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Abstract5

Identification of the pumping influences at monitoring wells caused by spatially6

and temporally variable water-supply pumping can be a challenging, yet important7

hydrogeological task. The information that can be obtained can be critical for concep-8

tualization of the hydrogeological conditions and indications of the zone of influence of9

the individual pumping wells. However, the pumping influences are often intermittent10

and small in magnitude with variable production rates from multiple pumping wells.11

While these difficulties may support an inclination to abandon the existing dataset12

and conduct a dedicated pumping test, that option can be challenging and expen-13

sive to coordinate and execute. This paper presents a method that utilizes a simple14
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analytical modeling approach for analysis of a long-term water-level record utilizing15

an inverse modeling approach. The methodology allows the identification of pumping16

wells influencing the water-level fluctuations. Thus the analysis provides an efficient17

and cost-effective alternative to designed and coordinated multiple-well pumping tests.18

We apply this method on a dataset from the Los Alamos National Laboratory site.19

Our analysis also provides (1) an evaluation of the information content of the transient20

water-level data (to what extent the observed water-level transients are characterizing21

pumping influences), (2) indications of potential structures of the aquifer heterogeneity22

inhibiting or promoting pressure propagation, and (3) guidance for the development of23

more complicated models requiring detailed specification of the aquifer heterogeneity.24

Introduction25

Identification of the pumping influences at a monitoring well due to pumping at water-supply26

wells and respective estimation of the aquifer properties has traditionally been performed27

by analysis of a series of coordinated multiple-well pumping tests (i.e. coordinated events28

measuring the pressure influence at one or more monitoring wells while restricting pumping29

to a single pumping well; sometimes also referred to as cross-hole pumping tests). However,30

the planning and execution of these tests can be expensive and challenging. In many cases,31

it is logistically infeasible to cease water-supply pumping in the entire aquifer to conduct a32

dedicated pumping test (which includes pre- and post-pumping recovery periods) to eliminate33

influences from nearby water-supply wells. As advocated by Yeh and Lee (2007), existing34

datasets from monitoring well networks recorded during long-term pumping of water-supply35

wells provide an alternative to datasets generated by dedicated pumping test. Such datasets36

are frequently collected in monitoring-well networks established near contamination sites37

and municipal water-supply wells (Barnett et al., 2003; Gross , 2007; Mason et al., 2005; Hix ,38

2007; Koch and Schmeer , 2009). However, the pumping influences are often intermittent and39
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small in magnitude compared with water level fluctuations caused by other hydrogeologic40

mechanisms (for example, recharge transients), causing the identification of the pumping41

influences due to a complex spatially and temporally variable water-supply pumping regime42

to be difficult.43

The analysis may require the use of complicated computational models and involve large44

data sets that are challenging to process. Nevertheless, when compared to dedicated pump-45

ing tests, this approach provides some important advantages. First, the collected data are46

representative of the aquifer properties during existing water-supply conditions, while the47

aquifer properties obtained by pumping-test interpretations may need to be upscaled to48

be applied for simulation of the flow conditions under water-supply pumping. Second, the49

aquifer is typically stressed more intensively, due to the long-term pumping of multiple wells,50

with pressure influences affecting larger areas, providing better identification of pumping in-51

fluences causing small water-level fluctuations. Third, the effect of measurement errors on52

the modeling effort can be minimized due to the large number of observations and by re-53

peated pumping cycles often present in the long-term data record. Last, interpretation of54

transient water-level data at multiple monitoring wells influenced by transient pumping at55

multiple water-supply wells may provide information about the large-scale aquifer struc-56

tures. Furthermore, the analyses can be extended to provide a tomographic characterization57

of aquifer properties (e.g. Neuman (1987); Vesselinov et al. (2001); Straface et al. (2007)).58

The identification of the pumping influences at the monitoring wells can also be critical for59

conceptualization of the hydrogeological conditions at the site, and provide indications of60

the extent of the zone of influence of the individual pumping wells.61

Current trends in hydrogeology are focusing on data assimilation (Vrugt et al., 2005;62

Hendricks Franssen and Kinzelbach, 2008) and geostatistical inverse approaches (Certes and63

de Marsily , 1991; Gómez-Hernández et al., 1997; Alcolea et al., 2006; Harp et al., 2008)64

applied to distributed-parameter numerical models. These approaches possess the ability65
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to consider details of heterogeneous aquifer properties, and are therefore attractive to re-66

searchers desiring a detailed representation of aquifer properties. It has been recognized67

that these approaches suffer from numerical instabilities, equifinality of solutions (Beven,68

