x)�ln [Ks(x)] can be found in the literature (Zhang and
Lu 2004; Ghanem and Spanos 1991; Roy and Grilli 1997; Lu and
Zhang 2004b). The basic idea is to decompose the covariance
function CY (x, y)�〈Y�(x)Y�(y)〉 into CY (x, y)�∑ �nfn(x)fn(y),
where �n and fn are eigenvalues and orthogonal deterministic
eigenfunctions, respectively, and can be solved from the following
Fredholm equation:

�
D
CY �x, y� f �x�dx = �f �y� . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5)

The mean-removed stochastic process Y�(x) can then be expanded
in terms of �n and fn as

Y��x� = �
n=1

�

�n��n fn�x� , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (6)

where �n are orthogonal standard Gaussian random variables (i.e.,
〈�n〉�0 and 〈�i�j〉�	ij) if Y is normally distributed. It has been
shown that the KL expansion is of mean-square convergence and
may be well approximated with a finite summation. If the direct
measurements of the hydraulic conductivity field are available, one
can decompose the conditional field using an expression similar to
Eq. 6 with the conditional eigenvalues �n

(c) and eigenfunctions f n
(c)

(Lu and Zhang 2004a), and the mathematical derivation for the KL-
based moment equations presented in the next section is still valid.

Squaring both sides of Eq. 6, taking the ensemble mean, and
integrating the resulting equation yields ∑�n��2

YV, where V is the
volume of the simulation domain D. In addition, the series of
eigenvalues are nonincreasing, and the characteristic scale of fn
decreases as n increases (Zhang and Lu 2004). Therefore, the
terms in the series in Eq. 6 represent fluctuations of decreasing
magnitude and scale as n increases. This allows us to truncate the
expansion in Eq. 6 by keeping only a finite number of terms.

Eq. 6 provides an alternative way for generating random fields.
Once eigenvalues �n and their corresponding eigenfunctions fn are
found, a realization can be computed simply by independently
sampling a certain number of values �n from the standard Gaussian
distribution N(0, 1), and then approximating Y�(x) in Eq. 6 by ∑1

M

�n√�n fn, where M is the number of terms needed to reproduce the
Y variability with a given accuracy. The number M depends on the
ratio of the correlation length to the dimension of the domain.
Detailed discussion can be found in Zhang and Lu (2004).

Because the eigenvalues √�n and their corresponding eigen-
functions fn always come together in the derivation given in the
following section, we define new functions f̃n�√�n fn and the tilde
over fn is then dropped for simplicity.

KLME

We decompose the log hydraulic conductivity as Y(x)�ln
Ks(x)�〈Y(x)〉+Y�(x) and the pressure head as h(x, t)�h(0)+h(1)

+h(2)+···. In the series, the order of each term is with respect to �Y ,
the standard deviation of Y. Upon substituting the expansions of
h(x, t) and Y into Eqs. 1 through 4, and collecting terms at separate
order, one obtains the following equations that govern the pressure
head at different orders in terms of �Y (see Zhang 2002):

� � �KG �x��h�0��x, t�� + g�x, t� = Ss

�h�0��x, t�

�t
, . . . . . . . . . . . . . (7)

subject to initial and boundary conditions:

h�0��x, 0� = H0�x� , x ∈ D, . . . . . . . . . . . . . . . . . . . . . . . . . . (8)

h�0��x, t� = H �x, t�, x ∈ �D , . . . . . . . . . . . . . . . . . . . . . . . . . (9)

KG �x��h�0��x, t� � n�x� = −Q�x, t�, x ∈ �N , . . . . . . . . . . (10)

and for m
1,

� � �KG �x��h(m)�x, t�� + g(m)�x, t� = Ss

�h(m)�x, t�

�t
, . . . . . . . . . (11)

subject to initial and boundary conditions:

h�m��x, 0� = 0, x ∈ D, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (12)

h�m��x, t� = 0, x ∈ �D , . . . . . . . . . . . . . . . . . . . . . . . . . . . . (13)

KG �x��h�m��x, t� � n�x� =
�−1�m+1

m!
�Y ��x��m Q�x, t�, x ∈ �N ,

. . . . . . . . . . . . . . . . . . . . . . . . . .(14)

where KG(x)�exp(〈Y(x)〉) is the geometric mean of the hydraulic
conductivity, and

g�m��x, t� = KG �x� �Y ��x� � �h�m−1��x, t� +
g�x, t�

m!
�−Y ��x��m

− Ss�
k=1

m
�−1�k

m!
�Y ��x�� k

�h�m−k��x, t�

�t
. . . . . . . . . . . . . . (15)

