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Abstract

In this study, a stochastic model for transient saturated–unsaturated flow is developed based on the Karhunen-Loeve

expansion of the input random soil properties combined with a perturbation method. The log-transformed saturated hydraulic

conductivity f ðxÞ and the soil pore size distribution parameter aðxÞ are assumed to be normal random functions with known

covariances. We decompose f ðxÞ and aðxÞ as infinite series in a set of orthogonal normal random variables by the Karhunen-

Loeve expansion and expand the pressure head as polynomial chaos with the same set of orthogonal random variables. The

perfectly correlated and uncorrelated cases between f ðxÞ and aðxÞ are studied. By using the Karhunen-Loeve expansion of the

input random parameters, polynomial chaos decomposition of pressure head, and the perturbation method, the saturated–

unsaturated flow equation and the corresponding initial and boundary conditions are represented by a series of partial

differential equations in which the dependent variables are the deterministic coefficients of the polynomial chaos expansion.

Once the partial differential equations are solved subsequently by a numerical method, the random representation of pressure

head is obtained by combining the deterministic coefficients obtained and the random variables from the Karhunen-Loeve

expansion of the input random functions. The moments of pressure head and water content are determined directly from the

random representation of the pressure head. We demonstrated the applicability of the proposed KL-based stochastic model with

some examples of unsaturated and saturated–unsaturated flow in two dimensions, and compared the results with those from the

moment-based stochastic model. It is shown that the KL-based models are more computationally efficient than the conventional

moment-based models.

q 2004 Elsevier B.V. All rights reserved.
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1. Introduction

It has been recognized that medium heterogeneity

significantly impacts fluid flow and solute transport

in the subsurface. The vadose zone connects
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the hydrologic processes above ground and the

groundwater. Movement of water and pollutants in

the vadose zone affects the growth of vegetation, the

amount of recharge and evapotranspiration, and the

overall quality of water. Spatial variability of

hydraulic properties in the vadose zone is one of the

important factors that control the migration rate and

path of water and pollutants. Because of incomplete

knowledge about the spatial distribution of hydraulic

properties, prediction of water flow and transport

processes in the vadose zone always involves some

degree of uncertainty. To address the uncertainty,

stochastic modeling of flow and solute transport

processes becomes necessary (Bresler and Dagan,

1981; Dagan and Bresler, 1979; Yeh et al., 1985c

Yang et al., 1997). Field observations show that the

hydraulic properties of soils vary significantly with

spatial locations even for the same soil type. Despite

this spatial variability, medium properties, including

fundamental parameters such as permeability and

porosity, are usually observed only at a few locations

due to the high cost associated with subsurface

measurements. This combination of significant spatial

heterogeneity with a relatively small number of

observations leads to uncertainty about the values of

medium properties and thus to uncertainty in predict-

ing flow and solute transport in such media. It has

been recognized that the theory of stochastic pro-

cesses provides a useful method for evaluating flow

and transport uncertainties.

In the last 2 decades, many stochastic theories have

been developed to study the effects of spatial

variability on flow and transport in both saturated

(Gelhar and Axness, 1983; Winter et al., 1984; Dagan,

1984, 1989; Neuman et al., 1987; Zhang, 2002)

and unsaturated zones (Jury, 1982; Yeh et al.,

1985a,b; Mantoglou and Gelhar,, 1987; Mantoglou,

1992; Russo, 1993, 1995; Yang et al., 1996a,b, 1997;

Zhang and Winter, 1998; Zhang, 1998, 1999, 2002;

Zhang and Lu, 2002; Lu and Zhang, 2002). In the

unsaturated zone the problem is further complicated

by the fact that the flow equations are nonlinear

because unsaturated hydraulic conductivity depends

on pressure head. Many earlier stochastic studies

focused on steady state, gravity-dominated unsatu-

rated flow in unbounded domains. Under these

conditions the unsaturated flow field is stationary,

and hence analytical or semi-analytical solutions are

possible. Zhang and Winter (1998) developed a

general nonstationary stochastic approach for steady

state unsaturated flow in bounded domains. On the

basis of some one- and two-dimensional examples

they found that the simpler, gravity-dominated flow

models may provide good approximations for flow in

vadose zones of large thickness and/or coarse-

textured soils. Zhang et al. (1998) studied the impact

of different constitutive models on steady state

unsaturated flow in both bounded and unbounded

domains. Liedl (1994) proposed a perturbation model

for transient unsaturated flow. The results of the

model are a set of partial differential equations

governing the statistical moments of saturation.

Liedl implemented the model in one dimension. Li

and Yeh (1998) studied transient unsaturated flow in

heterogeneous porous media using a vector state-

space approach and investigated the behavior of head

variances for transient unsaturated flow in two

dimensions. Zhang (1999) studied transient unsatu-

rated flow for nonstationary situation and derived

partial differential equations governing the statistical

moments by perturbation expansions and then

implemented these equations by the method of finite

differences. Zhang and Lu (2002) extended the work

of Zhang (1999) to coupled unsaturated flow and

saturated flow, and to include randomness in the

boundary/initial conditions and source/sink terms that

can be nonstationary in space and time. Lu and Zhang

(2002) studied the unsaturated flow on the base of the

van Genuchten–Mualem constitutive relation and

investigated the impacts of different constitutive

models on statistic moments.

The analytical and semi-analytical results of the

unsaturated water flow in random distributed soils

(Yeh et al., 1985a,b; Mantoglou and Gelhar,, 1987;

Russo, 1993) lead to the general understanding of the

stochastic flow characteristics. However, because of

the complexity of the soil distribution and the

boundary conditions in the real world, the results

can only be used for the analysis of simplified

problems. The state-space approach (Li and Yeh,

1998) and the perturbation moment equation approach

(Mantoglou, 1992; Zhang, 1999; Zhang and Lu, 2002)

can be used for more general situations with complex

soil properties, different shapes of the simulation

domain, realistic boundary/initial conditions, and the

presence of internal sink/source. The challenge is
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the computational effort even only when the first order

moment is evaluated.

Recent research developments in stochastic finite

elements have also headed in the direction of

numerical analysis of stochastic mechanics with

spatially distributed random material properties and

random loads. In this approach, the governing

stochastic partial differential equation is discretized

in the Euclidian physical dimensions by a finite

element procedure and the randomness is involved in

the stochastic global stiffness matrix and vector of

the resultant ordinary differential equation system

(Deodatis, 1989; Ghanem and Spanos, 1991a,b;

Ghanem and Kruger, 1996; Matthies et al., 1997;

Ghanem, 1998, 1999a–c; Ghanem and Dham, 1998).

The resulting matrix equation can be solved along the

line of Monte Carlo simulation, perturbation method

and spectral expansion method. In the spectral

stochastic finite element method, the spatial random

media property in elements is expressed by the

Karhunen-Loeve expansion and the randomness of

the system is viewed as an additional dimension in

which a set of basic functions is defined, which is

referred to as polynomial chaos (Wiener, 1938). The

same procedure as the deterministic Galerkin finite

element method is applied for the resulting residual to

be orthogonal to the approximating space spanned by

the base of the polynomial chaos. The resulting

deterministic system of algebraic equation can be

used for the solution of the deterministic coefficients

of the polynomial chaos expansion. The coefficient

matrix is of order n £ P; where n is the number of

nodes and P is the number of polynomials in the

truncated polynomial chaos expansion (Ghanem and

Spanos, 1991b). This method can be efficient because

only a small number of terms in the polynomial chaos

expansion are needed for most engineering problems.

In this work, the stochastic saturated–unsaturated

flow equation with the spatial random hydraulic

conductivity and pore size distribution parameter is

solved based on the combination of Karhunen-Loeve

expansion of the random inputs of the media proper-

ties and a perturbation method. Roy and Grilli (1997)

solved the steady state saturated flow equation by

using the Karhunen-Loeve expansion combined with

the perturbation method and obtained the mean head

and the head variance in first and second order in sf ;

respectively, where sf is the standard deviation of

the log-transformed saturated hydraulic conductivity.

Zhang and Lu (2004) solved the transient saturated

flow equation and obtained the mean head to fourth

order in sf and the head covariance to third order in

s 2
f : The present work is different from those of Roy

and Grilli (1997); Zhang and Lu (2004) in that the

steady and transient saturated–unsaturated flow

problem are solved with more than one spatial random

parameters, which are treated as perfectly correlated

or uncorrelated random functions. The focus of our

consideration is the efficiency of the method com-

pared with the commonly used moment-based method

for the nonlinear stochastic flow problems.

2. Basic equations of the saturated–unsaturated

flow problem

We consider transient flow in saturated–unsaturated

media satisfying the following continuity equation

Cðx; tÞ
›hðx; tÞ

›t
¼ 7½Kðx; tÞ7ðhðx; tÞ þ zÞ� þ gðx; tÞ ð1Þ

subject to initial and boundary conditions

2{KðxÞ7½hðx; tÞ þ z�·n}lG2
¼ Qnðx; tÞ

hðx; tÞlG1
¼ hG1

ðx; tÞ hðx; tÞlt¼0 ¼ hiniðxÞ

ð2Þ

where hðx; tÞ þ z is the total hydraulic head, hðx; tÞ is

the pressure head, gðx; tÞ is the fluid source or sink

term, Cðx; tÞ is the specific moisture capacity, and

Kðx; tÞ is the unsaturated hydraulic conductivity.