2000), low parameter sensitivities (Carrera et al., 2005), and computational inefficiencies.69

While these approaches are typically successful in matching simulations to observations, it70

is often unclear whether this demonstrates a realistic representation of aquifer properties,71

or is merely a demonstration that a mathematical model with enough degrees of freedom72

can simulate a set of observations (Beven, 2006; Grayson et al., 1992). Large efforts are73

underway to overcome the limitations of fitting distributed-parameter models, and their in-74

cisiveness will undoubtedly improve. This paper presents an alternative to the distributed75

model approach, using a minimally-parameterized analytical model. While this approach76

may be limited in its ability to represent heterogeneous aquifer properties, its benefits are77

computational efficiency and the ability to obtain incisive conclusions.78

von Asmuth et al. (2008) demonstrates the decomposition of multiple stresses using mini-79

mally parameterized models in a time-series analysis framework. Our research is in line with80

their approach, however, our approach is developed directly from concepts of parameter81

estimation and inverse modeling, and therefore, may be more interpretable to modelers.82

The decomposition of pressure influences requires a model with the ability to characterize83

the hydraulic response at a monitoring well due to transient pumping at the water-supply84

wells. Adequate characterization of the water-level transients requires calibration of the85

model in the form of parameter estimation. If the model is complicated with a large number of86

adjustable parameters, the calibration can become computationally demanding. As a result,87

the optimal parameter estimates may be difficult to identify and the parameter estimation88

may not have a unique solution (i.e. the inverse problem can become ill-posed) (Carrera et al.,89

2005). To avoid this, we attempt to use the simplest possible model that can be satisfactorily90

applied. We choose to use analytical methods here for simulating pumping influences at91
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the observation wells. The use of analytical methods makes the analysis consistent with92

pumping-test interpretations where analytical type-curve methods are commonly applied93

(Freeze and Cherry , 1979).94

Theis (1935) introduced an analytical solution of the general equation for flow of a95

Newtonian fluid in porous media for non-steady conditions (Theis solution). The Theis96

solution is valid for simplified hydrogeologic scenarios assuming a constant pumping rate,97

horizontal flow, transmissivity and storativity homogeneity, uniform thickness, and infinite98

lateral extents of the aquifer. The Theis type-curve method (Theis method), developed by99

Theis and described by Jacob (1940), was developed from this work as a means to graphically100

infer hydrogeologic properties from pumping test data. Cooper and Jacob (1946) simplified101

this approach using an approximation to the Theis solution valid at late pumping times when102

a quasi-steady state regime is established (Jacob’s method), eliminating the use of a Theis103

type curve. At quasi-steady state (also referred to as steady-shape), pressure gradients are104

steady, while pressures remain transient as second order terms become insignificant.105

Wu et al. (2005) investigated the behavior of hydraulic parameters estimated using the106

Theis solution. Based on numerical experiments using multi-Gaussian transmissivity and107

storativity fields, the authors demonstrated that the interpreted transmissivity is time de-108

pendent at early times, with estimates from different locations converging (decreasing from109

larger values) towards a similar value at late times. They also demonstrate a time dependency110

for interpreted storativity, with values converging (increasing at some locations, decreasing at111

others) towards distinct values relatively quickly. This late-time convergent behavior corre-112

sponds with research by Meier et al. (1998) and Sanchez-Vila et al. (1999), who investigated113

the meaning of hydrogeologic parameter estimates obtained from Jacob’s method numeri-114

cally and analytically, respectively. Straface et al. (2007) evaluated hydrogeologic parameter115

inference methods using the Theis solution on a dataset from Montalto Uffugo Alto, Italy.116

Based on their results, they question the validity of hydrogeologic property inference based117
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on the Theis solution. However, they do state that the Theis solution parameter estimates118

can be used as first estimates of hydrogeological parameters for a tomographic analysis.119