Eqs. 7 through 10 are the governing equations for the 0th-order
mean pressure-head solution. In the conventional moment method,
the higher-order corrections (usually up to second-order) for the
mean pressure head are solved from Eqs. 11 through 15. For ex-
ample, setting m�2 in Eqs. 11 through 15 and taking the ensemble
mean yields the equation with initial and boundary conditions for
the second-order pressure-head term 〈h(2)〉. The latter involves an
evaluation of the cross-covariance CYh�〈Y�h(1)〉.

In the conventional-moment method, the equations for the first-
order (in terms of �Y

2) pressure head covariance Ch(x, t; y, �) is
derived from Eqs. 11 through 15 by setting m�1, multiplying the
resulting equations for h(1)(x, t) by h(1)(y, �), and taking the en-
semble mean. It has been shown that the conventional moment
method is computationally expensive, especially for large-scale
problems. In fact, to solve the pressure-head covariance up to the
first order (in �Y

2), it is required to solve the sets of linear algebraic
equations with N unknowns (N being the number of nodes in the
numerical grid) for 2N times (Li et al. 2003; Li and Tchelepi
2003): N times for solving the cross-covariance CYh and N times
for the covariance Ch. Solving the pressure-head covariance with
higher-order corrections is possible, but the computational effort is
very demanding. For instance, solving the pressure-head covari-
ance up to the second order in terms of �Y

2 requires solving sets of
linear algebraic equations with N unknowns for N2 times.

In our KLME method, we further assume that h(m)(x, t) can be
expanded in terms of the product of m orthogonal Gaussian ran-
dom variables (see Appendix). In particular, the first two terms are

h�1� = �
i=1

�

hi
�1��i, h�2� = �

i, j =1

�

hij
�2��i �j , . . . . . . . . . . . . . . . . . . (16)

where hi
(1)(x, t) and hij

(2)(x, t) are deterministic coefficients to be
determined, and the latter is symmetric with respect to its sub-
scripts i and j. By substituting the decomposition of Y�(x) and h(1)

into Eqs. 11 through 15 for m�1, and recalling that the set of
random variables �n are orthogonal, we obtain the governing equa-
tions for hn

(1):
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� � �KG �x��hn
�1��x, t�� + gn

�1��x, t� = Ss

�hn
�1��x, t�

�t
, . . . . . . . . . . (17)

hn
�1��x, 0� = 0, x ∈ D, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (18)

hn
�1��x, t� = 0, x ∈ �D , . . . . . . . . . . . . . . . . . . . . . . . . . . . . (19)

KG �x��hn
�1��x, t� � n�x� = Q�x, t� fn�x�, x ∈ �N , . . . . . . . (20)

and

gn
�1��x, t� = KG �x� �fn�x� � �h�0��x, t� − g�x, t� fn�x�

+ Ss fn �x�
�h�0��x, t�

�t
. . . . . . . . . . . . . . . . . . . . . . . . . . . (21)

Similarly, one can derive the equations for hij
(2)(x, t) as

� � �KG �x��hij
�2��x, t�� + gij

�2��x, t� = Ss

�hij
�2� �x, t�

�t
, . . . . . . . . . . (22)

hij
�2��x, 0� = 0, x ∈ D, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (23)

hij
�2��x, t� = 0, x ∈ �D , . . . . . . . . . . . . . . . . . . . . . . . . . . . . (24)

KG �x��hij
�2��x, t� � n�x� = −Q�x, t� fi �x� fj �x��2, x ∈ �N ,

. . . . . . . . . . . . . . . . . . . . . . . . . . (25)

where

gij
�2��x, t� =

KG �x�

2
��fi �x� � �hj

�1��x, t� + fj �x� � �hi
�1��x, t��

+
g�x, t�

2
fi �x� fj �x� −

Ss

2�fi �x�
�hj

�1��x, t�

�t

+ fj �x�
�hi

�1��x, t�

�t
− fi �x� fj �x�

�h�0��x, t�

�t �. . . . . . . . . (26)

To maintain the symmetry of the term hij
(2)(x, t), we have writ-

ten the term corresponding to �Y�·�h(1) in Eq. 15 as
(�fi·�hj

(1)+�fj·�hi
(1))/2 in Eq. 26. Similar treatment has been done

to other terms in Eq. 26. The readers are referred to Zhang and Lu
(2004) for details. The more general governing equations for
higher-order term h(m)

i1i2...im
are shown in the Appendix.