Qnðx; tÞ; hG1
ðx; tÞ and hiniðxÞ are the flux out of the

Neumann boundary G2; the pressure head at the first

type boundary G1; and the initial pressure head

distribution in the domain, respectively. For simpli-

city, gðx; tÞ;Qnðx; tÞ; hG1
ðx; tÞ and hiniðxÞ are treated as

deterministic functions.

Kðx; tÞ and Cðx; tÞ are functions of hðx; tÞ and

Eq. (1) is nonlinear. Some models are needed to

describe the constitutive relationships of Kðx; tÞ and

Cðx; tÞ ¼ du=dh; where u is the water content. No

universal models are available for the constitutive

relationships. Instead, several empirical models are

usually used, including the Gardner–Russo model

(Gardner, 1958; Russo, 1988), the Brooks–Corey

model (Brooks and Corey, 1964), and the van

Genuchten–Mualem model (van Genuchten, 1980).
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In most existing stochastic models of unsaturated

flow, the Gardner–Russo model is used because of its

simplicity. Although the Brooks–Corey model may

have certain mathematical advantages over the

Gardner – Russo model in low-order stochastic

analyses (Zhang et al., 1998), we use the latter to

facilitate comparisons with literature results. The

Gardner–Russo model reads as

Kðx; tÞ ¼
KsðxÞexp ½aðxÞhðx; tÞ� h , 0

KsðxÞ h $ 0

(
ð3Þ

ueðx; tÞ ¼

ðus 2 urÞ exp
1

2
aðxÞhðx; tÞ

� ��

� 1 2
1

2
aðxÞhðx; tÞ

� ��2=ðmþ2Þ

h , 0

us 2 ur; h $ 0

8>>>>>><
>>>>>>:

where ue; ur; and us are the effective, residual, and

saturated water content, respectively, KsðxÞ is the

saturated hydraulic conductivity, aðxÞ is the soil

parameter related to the pore size distribution, and m

is a parameter related to tortuosity. For simplicity, we

let m ¼ 0 in this study. In this case, the specific soil

water capacity Cðx; tÞ can be expressed as

Cðx; tÞ ¼

2
us 2 ur

4
a2ðxÞhðx; tÞ

�exp
1

2
aðxÞhðx; tÞ

� �
h # 0

Ss h . 0

8>>>>><
>>>>>:

; ð4Þ

where Ss is the specific storage.

The extension to the case of m – 0 can be made by

following the treatment of Zhang et al. (1998) for

steady state unsaturated flow. The variabilities of us

and ur are likely to be small compared to that of the

effective water content ue: In this study, us and ur are

assumed to be deterministic constants. The soil pore

size distribution parameter aðxÞ and the log-trans-

formed saturated hydraulic conductivity f ðxÞ ¼ ln �

KsðxÞ are treated as random space functions. They are

assumed to be normal random functions with known

covariances.

When the soil properties f ðxÞ and aðxÞ are treated as

random space functions, the governing Eqs. (1)–(2)

become a set of stochastic partial differential

equations whose solutions are no longer deterministic

values but random functions with probability distri-

butions related to the random inputs. In Section 3, we

decompose the input random soil properties f ðxÞ and

aðxÞ by Karhunen-Loeve expansion and determine the

random representation of the pressure head, which is

related to the random variables in the Karhunen-

Loeve expansion. On the basis of the random

representation of the pressure head, the statistical

moments can be evaluated by simple manipulations.

3. Mathematical characterization of random

space functions

3.1. Karhunen-Loeve expansion of random

soil parameters

The Karhunen-Loeve expansion of a random space

function fðx;vÞ is based on the spectral expansion of

its covariance function Cffðx; yÞ; where, x and y

denote spatial coordinates at different spatial points, v

varies in probability space. The covariance function,

being symmetrical and positive definite, has mutually

orthogonal eigenfunctions that form a complete set

spanning the function space to which fðx;vÞ belongs.

It can be shown that if this deterministic set of

functions is used to represent the random function

fðx;vÞ; the random coefficients used in the expansion

are also orthogonal (Ghanem and Spanos, 1991b). The

expansion then takes the following form:

fðx;vÞ ¼ �fðxÞ þ
X1
i¼1

ffiffiffi
li

p
fp

i ðxÞjiðvÞ

¼ �fðxÞ þ
X1
i¼1

fiðxÞjiðvÞ; ð5Þ

where �fðxÞ denotes the mean of the random space

function fðx;wÞ; and {jiðvÞ} form a set of orthogonal

random variables. Furthermore, {fp
i ðxÞ} are the

eigenfunctions and {li} are the corresponding

eigenvalues of the covariance kernel, which can be

solved from the following integral equation:

ð
V

Cffðx; yÞf
pðyÞdy ¼ lfpðxÞ ð6Þ
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where V denotes the spatial domain. The most

important aspect of this spectral representation is

that the spatial random fluctuations have been

decomposed into a set of deterministic functions

multiplying random variables. If the random function

fðx;vÞ is Gaussian, then the random variables {jiðvÞ}

form an orthogonal Gaussian vector. The Karhunen-

Loeve expansion is mean square convergent irrespec-

tive of the probabilistic structure of the process being

expanded, provided that it has a finite variance

(Loeve, 1977; Ghanem and Spanos, 1991b).

Since there is no justifiable data for the statistical

relationship between f ðxÞ and aðxÞ; we carry out the

analysis by assuming either perfect or zero correlation

between f ðxÞ and aðxÞ: For the perfectly correlated

case, aðxÞ can be expressed in terms of f ðxÞ:

Therefore, f ðxÞ and aðxÞ can be decomposed by

Karhunen-Loeve expansion on the same set of a

normal random basis {ziðvÞ}: If f ðxÞ and aðxÞ are

uncorrelated, they can be decomposed by the

Karhunen-Loeve expansion based on two sets of

uncorrelated random bases {jiðvÞ} and {hiðvÞ};

respectively. We arrange {jiðvÞ} and {hiðvÞ} as

{ziðvÞ} ¼ {jiðvÞ;hjðvÞ} and {ziðvÞ} will be used as a

basis for the expansion of pressure head.

For the separable exponential covariance function

of a random space function fðx;vÞ in two-dimen-

sional case,

Cffðx; yÞ ¼ s 2
f exp 2

lx1 2 y1l
g1

2
lx2 2 y2l

g2

� �
; ð7Þ

where x ¼ ðx1; x2Þ; y ¼ ðy1; y2Þ; the eigenvalues and

eigenfunctions can be found analytically for the

rectangular domain V ¼ {ðx1; x2Þ : 0 # x1 # L1; 0 #

x2 # L2} and expressed as (Zhang and Lu, 2004)

li ¼
4g1g2s

2
f

ðg2
1v

2
1;m þ 1Þðg2

2v
2
2;n þ 1Þ

; ð8Þ

fp
i ¼ f1;mðx1Þf2;nðx2Þ; ð9Þ

where s 2
f is the variance of the random space function

fðx;vÞ; gk is correlation length of fðx;vÞ in the

direction xk; k ¼ 1; 2, and

fk;iðxkÞ ¼
gkvk;i cosðvk;ixkÞ þ sinðvk;ixkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðg2
kv

2
k;i þ 1ÞLk=2 þ gk

q ;

k ¼ 1; 2; i ¼ 1; 2; 3;…

ð10Þ

vk;i are the positive roots of the following character-

istic equations

ðgkvk 2 1ÞsinðvkLkÞ ¼ 2gkvk cosðvkLkÞ;

k ¼ 1; 2

ð11Þ

We first solve (11) to get the solutions {v1;i} and

{v2;i}: Here we assume that the indices m and n in

Eqs. (8) and (9) are mapped to i such a way that

eigenvalues li form a series whose terms are

nonincreasing.