We employ the Theis solution as our groundwater model in order to maintain a simple and120

efficient pressure-source identification approach (for a similar approach utilizing the Hantush121

solution in a time-series analysis framework, see von Asmuth et al. (2008)). In doing so, we122

recognize that the parameter estimates will be affected by the early-time pre-stabilization123

period, and cannot be considered as accurate estimates of hydrogeologic properties. Instead,124

these estimates can be considered as interpreted cross-hole parameters that characterize the125

hydraulic response at a monitoring location due to pumping a well, analogous to parameters126

that would be obtained from dedicated cross-hole pumping tests often used to characterize127

the hydrogeology of an aquifer. Here the term ‘interpreted’ follows the convention proposed128

by Sanchez-Vila et al. (2006).129

This paper presents an approach to (1) fingerprint transient water-level variations to the130

pumping regime of individual water-supply wells and (2) estimate hydrogeologic characteris-131

tics using a computationally efficient analytical approach. Interpretation of the quantitative132

results from this approach can provide (1) indications of the large-scale structure inhibiting or133

promoting pressure propagation, (2) an evaluation of the information content in the calibra-134

tion data (i.e. to what extent the observed water-level transients are characterizing pumping135

influences), and (3) guidance for the development of more complicated and computationally136

demanding models possessing the ability to explicitly consider heterogeneity.137

As computational resources have become increasingly more powerful, the complexity138

and computational demand of models has proportionally increased. The concept of model139

parsimony is often lost or neglected in the quest to develop elaborate models that capture140

increasingly refined details of complexity. While complex models are required in certain141

applications, in other cases, a complex approach can mask fundamental insights that be-142

come obvious when the data are analyzed with models of minimal complexity. As noted143
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by Trinchero et al. (2008), this situation can be encountered by fully or partially specifying144

porosity heterogeneity, where transport connectivity information is lost within the estimation145

of the distributed porosity parameter. Alternatively, Trinchero et al. (2008) demonstrate how146

transport point-to-point connectivity information can be captured within the estimate of a147

homogeneous porosity parameter. Similarly, fundamental insights into aquifer flow charac-148

teristics can be obtained considering homogeneous transmissivity and storativity parameters,149

which would be lost in distributed estimates of these parameters. The research presented150

here demonstrates an analysis of pumping and water-elevation records using a relatively151

simple model that provides fundamental insights into the aquifer pressure response and is a152

first step toward development of more complicated aquifer models that aim to characterize153

the groundwater flow complexity and aquifer heterogeneity utilizing the same data.154

We demonstrate the proposed method using some of the pressure and water-supply pump-155

ing records from the regional aquifer at the Los Alamos National Laboratory (LANL) site156

located in north-central New Mexico, U.S.A.157

Methodology158

The goal of the analysis is to fingerprint transient water-level variations to the transients in159

the pumping regime of individual water-supply wells. To do this, we need a model that can160

simulate potential pumping influences at the monitoring wells (in time-series analysis, this is161

considered a transfer function (Box et al., 1994)). A simple theoretically-based model that162

can be applied is the Theis solution, defined as163

ŝp(t) =
Q

4πT
W (u) =

Q

4πT
W

(
r2S

4Tt

)
(1)

where ŝp(t) is the predicted drawdown due to pumping at time t since the pumping com-164

menced, Q is the pumping rate, T is the transmissivity, W (u) is the negative exponential165

7



integral (
∫∞
u e−y/y dy) referred to as the well function, u = r2S/4Tt is a dimensionless vari-166

able, r is radial distance from the pumping well, and S is the storativity. The assumption167

of homogeneity implicit in the Theis solution, discussed above, is apparent by the constant168

hydrogeologic parameters, T and S, in equation (1). Other assumptions implicit in the use169

of the Theis solution include (1) infinite aquifer extents, (2) fully penetrating wells, (3) con-170

fined conditions, and (4) two-dimensional flow. As discussed in the next section, while these171

assumptions are not strictly correct for our site application, arguments can be made for the172

use of the Theis solution here. It is important to note that more complicated analytical173

solutions accounting for partial well penetration, leakage effects, or three-dimensional flow174

could have been applied in our analyses as well, if the Theis solution had failed to identify175

the pumping influences adequately.176

In order to include multiple pumping wells and variable rate pumping periods in the177

Theis solution, the principle of superposition is invoked as178

ŝp(t) =
N∑

i=1

Mi∑
j=1

Qi,j −Qi,j−1

4πTi

W

(
r2
i Si

4Ti(t− tQi,j
)

)
(2)

where N is the number of pumping wells (sources), Mi is the number of pumping periods179

(i.e. the number of pumping rate changes) for pumping well i, Qi,j is the pumping rate180

of the ith well during the jth pumping period, ri is the distance to the ith well from the181

observation point, and tQi,j
is the time when the pumping rate changed at the ith well to the182

jth pumping period. The drawdown calculated by equation (2) represents the cumulative183

influence of the N pumping wells at a monitoring location.184

Note that Ti and Si are cross-hole parameters that characterize the influence of the ith185

pumping well at the observation location, conceptually similar to parameters that would186

be estimated from dedicated cross-hole pumping test analysis using the Theis method. As187

the significance of these parameters is limited by the assumptions of the Theis solution, we188
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consider them interpreted parameters, and should not be confused with effective parameters189