As shown in Yang et al. (2004), our expansion would be
equivalent to that of Ghanem and Spanos (1991) if both expan-
sions include all higher-order terms. Two expansions differ only in
the arrangement of terms. Ghanem and Spanos (1991) expanded
the random function in terms of different orders of polynomial
chaos, while we expand the random function as different order in
terms of its variability, which is physically meaningful. In contrast,
the expansion on the polynomial chaos basis does not have a clear
physical meaning.

We should emphasize here that the second-order polynomial
chaos basis of Ghanem and Spanos (1991), {�i�j−	ij, i,
j�1,2, . . .}, are orthogonal and may not be used as a basis
to expand h(2)(x, t). The reason is that an expansion such as h(2)

(x, t)�∑ hij
(2)(x, t) (�i�j−	ij) will lead to 〈h(2)(x, t)〉�0, because

〈�i�j−	ij〉�0. On the other hand, by taking the ensemble mean of
Eqs. 22 through 26, we will find that 〈h(2)(x, t)〉�0, unless the
reservoir is homogeneous. We should also mention here that, in
Ghanem and Spanos’s algorithm (1991), the equations for differ-
ent-order terms are coupled and cannot be solved separately, while
in our algorithm, the equations for different-order terms of the
pressure head are recursively defined (i.e., the equations for the
higher-order terms depend on the lower-order terms, and equations
with the same order are independent). As a result, all equations can
be solved sequentially from lower order to higher order, and the
equations with the same order can be solved in parallel. For ex-
ample, after solving h(0)(x, t) from Eqs. 7 through 10, we can solve

for the first-order term hn
(1) (x, t) from Eqs. 17 through 21. Note that

the equations for hn
(1) (x, t) with different n are independent and are

thus inherently parallel, similar to the realizations in the Monte
Carlo method.

It is very important to note that Eqs. 7, 17, and 22 have the
same structure with the original flow equation (i.e., Eq. 1). In fact,
Eq. 7, along with its corresponding initial and boundary conditions
in Eqs. 8 through 10, is identical with the original flow Eq. 1 and
its initial and boundary conditions in Eqs. 2 through 4 upon re-
placing Ks in the original equation by the geometric mean KG. To
obtain hn

(1)(x, t), we only need to compute the boundary flux term
in Eq. 20 and the source term gn

(1)(x, t) in Eq. 21, and then solve
Eq. 17 with initial and boundary conditions in Eqs. 18 through 20
using any flow solver. Higher-order pressure head terms can be
solved in a similar manner (see Appendix). Treating the artificial
source and sink terms in Eqs. 21 or 26 as equivalent wells at all
nodes allows us to easily implement the KLME approach with the
existing simulators, such as ECLIPSE, VIP, CHEARS, or other
commonly used codes in the industry.

Computation of Pressure-Head Moments
To approximate the mean pressure head up to second order in �Y

and the pressure-head covariance up to second order in �Y
2, we

need to solve pressure head terms h(0)(x, t), hi
(1)(x, t), hij

(2)(x, t), and
hijk

(3)(x, t). Once they are solved, we can directly calculate the mean
pressure head and the pressure-head covariance (or any other
higher-order moments) without solving the cross-covariance be-
tween the log hydraulic conductivity and the pressure head, which
is required in the conventional moment-equation-based approach.
Up to third order in �Y, the pressure head is approximated by

h �x, t� ≈ �
m=0

3

h�m��x, t� , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (27)

which leads to an approximation for the mean pressure head

	h�x, t�
 ≈ h�0��x, t� + 	h�2��x, t�
 = h�0��x, t� + �
i=1

�

hii
�2� �x, t� . . . . . (28)

It is seen that h(0)(x, t)�〈h(0)(x, t)〉 is the mean pressure-head
solution up to first order in terms of �Y, and the second term on the
right side of Eq. 28 represents the second-order (or third-order)
correction to the 0th-order mean pressure head. From Eqs. 27 and
28, one can write an approximation for the pressure-head pertur-
bation as

h��x, t� ≈ h�x, t� − 	h�x, t�
 = �
m=1

3

h�m� �x, t� − 	h�2��x, t�
 . . . . . . (29)

From this equation, one derives the cross-covariance between the
pressure head and the log hydraulic conductivity:

CYh �y; x, t� = �
n=1

�

fn�y�hn
�1��x, t� + �

i, j=1

�

fi �y�hijj
�3� �x, t� , . . . . . . . (30)

and the pressure-head covariance:

Ch �x, t ; y, �� = �
n=1

�

hn
�1� �x, t�hn

�1� �y, �� = 2�
i, j=1

�

hij
�2��x, t�hij

�2��y, ��

+ 3�
i, j=1

�

hi
�1��x, t�hijj

�3��y, �� + 3�
i, j=1

�

hi
�1��y, ��hijj

�3��x, t�

. . . . . . . . . . . . . . . . . . . . . . . . . .(31)

which leads to an expression for the pressure-head variance:

�h
2 �x, t � = �

n=1

�

�hn
�1� �x, t��2

+ 2�
i, j=1

�

�hij
�2��x, t��2

+ 6�
i, j=1

�

hi
�1��x, t�hijj

�3��x, t� . . . . . . . . . . . . . . . . . . . . . . . . (32)
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The first summation in Eq. 32 stands for the first-order approxi-
mation (in �Y

2) of the pressure-head variance, and the remaining
terms on the right side of Eq. 32 represent the second-order cor-
rection to the first-order pressure-head variance. Higher-order cor-
rection terms are given in Zhang and Lu (2004).

Illustrative Examples

In this section, we first attempt to examine the validity of the
proposed KLME approach in computing high-order moments for
transient fluid flow in hypothetical reservoirs by comparing model
results with those from MCS. We then perform a large-scale simu-
lation using the KLME method and compare the required compu-
tational effort with those of the Monte Carlo method and the con-
ventional moment-equation method.

First we consider a 3D domain of a size L1�L2�8.0 m and
L3�4.0 m in a hypothetical heterogeneous reservoir. The domain
is uniformly discretized into 20×20×10 elements (N�4,851 grid
nodes in total). Initially, the pressure head in the entire domain is
set to be 10.0 m. Starting at time t�0.0, the pressure head is
prescribed on the plane x1�0.0 m as H1�10.5 m and on the plane
x1�8.0 m as H2�10.0 m, respectively. The no-flow conditions
are prescribed on all other four surfaces. The statistics of the log
hydraulic conductivity are given as 〈Y〉�0.0 (i.e., the geometric
mean of the hydraulic conductivity KG�1.0 m/day). For simplic-
ity, it is assumed that the log hydraulic conductivity is second-
order stationary and follows a separable exponential covariance
function with a correlation length �4.0 m and variance �Y

2�1.0.
In this case, the eigenvalues and eigenfunctions can be solved
analytically (Zhang and Lu 2004). Fig. 1 shows the eigenvalues as
a function of mode number n for this case. It is seen that the
eigenvalues are a nonincreasing series with respect to mode n. The
accumulative eigenvalues are also illustrated in the figure. It is
seen that the first 10 eigenvalues account for approximately 34%
of the total variability and that the first 50 eigenvalues account for
approximately 60% of the total variability. Fig. 2 shows some
examples of eigenfunctions fn for the mode number n�1, 5, 20,
and 100. Note that the scale of the eigenfunction fn decreases with
the increase of the mode number n.

After solving for h(0)(x, t), hi
(1)(x, t), hij

(2)(x, t), and hijk
(3)(x, t), we

then compute the mean pressure head up to second order in �Y

using Eq. 28 and the pressure head variance up to second order in
�Y

2 using Eq. 32.
For the purpose of comparison, we conducted MCS. We gen-

erated 2,000 3D realizations of the conductivity field, using Eq. 6
with the first 200 terms. The transient flow Eq. 1 with initial and
boundary conditions from Eqs. 2 through 4 is solved for each
realization of the conductivity field. Then, the sample statistics of
the flow fields [i.e., the mean prediction of the pressure head as
well as its associated uncertainty (pressure-head variance)] are

Fig. 1—The series of eigenvalues and their accumulative values.

Fig. 2—Examples of eigenfunctions for the hypothetical reservoir: (a) f1(x); (b) f5(x); (c) f20(x); (d) f100(x).
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computed from these realizations. These statistics are considered
the “true” solutions, which are used to compare against the pro-
posed high-order KLME approach.