3.2. Polynomial chaos expansion of pressure head

The covariance function of the solution process is

not known a priori, and hence the Karhunen-Loeve

expansion cannot be used to represent it. Since the

solution process is a function of the soil properties

f ðxÞ and aðxÞ; the pressure head hðx; tÞ can be formally

expressed as some nonlinear functional of the set

{ziðvÞ} used to represent the soil randomness. It has

been shown that this functional dependence can be

expanded in terms of polynomials in Gaussian random

variables, referred to as polynomial chaos (Cameron

and Martin, 1947)

hðx; tÞ ¼ Hð0Þðx; tÞ þ
X1
i¼1

Hiðx; tÞG1ðziÞ

þ
X1
i¼1

Xi

j¼1

Hijðx; tÞG2ðzi;zjÞ

þ
X1
i¼1

Xi

j¼1

Xj

k¼1

Hijkðx; tÞG3ðzi;zj;zkÞ þ · · ·; ð12Þ

where Gnðzi1
; zi2

; zi3
;…; zin

Þ is the nth order poly-

nomial chaos, which in general can be expressed as

the Hermite polynomial:

Gnðzi1
; zi2

; zi3
;…; zin

Þ

¼ exp
1

2

Xn

i¼1

zizi

 !
ð21Þn

›n

›zi1
›zi2

…›zin

� exp 2
1

2

Xn

i¼1

zizi

 !
:

All elements in {Gnðzi1
; zi2

; zi3
;…; zin

Þ} are

mutually orthogonal and form a basis in second
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order random function space. Any element of the

set {Gnðzi1
; zi2

; zi3
;…; zin

Þ} is a polynomial of

ðzi1
; zi2

; zi3
;…; zin

Þ: Therefore, we can rearrange the

expansion of hðx; tÞ as the summation of all possible

polynomials of ðzi1
; zi2

; zi3
;…; zin

Þ (Zhang and Lu,

2004)

hðx; tÞ ¼ hð0Þðx; tÞ þ
X1
i¼1

hiðx; tÞzi þ
X1
i;j¼1

hijðx; tÞzizj

þ
X1

i;j;k¼1

hijkðx; tÞzizjzk þ · · ·

þ
X1

i1;i2;…im¼1

hi1;i2;…im
ðx; tÞ

Ym
j¼1

zij

2
4

3
5

8<
:

9=
;þ · · ·

¼ hð0Þðx; tÞ þ hð1Þðx; tÞ þ hð2Þðx; tÞ þ · · · ð13Þ

The infinite series of Eqs. (12) and (13) are

equivalent after rearranging terms. The first sum-

mation in Eq. (13) is the linear and Gaussian part of

the random function hðx; tÞ: A complete probability

characterization of the random function hðx; tÞ is

obtained if all the deterministic coefficients (hð0Þðx; tÞ;

hiðx; tÞ; hijðx; tÞ; hijkðx; tÞ; …; i; j; k;… ¼ 1; 2;…) in

(13) have been calculated.

4. Expansion of the random soil parameters

The log-transformed unsaturated soil conductivity

Yðx; tÞ ¼ ln Kðx; tÞ can be written as:

Yðx; tÞ ¼ ln½Kðx; tÞ� ¼ f ðxÞ þ aðxÞhðx; tÞ h # 0:

ð14Þ

The f ðxÞ and aðxÞ are inputs of the system with

known covariance Cff ðx; yÞ and Caaðx; yÞ; respect-

ively. We can write

f ðxÞ ¼ �fðxÞ þ f 0ðxÞ

aðxÞ ¼ �aðxÞ þ a0ðxÞ;
ð15Þ

where �fðxÞ and �aðxÞ are the means of f ðxÞ and

aðxÞ; f 0ðxÞ and a0ðxÞ the zero mean Gaussian random

functions, which can be expressed by the Karhunen-

Loeve expansion.

By substituting (13) and (15) into (14), we have

Yðx; tÞ ¼ Y ð0Þðx; tÞ þ Y ð1Þðx; tÞ þ Y ð2Þðx; tÞ þ · · · ð16Þ

where

Y ð0Þðx; tÞ ¼ �fðxÞ þ �aðxÞhð0Þðx; tÞ ð17Þ

Y ð1Þðx; tÞ ¼ f 0ðxÞ þ �aðxÞh
ð1Þðx; tÞ þ hð0Þðx; tÞa0ðxÞ

Y ð2Þðx; tÞ ¼ �aðxÞh
ð2Þðx; tÞ þ a0ðxÞhð1Þðx; tÞ

By substituting (13) and (15) into (4), we obtain

Cðx; tÞ¼2
us 2ur

4
a2ðxÞhðx; tÞexp

1

2
aðxÞhðx; tÞ

� �
¼Cð0Þðx; tÞþCð1Þðx; tÞþCð2Þðx; tÞþ · · · ð18Þ

The arguments ðx; tÞ are omitted in the following

expressions. The first three terms in (18) can be

expressed as

Cð0Þ ¼ �C �a
2hð0Þ

; Cð1Þ ¼C11hð1Þ þC12a
0
;

Cð2Þ ¼C21hð2Þ þC22ðh
ð1ÞÞ2 þC23a

0hð1Þ þC24a
02
;

ð19Þ

where

C11 ¼ �C �a
2 þ

1

2
�a
3hð0Þ

� �
;

C12 ¼ �C 2 �ahð0Þ þ
1

2
�a
2ðhð0ÞÞ2

� �

C21 ¼ �C �a
2 þ

1

2
�a
3hð0Þ

� �
;

C22 ¼ �C
1

2
�a
3 þ

1

8
�a
4hð0Þ

� �

C23 ¼ �C 2 �aþ 3 �a
2hð0Þ þ

3

2
�a
3ðhð0ÞÞ2

� �
;

C24 ¼ �C hð0Þ þ
3

2
�aðh

ð0ÞÞ2 þ
3

4
�a
2ðhð0ÞÞ3

� �

�C ¼ 2
us 2 ur

4
exp

1

2
�ahð0Þ

� �
:

The terms expð2YÞ and expðYÞ can be expressed as

e2Y ¼ e2Y ð0Þ

ðqð0Þ þ qð1Þ þ qð2Þ þ · · ·Þ

eY ¼ eY ð0Þ

ðpð0Þ þ pð1Þ þ pð2Þ þ · · ·Þ;
ð20Þ
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where

qð0Þ ¼ 1; qð1Þ ¼ 2Y ð1Þ
; qð2Þ ¼ 2Y ð2Þ þ

1

2
Y ð1ÞY ð1Þ

pð0Þ ¼ 1; pð1Þ ¼ Y ð1Þ
; pð2Þ ¼ Y ð2Þ þ

1

2
Y ð1ÞY ð1Þ

ð21Þ

4.1. Perfectly correlated f ðxÞ and aðxÞ

When perfectly correlated, normally distributed

random functions f ðxÞ and aðxÞ can be expanded as

f 0ðxÞ ¼
X1
i¼1

fiðxÞjiðvÞ;

a0ðxÞ ¼
X1
i¼1

aiðxÞjiðvÞ;

ð22Þ

where {ji} are orthogonal standard normal random

variables, i.e., kjijjl ¼ dij; fiðxÞ and aiðxÞ can be

determined separately from (10) with the corre-

sponding covariance functions. Recalling (5),

(8)–(10), and the definition of the Karhunen–

Loeve expansion of a random space function, it

can be seen that the deterministic functions fiðxÞ and

aiðxÞ in (22) are, respectively, proportional to sf

and sa; the standard deviations of the random

functions f ðxÞ and aðxÞ:

By substituting (22) into (17)–(21), we have

Y ð1Þ ¼
X1
i¼1

Yiji; Y ð2Þ ¼
X1

i;j¼1

Yijjijj ð23Þ

Cð1Þ ¼
X1
i¼1

Ciji; Cð2Þ ¼
X1
i;j¼1

Cijjijj ð24Þ

qð1Þ ¼
X1
i¼1

qiji; qð2Þ ¼
X1
i;j¼1

qijjijj ð25Þ

pð1Þ ¼
X1
i¼1

piji; pð2Þ ¼
X1
i;j¼1

pijjijj ð26Þ

The quantities in the summations of (23)–(26) are

defined in Appendix A.

4.2. Uncorrelated f ðxÞ and aðxÞ

For the uncorrelated case, f ðxÞ and aðxÞ can be

decomposed by two sets of independent orthogonal

normal random variables in the Karhunen-Loeve

expansion as

f 0ðxÞ ¼
X1
i¼1

fiðxÞjiðvÞ

a0ðxÞ ¼
X1
i¼1

aiðxÞhiðvÞ

ð27Þ

We have kjihjl ¼ 0 because ji and hi are uncorrelated

normal variables and are thus independent.