First, we would like to investigate the efficiency and accuracy
of the first-order KLME solutions. For this case (Case 1), we run
steady-state simulations and approximate the first-order pressure-
head moments with a different number of terms (n1) included in
the expansion of hn

(1), which is equivalent to taking only the first n1

terms in approximating the pressure-head variance in Eq. 32.
Fig. 3 compares the mean pressure head and the pressure-head

variance computed from MCS and from the KLME method up to
the first order with n1�5, 10, 20, and 50 terms, along the line that
is the intersection of planes x2�4.0 m and x3�2.0 m. Because of
the fact that 〈h(1)(x, t)〉�0, the term hn

(1) does not make any con-
tribution to the first-order mean pressure head. It is seen from the
figure that the first-order KLME solution underestimates the pres-
sure-head variance. We should emphasize that, although in the KL
expansion of Y, n1�5 terms only account for approximately 25%
of the Y variability (see Fig. 1), the first-order approximation of the
pressure-head variance using 5 terms is already in good agreement
with that from the MCS. As the number of terms n1 increases, the
results are getting closer to the MCS result. For n1�50, the pres-
sure-head variance computed from the KLME approach is very
close to the MCS result. The computational cost for obtaining the
pressure-head variance with n1�50 (circles in Fig. 3) is the cost of
solving the set of linear algebraic equations with N unknowns for
51 times (once for the 0th-order mean pressure head 〈h(0)(x, t)〉),
comparing to the cost of MCS. This is a substantial savings in
computational efforts, not to mention that the numerical grid used
in the KLME method could be much coarser than that in MCS.

It is of interest to investigate the accuracy of MCS with the
same computational cost as compared to the KLME method.

Fig. 4 illustrates five sets of MCS, each of which includes 51
realizations. Certainly, MC results from the different sets of
simulations are quite different, especially for the pressure-
head variance. This implies that MCS with 51 realizations do not
produce statistically meaningful results. A large number of real-
izations (such as 2,000 in this case) are needed to achieve con-
verged statistics.

In the KL-based perturbation approach, instead of solving the
covariance equations as in the conventional moment-equation
method, we solve for the pressure-head terms h(m)

i1i2...im
, which are

given by linear algebraic equations with N unknowns. Once with
the pressure-head terms, the first two moments of the pressure
head can be obtained with simple algebraic operations. For the
case of a grid of 21×21×11 mesh (i.e., 4,851 nodes) as in our
examples, up to first-order, the conventional moment-equation ap-
proach requires to solve the moment equations on the grid for
2N�9,702 times, while the KL-based approach only needs to
solve the pressure-head term equations for less than a hundred
times on the same grid and to the same accuracy. Therefore, the
KL-based perturbation approach is much more efficient than the
conventional perturbation approach.

Two important factors may have contributed to the efficiency
of this KL-based approach. First, the overall magnitudes of h(m)

i1,...,im

decrease with order m for a small to moderate variability �Y
2. This

allows us to use a relatively low order approximation under such
a condition. In addition, for a fixed m, the magnitudes of h(m)

i1,...,im

quickly approach 0 (statistically) as indices i1, i2, . . . , and im
increase, which means that we can approximate h(m) with a rela-
tively small number of terms. The magnitudes of the term hn

(1), hij
(2),

and hijk
(3) are illustrated in Fig. 5. The figure shows that, in general,

the higher-order terms are smaller in magnitude. For instance, for
�Y

2�1.0, hn
(1) is in the order of 10−2, while hij

(2) is in the order of

Fig. 3—Comparisons of (a) the mean pressure head, and (b) the
pressure-head variance computed from MCS and the KLME
method up to the first order with different number of terms in
h(1)(x, t ), for Case 1.

Fig. 4—(a) Mean pressure head and (b) pressure-head vari-
ance derived from five sets of MCS, each of which includes
51 realizations.
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10−3, and hijk
(3) is in the order of 10−4. It is also evident from the

figure that hn
(1), hij

(2), and hijk
(3) decrease (statistically) as their indices

become large.
In the previously described case, the first-order approximations

are accurate enough. Higher-order corrections may be needed
when the level of spatial variability increases (Zhang and Lu 2004;
Li et al. 2003). In this study, we consider another situation in
which the need for higher-order corrections stems from the flow
configuration. In this case (Case 2), the same boundary conditions
as Case 1 are specified, but the initial pressure head in the domain
is assumed to be at steady state with a pressure head H1�10.5 m
on the plane x1�0.0 m and a pressure head H2�10.0 m on the
plane x1�8.0 m, respectively. Starting from t�0.0, a pumping
well of strength 20.0 m3/d is placed in the center of the domain.
Fig. 6a compares the steady-state mean pressure head derived
from the MCS and from the KLME method up to second order in
terms of �Y. It is seen that, in this case, there is a noticeable
discrepancy between the mean pressure head computed from the
MC results and the 0th-order mean pressure head from the KLME
method, especially at the well location. By adding second-order
corrections, the mean pressure head from the KLME method is
getting closer to the Monte Carlo results. Fig. 6b compares the
pressure-head variance computed from the MCS and from the

Fig. 5—Magnitude of pressure-head terms at the center of the
domain: (a) First order, (b) second order, and (c) third order.

Fig. 6—Comparisons of (a) the mean pressure head, and (b)
the pressure-head variance computed from MCS and the KLME
method with the first- and second-order approximations
(Case 2).
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KLME method up to second order in terms of �Y
2. The figure

shows that the second-order correction makes some improvement
over the 0th-order results. Because the presence of the well sig-
nificantly increases the head variability around the well locally, to
better illustrate the comparison of the head variance away from the
well, we plot the variance at the log scale, as shown in the insert
of Fig. 6b. In this example, the number of terms included in
approximating hn

(1), hij
(2), and hijk

(3) are, respectively, n1�100,
n2�30, and n3�10, which means that the term hn

(1) needs to be
solved for 100 times, hij

(2) for 30×31/2�465 times, and hijk
(3) for

10×11×12/6�220 times. The total number of times needed to
solve the set of linear algebraic equations with 4,851 unknowns is
100+465+220�785.

Case 3 is similar to Case 2, except that the flow is transient.
Fig. 7 compares the mean head and head variance computed from
the MCS and the KLME method up to first-order approximations
at three different times, t�0.001, 0.005, and 0.01 days. It is seen
from the figure that the results from the KLME method are in good
agreement with those from MCS, except at the well location. It
should be noted that in the first-order KLME approach, we only
solved Eqs. 17 through 20 for 100 times, as compared to solving
Eqs. 1 through 4 for 2,000 times in the MC approach.

Finally, we consider a more realistic large-scale problem of 3D
flow (Case 4) with L1�L2�10000 m and L3�500 m in a hypo-
thetical heterogeneous reservoir. The domain is uniformly dis-
cretized into elements of size 125×125×12.5 m (N�269,001 nodes
in the numerical grid). Initially, the pressure-head distribution in
the entire domain is at steady state with a constant pressure head
on the plane x1�0.0 m as H1�110 m and on the plane x1�10 000
m as H2�100.0 m. All other boundaries are no-flow boundaries.
Starting at time t�0.0, a pumping well with a strength of 0.01/d is
placed at the center of the domain (node 135,001). It is assumed

that the reservoir is statistically homogeneous and the mean of the
log hydraulic conductivity is given as 〈Y〉�0.0. For simplicity, it
is also assumed that the covariance of the log hydraulic conduc-
tivity is a separable anisotropic exponential function with variance
�Y

2�1.0 and correlation lengths 1�2�500 m and 3�50 m.
Fig. 8 shows a single realization of the log saturated hydraulic
conductivity. For such a large-scale problem, each transient simu-
lation will take hours of computational time. As a result, the MC
method is very time-consuming, because a large number of MC
realizations are needed to achieve statistical convergence. As il-
lustrated in Fig. 4, a small number of MCS will not give any
statistically meaningful results. The conventional moment method
is almost infeasible for this case for two reasons. First, even for the
first-order head variance, it requires solving sets of linear algebraic
equations with 269,001 unknowns for approximately 2N�538,002
times. In addition, the conventional moment method needs to store
the cross-covariance function CYh, which is an asymmetric matrix
of a size 269,001×269,001, requiring over 578 GB of memory. In
the KLME approach, we only have to solve the linear algebraic
equations on the grid of 269,001 nodes for a small number of times
(n1). Fig. 9 depicts the first-order steady-state mean pressure
head and the pressure-head variance computed using KLME
method for n1�50.

Summary and Conclusions
In this study, we combined the moment-equation approach with
the KL and polynomial expansions to evaluate the statistical mo-
ments of fluid flow in randomly heterogeneous reservoirs. We first
decomposed the log hydraulic conductivity into an infinite series
related to the eigenvalues and eigenfunctions of the covariance
function of log hydraulic conductivity as well as a set of standard
Gaussian random variables. We then decomposed the pressure
head into a series whose terms h(m) are mth order in terms of �Y.
By further assuming that h(m) can be expanded into a series in
terms of the product of m Gaussian random variables, we arrived
at sets of equations for determining the deterministic coefficients
in these expansions. Once these coefficients are solved, the mean
pressure head and the pressure-head covariance can be computed
easily. This study leads to the following conclusions:
1. The moment-equation approach based on KLME makes it pos-

sible to evaluate higher-order moments with relatively small
computational efforts.