Similarly to the perfectly correlated cases, sub-

stituting (27) into (17)–(21) leads to

Y ð1Þ ¼
X1
i¼1

Yj
i ji þ

X1
j¼1

Y
h
j hj;

Y ð2Þ ¼
X1
i;j¼1

Yjj
ij jijj þ

X1
i;j¼1

Y
jh
ij jihj þ

X1
i;j¼1

Y
hh
ij hihj

ð28Þ

Cð1Þ ¼
X1
i¼1

C
j
i ji þ

X1
j¼1

C
h
j hj;

Cð2Þ ¼
X1
i;j¼1

C
jj
ij jijj þ

X1
i;j¼1

C
jh
ij jihj þ

X1
i;j¼1

C
hh
ij hihj

ð29Þ

qð1Þ ¼
X1
i¼1

qj
i ji þ

X1
j¼1

q
h
j hj;

qð2Þ ¼
X1
i;j¼1

q
jj
ij jijj þ

X1
i;j¼1

q
jh
ij jihj þ

X1
i;j¼1

q
hh
ij hihj

ð30Þ

pð1Þ ¼
X1
i¼1

pj
i ji þ

X1
j¼1

p
h
j hj;

pð2Þ ¼
X1
i;j¼1

pjj
ij jijj þ

X1
i;j¼1

p
jh
ij jihj þ

X1
i;j¼1

p
hh
ij hihj

ð31Þ

The quantities in the summations of (28)–(31) are

defined in Appendix B.
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5. Perturbation equations

By substituting (14) into (1) and (2) and rearrang-

ing, we obtain

Cðx; tÞe2Yðx;tÞ ›hðx; tÞ

›t

¼ 72hðx; tÞ þ 7Yðx; tÞ·7½hðx; tÞ þ z�

þ gðx; tÞe2Yðx;tÞ ð32Þ

{eYðx;tÞ7½hðx; tÞ þ z�·nðxÞ}l
G2
¼ 2Qnðx; tÞ

hðx; tÞlG1
¼ hG1

ðx; tÞ

hðx; tÞlt¼0 ¼ hiniðxÞ

The pressure head hðx; tÞ is a random function

because it depends on the randomness of the input

soil parameters f ðxÞ and aðxÞ: As shown earlier, we

may express soil parameters and head-related

quantities Cðx; tÞ;Yðx; tÞ; e2Yðx;tÞ; eYðx;tÞ and hðx; tÞ as

infinite series Cðx; tÞ ¼ Cð0Þ þ Cð1Þ þ Cð2Þ þ · · ·;

Yðx; tÞ ¼ Y ð0Þ þ Y ð1Þ þ Y ð2Þ þ · · ·; e2Y ¼ exp½2Y ð0Þ� �

½qð0Þ þ qð1Þ þ qð2Þ þ · · ·�; eY ¼ exp½2Y ð0Þ�½pð0Þ þ pð1Þþ

pð2Þ þ · · ·�; and hðx; tÞ ¼ hð0Þ þ hð1Þ þ hð2Þ þ · · ·; with

each term of CðiÞ;Y ðiÞ; qðiÞ; pðiÞ; and hðiÞ proportional to

the ith order of the standard deviation of f ðxÞ and

aðxÞ: For simplicity, we drop function arguments

ðx; tÞ in functions Cðx; tÞ;Yðx; tÞ; e2Yðx;tÞ; eYðx;tÞ and

hðx; tÞ when this does not cause any confusion. By

substituting these expressions into (32) and collecting

terms at the same order, we have the following

equation for the order m $ 0

Xm
k¼0

Xm2k

l¼0

e2Y ð0Þ

CðkÞqðlÞ ›hðm2k2lÞ

›t

" #

¼ 72hðmÞ þ
Xm
k¼0

7Y ðkÞ·7½hðm2kÞ þ zdm2k;0� þ g

e2Y ð0Þ

qðmÞ ð33Þ

Xm
k¼0

e2Y ð0Þ

pðkÞ7ðhðm2kÞ þ zdm2k;0Þ
h i

·nlG2
¼ 2Qndm;0

hðmÞlG1
¼ hG1

dm;0

hðmÞlt¼0 ¼ hinidm;0

where dm;0 is the Kronecker delta function with

dm;0 ¼ 1 for m ¼ 0 and dm;0 ¼ 0 for any other m:

Eq. (33) can be further simplified as

co

›hðmÞ

›t
¼ 72hðmÞ þ 7Y ð0Þ·7hðmÞ þ gðmÞ ð34Þ

½7hðmÞ·n�lG2
¼ QðmÞ

hðmÞlG1
¼ hðmÞ

G1

hðmÞlt¼0 ¼ hðmÞ
ini

co ¼ e2Y ð0Þ

Cð0Þqð0Þ

It is worthwhile to note that the perturbation

equations for different orders have the same form

except for the driving terms gðmÞ;QðmÞ; hðmÞ
G1

; and hðmÞ
ini :

This property will make the numerical computation

more efficient because it is not necessary to determine

the basic matrix in each time step for different order

terms. The driving terms gðmÞ;QðmÞ; hðmÞ
G1

; and hðmÞ
ini are

given in Appendix C.

6. Karhunen-Loeve and polynomial chaos based
perturbation equations

In this section the perturbation equations of

stochastic saturated–unsaturated water flow and the

corresponding initial and boundary conditions are

formulated by expressing the constitutive relationship

of the soil parameters in the Karhunen-Loeve

expansion and the pressure head in polynomial

chaos expression, and combining with the pertur-

bation method.

6.1. Perfectly correlated f ðxÞ and aðxÞ

The quantities CðiÞ;Y ðiÞ; qðiÞ; pðiÞ; which are related

to the input random soil properties f ðxÞ and aðxÞ; are

expressed by (23)– (26). The pressure head is

expressed by polynomial chaos in (13) where the

normal random variables {zi} ¼ {ji} for the perfectly

correlated case. We assume

hð1Þ ¼
X1
i¼1

hiðx; tÞji; hð2Þ ¼
X1

i;j¼1

hijðx; tÞjijj; ð35Þ

where hiðx; tÞ and hijðx; tÞ are deterministic functions

to be determined. Once hiðx; tÞ; hijðx; tÞ; i; j ¼ 1; 2;…;

and hð0Þðx; tÞ are obtained, the random representation

of pressure head hðx; tÞ can be determined to
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the second order of sf and sa: The moments of

pressure head and water content can also be derived

directly from the random representation of pressure

head.

By substituting (16)–(26) into (34) for m ¼ 1;

multiplying the resulting equations by jj; j ¼ 1; 2;…;

taking expectation, and recalling that kjijjl ¼ dij; we

have

co

›hi

›t
¼ 72hi þ 7Y ð0Þ·7hi þ gi i ¼ 1; 2; 3;…

ð36Þ

½7hi·n�lG2
¼ Qi

hilG1
¼ 0

hilt¼0 ¼ 0

Qi ¼ { 2 ½pð1Þ
i 7ðhð0Þ þ zÞ�·n}lG2

=pð0Þ

gi ¼ g e2Y ð0Þ

qð1Þ
i þ 7Y ð1Þ

i ·7ðhð0Þ þ zÞ

2 e2Y ð0Þ

ðCð0Þqð1Þ
i þ Cð1Þ

i qð0ÞÞ
›hð0Þ

›t

Eq. (36) is linear because all terms in Qi and gi are

linear function of hi: More importantly, when Eq. (36)

is rearranged by collecting the dependent variable hi

into the left-hand-side and leaving the driving terms

on the right-hand-side, it can be shown that all the

driving terms are proportional to the standard

deviation of random input function f ðxÞ and/or aðxÞ;

indicating that hiðx; tÞ is proportional to sf and/or sa:

This means that representation of the first and second

order terms of pressure head in the form of (35) is

reasonable.

Similarly, for m ¼ 2; we have

co

›hij

›t
¼ 72hij þ 7Y ð0Þ·7hij þ gij;

i; j ¼ 1; 2; 3;…

ð37Þ

½7hij�·nlG2
¼ Qij

hijlG1
¼ 0

hijlt¼0 ¼ 0

Qij ¼ { 2 ½pð1Þ
i 7hj þ pð2Þ

ij 7ðh
ð0Þ þ zÞ�·n

2 ½pð1Þ
j 7hi þ pð2Þ

ji 7ðhð0Þ þ zÞ�·n} G2

��� =2pð0Þ

gij ¼ g e2Y ð0Þ

qð2Þ
ij þ 7Y ð1Þ

i ·7hj þ 7Y ð2Þ
ij ·7ðhð0Þ þ zÞ

2 e2Y ð0Þ

ðCð0Þqð1Þ
i þ Cð1Þ

i qð0ÞÞ
›hj

›t

"

þðCð0Þqð2Þ
ij þ Cð1Þ

i qð1Þ
j þ Cð2Þ

ij qð0ÞÞ
›hð0Þ

›t

#

Note that although the zero order (34) and (C1) are

nonlinear because the coefficient e and Y ð0Þ in Eq. (34)

and Eq. (C1) depend on the dependent function hð0Þ;

Eqs. (36) and (37) are linear when those equations are

solved sequentially. This property leads to numerical

efficiency especially for the solution of the higher

order terms in the polynomial chaos expression of the

pressure head.