2. In this algorithm, the equations for different-order pressure head
terms are recursively defined (i.e., the equations for the higher-
order terms depend on the lower-order terms, and equations with
the same order are independent). As a result, all equations can
be solved sequentially from lower to higher-order.

3. At the same order, the equations are independent. These equa-
tions, like the realizations in the MC method, are inherently
parallel and are thus amenable to parallel computation.

Fig. 7—Comparisons of (a) the mean pressure head, and (b) the
pressure-head variance computed from MCS and the KLME
method with the first-order approximation at different elapsed
times (Case 3).

Fig. 8—A realization of the log hydraulic conductivity field (the
dimension in the vertical direction is exaggerated).
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4. The KL-based moment equations have the same structure, as
does the original flow equation. For this reason, similar to the
MCS method, the KLME approach can be easily implemented
with the existing simulators, such as ECLIPSE, VIP, CHEARS,
or other commonly used codes in the industry.

5. The KLME approach is computationally more efficient than
both the MCS and the conventional moment-equation method.
Although the governing equations are similar for the realizations
of the MCS method and for the coefficients of the pressure-head
term in the KLME approach, the underlying randomness of the
log hydraulic conductivity is treated differently. In the former,
equally likely realizations are generated such that a large num-
ber of realizations are needed to achieve convergent statistics; in
the latter, the modes of the random field are ranked and ordered
by the eigenvalues and eigenfunctions so that the random field
may be largely captured with a limited number of dominant
modes. The KLME approach is more efficient than the conven-
tional moment-equation method, because the former avoids
solving the full covariance equations of size N2 but constructs
the needed covariances from the coefficients of size N (where N
is the number of grid nodes).

6. The KLME approach is particularly suitable for the problem of
uncertainty quantification for fluid flow in large-scale hetero-
geneous reservoirs.
The current version of the KLME model is limited to Gaussian

random fields. However, it could be extended to non-Gaussian
fields. There are two possible approaches to attack this problem.
One is to expand the non-Gaussian field using the KL decompo-
sition and then apply the KLME method to the problem, because

the input to our equations are the KL expansions, no matter how
these expansions are obtained. Another promising approach is to
consider dividing the flow domain into different zones in such a
way that the random function (say, permeability) in each of these
zones is Gaussian.

Nomenclature
Ch � covariance of head h, L2

CYh � cross-covariance between Y and head h
D � simulation domain
fn � eigenfunctions (–)
g � source/sink term, T−1

h � hydraulic pressure head, L
h(m)

i1i2...im
� mth-order terms

H � prescribed head on Dirichlet boundary, L
H0 � initial pressure head in the flow domain, L
KG � geometric mean of hydraulic conductivity, LT−1

Ks � hydraulic conductivity, LT−1

Li � dimension in ith direction
n � an outward unit vector normal to boundaries
ni � number of terms used in ith-order approximation
N � number of grid nodes (−)
Q � flux across Neumann boundary segments, LT−1

Ss � specific storage, L−1

t � time, T
V � volume of the simulation domain
x � Cartesian coordinate, L
Y � log hydraulic conductivity (−)

�D � Dirichlet boundary segments
�N � Neumann boundary segments

 � correlation length, L
�n � eigenvalues
�i � orthogonal random variables (−)

�2
Y � variance of the log hydraulic conductivity (−)
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Appendix
In the KLME approach, we further expand the mth-order pressure-
head terms h(m) as the mth polynomial function of the set of Gauss-
ian random variances �n:

h�m��x, t� = �
i1,i2,...,im=1

� ��
j=1

m

�ij�hi1,i2,...,im
�m� �x, t�, . . . . . . . . . . . . . (A-1)

where h(m)
i1i2...im

are deterministic functions to be solved. Substituting
the decomposition of Y�(x) and h(m) recursively Eqs. 11 through
15, we obtain the governing equations for h(m)

i1i2...im
:

� � �KG�x��hi1,i2,...,im
�m� �x, t�� + gi1,i2,...,im

�m� �x, t� = Ss

�hik+1,...,im
�m� �x, t�

�t
. . . . . . . . . . . . . . . . . . . . . . . . (A-2)

subject to the initial and boundary conditions

hi1,i2,...,im
�m� �x, 0� = 0, x ∈ D, . . . . . . . . . . . . . . . . . . . . . . . . (A-3)

hi1,i2,...,im
�m� �x, t� = 0, x ∈ �D , . . . . . . . . . . . . . . . . . . . . . . . (A-4)

KG�x��hi1,i2,...,im
�m� �x, t� � n�x� =

�−1�m+1Q�x, t�

m! �
j=1

m

fij
, x ∈ �N ,

. . . . . . . . . . . . . . . . . . . . . . . . (A-5)

where

gi1,...,im
�m� �x, t� =

KG�x�

m �
Pi1,...,im

�fi1
�x� � �hi1,...,im

�m−1� �x, t�

+
�−1�mg�x, t�

m! ��
j=1

m

fij� − Ss �
k=1

m
�−1�k�m − k�!

m!

�
Pi1,...,im

��
j=1

k

fij� �hik+1,...,im
�m−k� �x, t�

�t
. . . . . . . . . . . . . . (A-6)

Here, the summation in Eq. A-6 is over a subset of the permutation
of the set {i1, i2, . . . . , im}, in which repeated terms are excluded.
For instance, ∑Pijk

�fi·�hjk
(2)��fi·�hjk

(2)+�fj·�hik
(2)+�fk·�hij

(2). The

rest of terms, such as �fi·�hkj
(2), which is the same as �fi·�hjk

(2), are
not included. By doing so, we ensure that h(m)

i1i2...im
is symmetric with

its indices in subscripts. Because of symmetry of term h(m)
i1,...,im

with
respect to its indices (subscripts), to obtain h(m)

i1,...,im
, where ij runs

from 1 to some given number n, the number of times required to solve
Eqs. A-2 through A-5 is Sm�n(n+1)···(n+m−1)/m!. For example, for
n�20, we need to solve hij

(2) for S2�20×21/2�210 times.
The equations and their corresponding initial and boundary

conditions for hn
(1) and hij

(2) are given in Eqs. 17 through 21 and 22
through 26. For the third-order terms hijk

(3), the equation reads

� � �KG�x��hijk
�3��x, t�� + gijk

�3��x, t� = Ss

�hijk
�3��x, t�

�t
. . . . . . . . . (A-7)

subject to the initial and boundary conditions

hijk
�3��x, 0� = 0, x ∈ D, . . . . . . . . . . . . . . . . . . . . . . . . . . . (A-8)

hijk
�3��x, t� = 0, x ∈ �D , . . . . . . . . . . . . . . . . . . . . . . . . . . . (A-9)

KG�x��hijk
�3��x, t� � n�x� =

Q�x, t�

6
fi �x� fj �x� fk �x�, x ∈ �N ,

. . . . . . . . . . . . . . . . . . . . . . . (A-10)

where

gijk
�3��x, t� =

KG�x�

3 �
Pijk

�fi �x� � �hjk
�2��x, t� −

g�x, t�

6
fi �x� fj �x� fk �x�

+
Ss

6 �
Pijk

�2fi �x�
�hjk

�2��x, t�

�t
− fi �x� fj �x�

�hk
�1��x, t�

�t

+ fi �x� fj �x� fk �x�
�h�0��x, t�

�t � . . . . . . . . . . . . . . . . . (A-11)

Zhiming Lu is a technical staff member in the Earth and Envi-
ronmental Sciences Div. at the Los Alamos Natl. Laboratory.
e-mail: zhiming@lanl.gov. His research interests include quan-
tifying uncertainty for flow and transport in randomly hetero-
geneous porous media and inverse modeling. He holds a BS
degree in applied mathematics from Zhejiang U., China, an
MS degree in applied earth sciences from Stanford U., and a
PhD degree in hydrology from the U. of Arizona. Dongxiao
Zhang is the Miller Chair Professor in Petroleum and Geological
Engineering at the U. of Oklahoma, where he has been a fac-
ulty member since 2004. From 1996 to 2003, he was a technical
staff member and a team leader at the Los Alamos Natl. Labo-
ratory. His research interests include stochastic uncertainty
quantification of reservoir simualtions, pore-scale processes,
and geological carbon sequestration. Zhang holds MS and
PhD degrees in hydrology from the U. of Arizona.

247June 2006 SPE Journal