6.2. Uncorrelated f ðxÞ and aðxÞ

The quantities CðiÞ;Y ðiÞ; qðiÞ and pðiÞ are expressed

by (28)–(31) from Karhunen-Loeve expansions. The

polynomial chaos expression of pressure head in

Eq. (13) can be expanded by two sets of uncorrelated

normal random variables {ji} and {hi} as

hðx; tÞ ¼ hð0Þ þ hð1Þ þ hð2Þ þ · · · ð38Þ

hð1Þ ¼
X1
i¼1

ðhj
i ji þ h

h
i hiÞ

hð2Þ ¼
X1
i¼1

X1
j¼1

ðhjj
ij jijj þ h

jh
ij jihj þ h

hh
ij hihjÞ

By substituting (28)–(31) and (38) into (34) for

m ¼ 1 and Eq. (C2), multiplying jj and hj; j ¼

1; 2; 3;…; taking expectation of the resulting

equations, and considering the following properties

of jj and hj

kjijjl ¼ dij; khihjl ¼ dij; kjihjl ¼ 0

we obtain

co

›h
j
i

›t
¼ 72hj

i þ 7Y ð0Þ·7hj
i þ gj

i i ¼ 1; 2; 3;…

ð39Þ

½7hj
i ·n�lG2

¼ Qj
i

ðhj
i ÞlG1

¼ 0
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ðhj
i Þlt¼0 ¼ 0

Qj
i ¼ 2½pj

i7ðh
ð0Þ þ zÞ·n�lG2

=pð0Þ

gj
i ¼ g e2Y ð0Þ

qj
i þ 7Yj

i ·7ðhð0Þ þ zÞ

2 e2Y ð0Þ

ðCð0Þq
j
i þ C

j
i qð0ÞÞ

›hð0Þ

›t

and

co

›h
h
i

›t
¼ 72h

h
i þ 7Y ð0Þ·7h

h
i þ g

h
i i ¼ 1; 2; 3;…

ð40Þ

½7h
h
i ·n�lG2

¼ Q
h
i

ðh
h
i ÞlG1

¼ 0

ðh
h
i Þlt¼0 ¼ 0

Q
h
i ¼ 2½p

h
i 7ðh

ð0Þ þ zÞ·n�lG2
=pð0Þ

g
h
i ¼ g e2Y ð0Þ

q
h
i þ 7Y

h
i ·7ðhð0Þ þ zÞ

2 e2Y ð0Þ

ðCð0Þq
h
i þ C

h
i qð0ÞÞ

›hð0Þ

›t

By substituting (28)–(31) and (38) into (34) for m ¼ 2

and Eq. (C3), we have

X1
i;j¼1

Ljj
ij ðh

jjÞjijj þ
X1
i;j¼1

L
jh
ij ðh

jhÞjihj

þ
X1

i;j¼1

L
hh
ij ðhhhÞhihj ¼ 0 ð41Þ

where Ljj
ij ðh

jjÞ; L
jh
ij ðh

jhÞ; and L
hh
ij ðhhhÞ are defined in

Appendix D.

Multiplying (41) by jmjn and hmhn; m;n¼1;2;…;

considering the orthogonarity and the independency

of series {ji} and {hi}; and taking expectation of the

resulting equation yields

Ljj
mnðh

jjÞ þ Lhh
mnðh

hhÞ ¼ 0; m; n ¼ 1; 2; 3;… ð42Þ

Ljh
mnðh

jhÞ ¼ 0

Eq. (42) can be further simplified as

co

›hij

›t
¼ 72hij þ 7Y ð0Þ·7hij þ gij;

i $ j ¼ 1; 2; 3;…

ð43Þ

½7hij�·nlG2
¼ Qij

hijlG1
¼ 0

hijlt¼0 ¼ 0

where hij ¼ hjj
ij þ h

hh
ij ; and Qij and gij are defined in

Appendix E.

Similar to the perfectly correlated case, the partial

differential equations for the deterministic head

coefficients h
j
i ; h

h
i and hij are linear.

7. Means and variances of pressure head and water

content

Once Eqs. (34), (36), (37), (39), (40), and (43) are

solved, the mean and variance of pressure head can be

computed directly. In this work, only second order

terms of pressure head hðx; tÞ is determined, all the

moments are evaluated up to second order in the

standard deviation of f ðxÞ and aðxÞ: The mean and

variance of pressure head and water content are

expressed as

khðx; tÞl ¼ hð0Þ þ
X1
i¼1

ðh
jj
ii þ h

hh
ii Þ; ð44Þ

s 2
h ¼

X1
i¼1

½ðh
f
i Þ

2 þ ðh
h
i Þ

2�

kul ¼ ðus 2 urÞexp
1

2
�ahð0Þ

� �
1 2

1

2
ah

� �(

2
1

4
�a
2ðhð0ÞÞ2

X1
i¼1

ðh
jj
ii þ h

hh
ii Þ

þ �a
2 2

1

8
2

1

16
�ahð0Þ

� �X1
i¼1

½ðhj
i Þ

2 þ ðh
h
i Þ

2�

þ �ahð0Þ 2
1

2
2

1

8
�ahð0Þ

� �X1
i¼1

aih
h
i

þðhð0ÞÞ2 2
1

8
2

1

16
�ahð0Þ

� �X1
i¼1

aiai

)
ð45Þ

s 2
u ¼ ðus 2 urÞ

2expð �ahð0ÞÞ
1

16
�a
2ðhð0ÞÞ2

� �a
2
X1
i¼1

ðhjj
ii þ h

hh
ii Þ þ 2 �ahð0Þ

X1
i¼1

aih
h
i

"

þðhð0ÞÞ2
X1
i¼1

aiai

#
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for the case of uncorrelated f ðxÞ and aðxÞ; and

khðx; tÞl ¼ hð0Þ þ
X1
i¼1

hii ð46Þ

s 2
h ¼

X1
i¼1

ðhiÞ
2

kul ¼ ðus 2 urÞexp
1

2
�ahð0Þ

� �
1 2

1

2
ah

� �(

2
1

4
�a
2ðhð0ÞÞ2

X1
i¼1

hii

þ �a
2 2

1

8
2

1

16
�ahð0Þ

� �X1
i¼1

ðhiÞ
2

þ �ahð0Þ 2
1

2
2

1

8
�ahð0Þ

� �X1
i¼1

aihi

þðhð0ÞÞ2 2
1

8
2

1

16
�ahð0Þ

� �X1
i¼1

aiai

)
ð47Þ

s 2
u ¼ ðus 2 urÞ

2expð �ahð0ÞÞ
1

16
�a
2ðhð0ÞÞ2

� �a
2
X1
i¼1

hii þ 2 �ahð0Þ
X1
i¼1

aihi þ ðhð0ÞÞ2
X1
i¼1

aiai

" #

for the case of perfectly correlated f ðxÞ and aðxÞ:

8. Numerical implementation

The head coefficient (34), (36), (37), (39), (40), and

(43) are deterministic partial differential equations

and cannot, in general, be solved analytically and are

therefore solved by any efficient and reader preferred

numerical method. The numerical implementation is

facilitated by recognizing that the head coefficients

are governed by the same type of equations but with

different forcing terms. We approximate the spatial

derivatives by a central-difference scheme and the

temporal derivatives by an implicit method. The zero

order mean flow equation for both perfectly correlated

and uncorrelated cases is the same. This equation is

nonlinear and thus needs to be solved in an iterative

manner. Once the mean pressure head hð0Þ is solved,

the linear equations for the other head coefficient

terms can be solved sequentially and the coefficient

matrix of the resulting system equations are the same.

This behavior of the resulting head coefficient

equations renders efficiency in the numerical method.

Due to the symmetry of the coefficients hijðx; tÞ �

ði; j ¼ 1; 2;…;NpÞ; the number of times needed to

solve the linear system of equations is NpðNp þ 1Þ=2;

where Np is the number of truncation terms of the

Karhunen-Loeve expansion. Because up to second

order terms are evaluated in this study, only hiiðx; tÞ �

ði ¼ 1; 2;…;NpÞ are needed for the calculation of the

moment of pressure head and water content, which

reduce the computational efforts significantly.

9. Illustrative examples

In this section we attempt to demonstrate the

applicability of the developed stochastic model to

saturated–unsaturated flow in hypothetical soils. The

log-transformed saturated hydraulic conductivity f ðxÞ

and the pore size distribution parameter aðxÞ are

assumed to be second order stationary, with a

separable exponential covariance given in (7). In

this situation, the eigenvalues and eigenfunctions can

be determined analytically by (8)–(11). Fig. 1 shows

the monotonic decay of the eigenvalues. The decay

rate is related to the correlation length and the size of

the simulation domain. The larger the correlation

length, the faster the decay rate of the eigenvalue to

zero, and the fewer terms needed in the Karhunen-

Loeve expansion. In the selected examples with

Fig. 1. Eigenvalues associated with Eq. (7) for g1 ¼ g2 ¼ 50 cm

and L1 ¼ L2 ¼ 150 cm.
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the correlation length from 30 to 50 cm, only 10–80

terms are required to obtain results that are consistent

with the first-order moment-based model. Fig. 2

shows some eigenfunctions obtained from Eq. (10).

With the increase of the terms in the KL expansion,

the higher frequency random fluctuations will be

involved in the analysis, and the contribution of these

higher frequency terms to the solution processes will

decrease because the eigenvalues decrease

dramatically.

The numerical approach can easily handle the

nonstationarity if other forms of covariances of f ðxÞ

and aðxÞ are provided and Eq. (6) can be solved

analytically or numerically to determine the eigen-

values and eigenfunctions, which serve as the input to

the numerical solution of the head coefficient

equations.

9.1. Uncorrelated case

In this example, we first try to show the validity of

the proposed stochastic models and numerical

implementation by comparing our numerical results

with those from the conventional moment-equation-

based stochastic models (Lu and Zhang, 2002;

Zhang and Lu, 2002). We consider a rectangle grid

of 21 £ 61 nodes in a vertical cross-section of

120 cm £ 360 cm. The boundary conditions are

specified as follows: constant pressure head at the

bottom with the pressure h ¼ 0; a constant infiltration

flux Q2 at the top, and no-flow at the left and right

sides. The input parameters are given as �f ¼ 0:0 (i.e.

the geometric mean of saturated hydraulic conduc-

tivity equals to 1:0 cm=T ; where T is any time unit, as

long as it is consistent with the time unit in Q2),

s 2
f ¼ 0:1; �a ¼ 0:03 cm21, s 2

a ¼ 2:5 £ 1025 cm22,

gfx ¼ gfz ¼ gax ¼ gaz ¼ 30 cm, us ¼ 0:3; ur ¼ 0:0;

Q2 ¼ 20:01 cm=T ; where negative sign in Q2 rep-

resents infiltration. Fig. 3 depicts the first two

moments of pressure head at the steady state from

the Karhunen-Loeve expansion and perturbation

based stochastic model (KL-based model) and the

moment-equation-based stochastic model (moment-

based model). The zeroth-order mean equations are

Fig. 2. Eigenfunctions f*
i for n ¼ 1; 5, 10 and 20 associated with Eq. (9) for g1 ¼ g2 ¼ 50 cm and L1 ¼ L2 ¼ 150 cm.
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the same from the two stochastic models. In the KL-

based model the second-order mean pressure head is

calculated and it is shown that the contribution of the

second-order terms to the mean pressure head is small

for the given statistical parameters of the random

functions (Fig. 3a). We also calculated the mean

pressure head to second order for the case

s 2
f ¼ 0:5; s 2

a ¼ 2:0 £ 1024 cm22, and gfx ¼ gfz ¼

gax ¼ gaz ¼ 30 cm, and obtained a similar result.

Fig. 3b shows the variance of pressure head from the

moment-based model and that from the KL-based

model with different numbers of terms in the

Karhunen-Loeve expansions of f ðxÞ and aðxÞ: When

we expand f ðxÞ and aðxÞ with 80 terms, the pressure

head variance from the two stochastic models

are almost the same. This comparison indicates

the correctness of our proposed model, because

the moment-based model has been validated pre-

viously by Monte Carlo simulations (Zhang and Lu,

2002). More importantly, this example demonstrates

the efficiency of the proposed model in computational

efforts compared with the moment-based model, at

least for the random parameters given in these

examples. In the moment-based model, equations

for Chhðx; y; t; tÞ;Chf ðx; y; t; tÞ;Chaðx; y; t; tÞ and the

mean equation of pressure head have to be solved

(Zhang and Lu, 2002). Because the covariance

equations are functions of arbitrary two space points

x and y in the simulation domain, the computation of

these equations is demanding. Instead of solving the

covariance equations, the KL-based model solves for

a small number of the deterministic coefficients

hiðx; tÞ and hiiðx; tÞ; i ¼ 1; 2;…Np; which are gov-

erned by the equations that are similar to the

covariance equations (with fixed reference point y)

in the moment-based model, where Np is the number

of terms in KL-expansion of the random function f ðxÞ

and aðxÞ: For the case of n grid nodes in the simulation

domain, the moment-based model needs to solve the

resultant linear system of equations for nm ¼niþ3£n

times, where ni is the number of iterations for the

nonlinear equation of mean pressure head. The KL-

based model needs to solve the equations for nk ¼

ni þ 3 £ Np times. In the present example, n ¼

1271; Np ¼ 80; and ni ¼ 6; we have nm ¼ 3819 and

nk ¼ 246; giving approximately a difference of 15

times between the two models. This advantage will be

more significant for larger-size problems and for the

higher-order analysis (Zhang and Lu, 2004).

9.2. Perfectly correlated case

Since the moment-based computer model of Zhang

and Lu (2002) did not implement the perfectly

correlated case, we first conduct simplified simu-

lations to test the correctness of the proposed perfectly

correlated KL-based model. We assume that one of

the variances of f ðxÞ and aðxÞ equals to zero and

compare the simulation results with those from

the corresponding moment-based model. One

simulation case is for the input variance s 2
a ¼ 0 and

s 2
f ¼ 2:0 and another case for s 2

a ¼ 2:0 £ 1024 and

s 2
f ¼ 0: All other input parameters for the two cases

Fig. 3. Comparison of the mean pressure head and variance

calculated from the KL-based model with those from moment-based

model, the uncorrelated case. ‘unc’ indicates uncorrelated f ðxÞ

and aðxÞ:
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are the same: �a ¼ 0:04 cm21, gfx ¼ gfz ¼ gax ¼

gaz ¼ 50 cm, L1 ¼ L2 ¼ 150 cm, us ¼ 0:3; ur ¼ 0:0;

and Q2 ¼ 20:01 cm=T : The simulation results from

the KL-based models with different terms in the

Karhunen-Loeve expansion both for perfectly corre-

lated and uncorrelated cases are comparable with

those from the moment-based model, indicating the

correctness of model for these special cases.

Fig. 4 shows the effect of the correlation patterns

of the input random functions on the pressure head

variance. By using the same input random

parameters as described above (s 2
f ¼ 2:0;s 2

a ¼

2:0 £ 1024 cm22), for uncorrelated case the head

variance from the KL-based model and the moment-

based model are identical. However, the head

variance for the perfectly correlated case is signifi-

cantly different from that for the uncorrelated case

(Fig. 4). We compared our numerical results with the

analytical solution of Yeh et al. (1985b) for both

perfectly correlated and uncorrelated cases. From

their analytical results, we can calculate the ratio ruc

of the standard deviation of the uncorrelated case to

the perfectly correlated case, ruc ¼ ðshÞunc=ðshÞcor ¼

ðs 2
f þ H2

us
2
aÞ

1=2=ðsf 2 HcsaÞ; where ðshÞunc and

ðshÞcor are the standard deviation of pressure head,

Hu and Hc are the suction head for the uncorrelated

and correlated cases in unbounded domain, respec-

tively. By substituting s2
f ¼2:0;s2

a¼2:0£1024 cm22,

and Hu¼Hc¼109 cm into above formula, we have

ruc¼11:2: The numerical result from the KL-based

model in bounded domain for perfectly correlated

and uncorrelated case is ruc¼14:2; which is compa-

tible with the analytical result of Yeh et al. (1985b)

for unbounded domain. Fig. 5 presents the variance

of pressure head for the case of perfectly correlated

f ðxÞ and aðxÞ; the parameters of which are the same

case as those for Fig. 3. It is seen that the inclusion of

the f ðxÞ and aðxÞ correlation generally reduces the

head variance. By substituting the simulation input

parameters s2
f ¼0:1;s2

a¼2:5£1025 cm22, and

Hu¼Hc¼193 cm, we have ruc¼1:59 from the

analytical result of Yeh et al. (1985). In our example,

the standard deviations of pressure head for uncorre-

lated and correlated cases are 17.3 and 11 cm,

respectively, and we have ruc¼1:60; which is very

close to the result from the analytical model. Both

our numerical results and the analytical results of

Yeh et al. (1985) indicate that the correlation

structures of f ðxÞ and aðxÞ have a large effect on

the variance of pressure head.

9.3. Underground irrigation and drainage

in saturated–unsaturated soils

The examples in this section show an underground

pipe irrigation and a drainage problem in stationary

Fig. 4. Calculated pressure head variance from the KL-based model

of the perfectly correlated and uncorrelated cases and compared

with that from the moment-based model. s 2
f ¼ 2;s2

a ¼ 2:0 £ 1024;

gfx ¼ gfz ¼ gax ¼ gaz ¼ 50 cm, L1 ¼ L2 ¼ 150 cm. ‘unc’ indi-

cates uncorrelated case and cor indicates perfectly correlated case.

Fig. 5. Calculated pressure head variance from the KL-based

model of the perfectly correlated and uncorrelated cases, and

compared with that from the moment-based model. s2
f ¼ 0:1;s2

a ¼

2:5 £ 1025 cm22, gfx ¼ gfz ¼ gax ¼ gaz ¼ 30 cm, L1 ¼ 120 cm,

L2 ¼ 360 cm.
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or nonstationary soils. In the example of

underground pipe irrigation, the domain is of size

150 cm £ 150 cm. The pipe is located at the depth of

50 cm below the ground surface with an irrigation

rate of 20:1 cm=T : The boundary conditions are:

specified recharge ð20:01 cm=TÞ at the top and

constant pressure head (0 cm) at the bottom, and no-

flow boundaries at the two lateral sides. The input

parameters are: s 2
f ¼ 2:0; �a ¼ 0:04 cm21, s 2

a ¼

2:0 £ 1024 cm22, hfx ¼ hfz ¼ hax ¼ haz ¼ 50 cm,

us ¼ 0:3; and ur ¼ 0:0: Fig. 6 illustrates the redistribu-

tion of irrigated water and the corresponding standard

deviations of pressure head and water content in the

domain. When water is irrigated from the underground

pipe, pressure head near the pipe is higher and so is the

mean water content (Fig. 6a and b). However, the

standard deviations of pressure head and water content

have different patterns. Near the irrigation pipe, the

pressure head standard deviation is high compared to

that in the surrounding area, but the standard deviation

of water content is lower near the pipe. This is

reasonable because the standard deviation of water

content becomes small when the water content

increases with the increasing pressure. In the practical

experience, the water content variability of samples

from the very dry or very wet soil is small and the large

water content variability is always found in the middle

range of water content. Fig. 7 shows the effect of

Fig. 6. Contours of mean (a) and standard deviation (c) of pressure head, and mean (b) and standard deviation (d) of water content for the cases

with pipe irrigation.
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medium nonstationary on statistics of the soil water

distribution. In this example, there is a thin layer of

slightly different soils embedded in the otherwise

spatially stationary soil. The layer is of thickness 10 cm

and width 150 cm with its center at depth of 65 cm

below the ground surface. The geometric mean of

saturated soil conductivity of the layer is 0.135 cm/T,

and all other parameters are kept unchanged. Com-

parison between Fig. 7 and Fig. 6 reveals that this

nonstationary medium feature has a significant impact

on the mean pressure head field and the associated

predictive uncertainty. The maximum standard

deviation of pressure head for the nonstationary f ðxÞ

distribution is along the top of the lower conductivity

layer (Fig. 7c) and for the stationary one is near the

irrigation pipe (Fig. 6c). Fig. 7b and d are also very

different from their counterparts in Fig. 6 in that the soil

water moves mainly in the lateral direction above the

thin layer (Fig. 7b) while it moves preferentially

downward for the case of stationary medium (Fig. 6b).

The small water content standard deviation region is

below the irrigation pipe and above the lower

conductivity layer where the water content is large

(Fig. 7d).

Fig. 7. Contours of mean (a) and standard deviation (c) of pressure head, and mean (b) and standard deviation (d) of water content for the cases

with pipe irrigation and an embedded zone of lower mean saturated conductivity below the irrigation pipe.
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The next example involves flow to a drain in a

saturated–unsaturated system with infiltration at the

top, impermeable boundaries at the other three

sides, and a drain in the middle of the left side. The

drain is simulated as a constant pressure head

boundary. The flow domain with a size of 600 cm

in the horizontal direction and 300 cm in the

vertical direction is divided into 30 £ 60 square

elements. The soil properties are given as

s 2
f ¼ 0:5; �a ¼ 0:03 cm21, s 2

a ¼ 2:5 £ 1025 cm22,

hfx ¼ hfz ¼ hax ¼ haz ¼ 50 cm, us ¼ 0:3; and ur ¼

0:0: The uniformly distributed infiltration rate at the

surface is Q1 ¼ 20:01 cm/T. The simulated mean

and standard deviation of total hydraulic head, and

water flow pattern are shown in Fig. 8. Because the

head standard deviation is zero at the constant head

boundary (i.e. at the drain), the maximum standard

deviation occurs along the soil surface where the

infiltration boundary is applied (Fig. 8a). In this

unsaturated–saturated system, both the mean and

the standard deviation of the flow quantities have

complicated, nonstationary patterns, which cannot

be delineated accurately without considering the

coupling between the two flow regimes.

10. Summary and conclusions

A stochastic model for transient flow in

saturated–unsaturated zones is developed based on

the Karhunen-Loeve expansion of the input random

functions combined with the perturbation method.

The log-transformed saturated hydraulic conductivity

f ðxÞ and the soil pore size distribution parameter aðxÞ

are assumed to be normal random functions with

known covariances. f ðxÞ and aðxÞ are first expanded

by the Karhunen-Loeve decomposition and the

pressure head is expanded as polynomial chaos with

the same set of random variables as those from the

expansion of f ðxÞ and aðxÞ: We studied the cases of

perfectly correlated or uncorrelated f ðxÞ and aðxÞ: By

using the Karhunen-Loeve expansion of the input

random parameters, polynomial chaos expansion of

pressure head, and the perturbation method, the

governing equation of the saturated–unsaturated

flow and the corresponding initial and boundary

conditions are represented by a series of partial

differential equations in which the dependent vari-

ables are deterministic coefficients of the polynomial

chaos expansion. Once the partial differential

equations are solved subsequently, the deterministic

coefficients in the polynomial chaos expansion are

obtained and the random representation of the

pressure head is obtained by combining these

deterministic coefficients and the random variables

from the Karhunen-Loeve expansion of the input

random functions through truncated polynomial

expansions. The moments of pressure head and

water content can be determined efficiently by taking

the advantage of the orthogonality of the normal

random variables in the expansion. We demonstrated

applicability of the proposed KL-based stochastic

model with some examples of unsaturated and

saturated–unsaturated flow in two dimensions and

compared the results with those by the moment-based

stochastic model. The main findings of this paper are

as follows:

1. By combining the Karhunen-Loeve expansion of

the input random function of the unsaturated

Fig. 8. Contours of standard deviation of pressure head (a), and total

hydraulic head and flow field (b) with the drainage in saturated–

unsaturated soils.
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porous media f ðxÞ and aðxÞ; the polynomial

chaos expansion of pressure head hðx; tÞ; and the

perturbation method, the governing equation of

the saturated–unsaturated flow and the initial

and boundary conditions can be represented by a

series of partial differential equations which can

be solved by any suitable numerical methods.

2. For the nonlinear saturated–unsaturated flow,

only the zero order head equation is nonlinear,

the other equations are linear. All the head

coefficient equations of the same type but with

different forcing terms, which will make the

numerical modeling very effective because it is

not necessary to rebuild the coefficient matrix

for different orders of head coefficient equations

in each time steps.

3. The developed KL-based stochastic models are

compared with the moment-based stochastic

model. The simulation results from the two

stochastic models are identical for the same

perturbation order. However, the proposed

KL-based model is much more efficient because

only a few terms in KL expansion are required

(20–80 terms in our examples) for the input

random porous media properties.

4. The illustrative examples show the potential

applicability of the proposed stochastic model to

the complicated saturated–unsaturated cases.

The examples indicate that the correlation

structures and the nonstationarity of the input

random functions f ðxÞ and aðxÞ have a large

effect on the calculated results of the mean and

variance of pressure head and water content.
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Appendix A

By substituting (13) and (22) into (16)–(21), and

collecting the like terms, we have

Yi ¼ fi þ �ahi þ hð0Þai; Yij ¼ �ahij þ aihj

C11hi þ C12ai; Cij ¼ C21hij þ C22hihj

þC23h1aj þ C24aiaj

Y ð1Þ
i ¼ fi þ �ahi þ hð0Þai; pij ¼ Yij þ

1

2
YiYj

pi ¼ Yi; qij ¼ 2Yij þ
1

2
YiYj

qi ¼ 2Y ð1Þ
i ;

Appendix B

By substituting (13) and (27) into (16)–(21), and

collecting the terms of the same kind, we obtain

Yj
i ¼ �ahj

i þ fi; Y
h
j ¼ �ah

h
j þ hð0Þaj

Yjj
ij ¼ �ahjj

ij ; Y
jh
ij ¼ �ah

jh
ij þajh

j
i ;

Y
hh
ij ¼ �ah

hh
ij þ

1

2
ðaih

h
j þajh

h
i Þ

Cj
i ¼ C11hj

i ; C
h
j ¼ C11h

h
j þC12aj;

Cjj
ij ¼ C21hjj

ij þC22hj
i hj

j ; C
jh
ij ¼ C21h

jh
ij þC23hj

iaj;

C
hh
ij ¼ C21h

hh
ij þ

1

2
C23ðh

h
i aj þ h

h
j aiÞ þC24aiaj

qj
i ¼2 �ahj

i 2 f ; q
h
j ¼2 �ah

h
j 2 hð0Þaj

qjj
ij ¼2 �ahjj

ij þ
1

2
Yj

i Yj
j ; q

jh
ij ¼2 �ah

jh
ij 2ajh

j
i þ Yj

i Y
h
j

q
hh
ij ¼2 �ah

hh
ij 2

1

2
ðaih

h
j þajh

h
i Þ þ

1

2
Y
h
i Y

h
j

pj
i ¼ �ahj

i þ f ; p
h
j ¼ �ah

h
j þ hð0Þaj

pjj
ij ¼ �ahjj

ij þ
1

2
Yj

i Yj
j ; p

jh
ij ¼ �ah

jh
ij þajh

j
i þ Yj

i Y
h
j

p
hh
ij ¼ �ah

hh
ij þ

1

2
ðaih

h
j þajh

h
i Þ þ

1

2
Y
h
i Y

h
j
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Appendix C

The driving terms gðmÞ; QðmÞ; hðmÞ
G1

; and hðmÞ
ini can be

determined from (33) for m ¼ 1; 2; and 3,

respectively.

For m ¼ 0; the driving terms are:

gð0Þ ¼ g e2Y ð0Þ

e nð0Þ þ
›Y ð0Þ

›z
ðC1Þ

Qð0Þ ¼ 2e2Y ð0Þ

Qn=e pð0Þ 2 7z·n

hð0Þ
G1

¼ hG1
; hð0Þ

ini ¼ hini

For m ¼ 1; we have

gð1Þ ¼ g e2Y ð0Þ

qð1Þ þ 7Y ð1Þ·7ðhð0Þ þ zÞ

2 e2Y ð0Þ

ðCð0Þqð1Þ þ Cð1Þqð0ÞÞ
›hð0Þ

›t
ðC2Þ

Qð1Þ ¼ { 2 ½pð1Þ7ðhð0Þ þ zÞ�·n}lG2
=pð0Þ

hð1Þ
G1

¼ 0; hð1Þ
ini ¼ 0

and for m ¼ 2; we obtain

gð2Þ ¼ g e2Y ð0Þ

qð2Þ þ 7Y ð1Þ·7hð1Þ þ 7Y ð2Þ·7ðhð0Þ þ zÞ

2 e2Y ð0Þ

ðCð0Þqð1Þ þ Cð1Þqð0ÞÞ
›hð1Þ

›t

"

þðCð1Þqð1Þ þ Cð2Þqð0Þ þ Cð0Þqð2ÞÞ
›hð0Þ

›t

#
ðC3Þ

Qð2Þ ¼ { 2 ½pð1Þ7hð1Þ þ pð2Þ7ðhð0Þ þ zÞ�·n}lG2
=e pð0Þ

hð2Þ
G1

¼ 0; hð2Þ
ini ¼ 0

Appendix D

By substituting (27)–(31) and (38) into (C3) and

collect the like terms which related to the uncorrelated

normal random variables ji and hj; we have

X1
i;j¼1

Ljj
ij ðh

jjÞjijj þ
X1
i;j¼1

L
jh
ij ðh

jhÞjihj

þ
X1

i;j¼1

L
hh
ij ðhhhÞhihj ¼ 0 ðD1Þ

The operators in above equation are defined as

Ljj
ij ðh

jjÞ ¼ e2Y ð0Þ

Cð0Þqð0Þ
›h

jj
ij

›t
þ e2Y ð0Þ

Cð0Þqj
i

›h
j
j

›t

þ e2Y ð0Þ

Cð0Þ ›hð0Þ

›t
qjj

ij þ e2Y ð0Þ

qð0ÞCj
i

›hj
j

›t

þ e2Y ð0Þ ›hð0Þ

›t
Cj

i qj
j þ e2Y ð0Þ

qð0Þ ›hð0Þ

›t
Cjj

ij

2 72hjj
ij 2 7Y ð0Þ·7hjj

ij 2 7Yj
i ·7hj

j

2 7Y
jj
ij ·7ðhð0Þ þ zÞ2 g e2Y ð0Þ

q
jj
ij ðD2Þ

L
hh
ij ðhhhÞ ¼ e2Y ð0Þ

Cð0Þqð0Þ
›h

hh
ij

›t
þ e2Y ð0Þ

Cð0Þq
h
i

›h
h
j

›t

þ e2Y ð0Þ

Cð0Þq
hh
ij

›hð0Þ

›t
þ e2Y ð0Þ

qð0ÞC
h
i

›h
h
j

›t

þ e2Y ð0Þ

C
h
i q

h
j

›hð0Þ

›t
þ e2Y ð0Þ

qð0ÞC
hh
ij

›hð0Þ

›t

2 72h
hh
ij 2 7Y ð0Þ·7h

hh
ij 2 7Y

h
i ·7h

h
j

2 7Y
hh
ij ·7ðhð0Þ þ zÞ2 g e2Y ð0Þ

q
hh
ij ðD3Þ

L
jh
ij ðh

jhÞ ¼ e2Y ð0Þ

Cð0Þqð0Þ
›h

jh
ij

›t

þ e2Y ð0Þ

Cð0Þ q
j
i

›h
h
j

›t
þ q

h
j

›hj
i

›t

 !

þ e2Y ð0Þ

Cð0Þq
jh
ij

›hð0Þ

›t

þ e2Y ð0Þ

qð0Þ ›hj
i

›t
C
h
j þ Cj

i

›h
h
j

›t

 !

þ e2Y ð0Þ

ðC
j
i q

h
j þ C

h
j q

j
i Þ
›hð0Þ

›t

þ e2Y ð0Þ

qð0Þ ›hð0Þ

›t
C
jh
ij 2 72h

jh
ij 2 7Y ð0Þ·7h

jh
ij

2 ð7Yj
i ·7h

h
j þ 7Y

h
j ·7hj

i Þ

2 7Y
jh
ij ·7ðhð0Þ þ zÞ2 g e2Y ð0Þ

q
jh
ij ðD4Þ

Appendix E

The expectation of the normal random variables

can be written as

kjihjjmjnl ¼ khjlkjijmjnl ¼ 0; ðE1Þ

khihjjmjnl ¼ khihjlkjmjnl ¼ dijdmn
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kjijjjmjnl ¼ dijdmn þ dimdjn þ dindjm

By multiplying jmjnðm; n;¼ 1; 2; 3;…Þ of the both

side of Eq. (41) and taking expectation, we have

X1
i;j¼1

Ljj
ij ðh

jjÞðdijdmn þ dimdjn þ dindjmÞ

þ
X1

i;j¼1

L
hh
ij ðhhhÞdijdmn ¼ 0; m; n ¼ 1; 2;…

By using the properties (E1) of the Kronecker delta

function, we obtain

Ljj
mmðh

jjÞdmn þ Ljj
mnðh

jjÞ þ Ljj
nmðh

jjÞ

þ Lhh
mmðh

hhÞdmn ¼ 0; m; n ¼ 1; 2;… ðE2Þ

Similarly, by multiplying the second order equation

by hmhn and rearranging, we have

Lhh
mmðh

hhÞdmn þ Lhh
mmðh

hhÞ þ Lhh
mmðh

hhÞ

þ Ljj
mmðh

jjÞdmn ¼ 0; m; n ¼ 1; 2;… ðE3Þ

Because of the symmetry of Ljj
mn and L

hh
mn about m and

n; (E2) and (E3) can be written as

Ljj
mnðh

jjÞ þ Lhh
mnðh

hhÞ ¼ 0; m $ n $ 1 ðE4Þ

The equation for hij and the corresponding boundary

and initial conditions can be written as Eq. (43) with

Qij and gij are defined by

gij ¼ 2e2Y ð0Þ

�a g þ ðqð0ÞC21 2 �aCð0ÞÞ
›hð0Þ

›t

" #
hij

þ �a7ðh
ð0Þ þ zÞ·7hij þ e2Y ð0Þ

g 2 Cð0Þ ›hð0Þ

›t

 !
zð1Þij

2 e2Y ð0Þ

qð0Þ ›hð0Þ

›t
zð2Þij þ 7ðhð0Þ þ zÞ·7zð3Þij

þ
1

2
ðzð4Þij þ zð4Þji Þ; i $ j $ 1 ðE5Þ

zð1Þij ¼
1

2
Yj

i Yj
j 2

1

2
ðaih

h
j þ ajh

h
i Þ þ

1

2
Y
h
i Y

h
j ðE6Þ

zð2Þij ¼ C22hj
i hj

j þ
1

2
C23ðh

h
i aj þ h

h
j aiÞ þ C24aiaj

zð3Þij ¼
1

2
ðaih

h
j þ ajh

h
i Þ

zð4Þij ¼ 7Y
h
i ·7h

h
j þ 7Yj

i ·7hj
j

2 e2Y ð0Þ

ðCð0Þq
j
i þ C

j
i qð0ÞÞ

›hj
j

›t

2 e2Y ð0Þ

ðCð0Þq
h
i þ C

h
i qð0ÞÞ

›h
h
j

›t

2 e2Y ð0Þ

ðC
j
i q

j
j þ C

h
i q

h
j Þ

›hð0Þ

›t

and

Qij ¼ 2
1

2
ðpj

i7hj
j þ p

h
i 7h

h
j þ pj

j7hj
i þ p

h
j 7h

h
i Þ

�

þzð5Þij 7ðhð0Þ þ zÞ

�
·nlG2

=pð0Þ

2 hij½ �a7ðh
ð0Þ þ zÞ�·nlG2

=pð0Þ ðE7Þ

zð5Þij ¼
1

2
Y ðjÞ

i Y ðjÞ
j þ

1

2
ðaih

h
j þ ajh

h
i Þ þ

1

2
Y
ðhÞ
i Y

ðhÞ
j
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