(i.e. associated with ensemble averages of state variables) or equivalent parameters (i.e.190

associated with spatial averages of state variables) (Sanchez-Vila et al., 2006).191

In order to account for a temporal trend, which was found to be necessary in some cases192

in this research (monitoring wells R-11 and R-28), we include an additional drawdown term193

ŝt(t) as194

ŝt(t) = (t− to) ∗m (3)

where to is the time at the beginning of the considered pumping record and m is the linear195

slope parameter defining the temporal trend of the water level not attributable to pump-196

ing. Linear and exponential temporal trends were evaluated here (analysis not presented)197

indicating that a linear trend is more plausible. While the temporal trend may be more198

complicated in reality, the linear trend is assumed to be sufficient for the pumping influ-199

ence identification presented here without the risk of over-calibrating the model with more200

complicated functions describing the trend.201

As the calibration targets are water elevations as opposed to drawdowns, we define the202

predicted water elevation ĥ(t) at time t as203

ĥ(t) = ĥo − ŝp(t)− ŝt(t) (4)

where ĥo = ĥ(0) (i.e. the simulated head at to) and is defined as the initial predicted water204

elevation at the observation well at the time the pumping begins. In order to account for205

pumping prior to the initiation of water-level monitoring, we include prior pumping records206

in the model. It is important to note that ho is not the first water level observed at the207

commencement of water-level monitoring at the well. It is a computational parameter that208

reflects the simulated water level at the beginning of the water-supply pumping record (>2209
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months prior to the commencement of water-level monitoring; see Site Data section for210

details on monitoring and pumping record dates) which provides an optimal matching of the211

observed water levels. Additional analyses, not presented here, indicated that the inclusion212

of earlier pumping records had negligible impact on the identification results.213

Model calibration is performed using a Levenberg-Marquardt approach (Levenberg , 1944;214

Marquardt , 1963) where the objective function is defined as215

Φ(θ) =
n∑

i=1

[h(ti)− ĥ(ti)]
2 (5)

where θ contains the interpreted cross-hole parameters of Ti and Si associated with each216

pumping well and ĥo associated with the monitoring location of interest, and n is the number217

of head observations, h(ti), included as calibration targets, where i is an observation time218

index.219

The simulation of the drawdowns is performed using the WELLS code (available for220

download at Vesselinov (2009); example files and user instructions are provided) which221

implements equation (4). The calibration is performed using PEST (Doherty , 2004).222

Site Data223

The regional aquifer beneath the LANL site is a complex stratified hydrogeologic structure224

which includes unconfined zones (under phreatic conditions near the regional water table)225

and confined zones (the deeper zones) (Vesselinov , 2004a,b). The aquifer is composed of226

volcanic fields consisting of fractured basalts and dacites that overlie and interfinger basin-227

fill sedimentary rocks (Broxton and Vaniman, 2005). At the regional scale, groundwater228

flow occurs in both fractured rock and alluvial sediments. However, at the scale of the study229

area (Figure 1) the groundwater flow is predominantly in sedimentary rocks. The three230

monitoring wells considered in this analysis are screened near the top of the aquifer with an231
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average screen length of 11 meters. The water-supply wells partially penetrate the regional232

aquifer with screens that begin near the top of the aquifer, but penetrate deeper with an233

average screen length of 464 meters. Nevertheless, field tests demonstrate that most of the234

groundwater supply is produced from a relatively narrow section of the regional aquifer that235

is about 200-300 m below the regional water table (Los Alamos National Laboratory , 2008).236

Due to concerns related to the migration of potential LANL-derived contaminants in237

the subsurface, a complex monitoring network is established in the regional aquifer beneath238

LANL. The network includes 92 regional monitoring wells with a total of 336 monitoring239

screens (Allen and Koch, 2008). At each screen, water-level fluctuations are automatically240

monitored using pressure transducers. In addition, water samples are collected for geochem-241

ical analysis. The aquifer beneath LANL is an important source of water for LANL and242

neighboring municipalities. There are 7 water-supply wells in close vicinity to the study243

area; 18 more water-supply wells are located nearby. The ultimate goal is to incorporate all244

these data in the development and calibration of the regional aquifer model. Here we analyze245

only a subset of the data from water-supply and monitoring wells, limiting our analysis to246

an area of current interest at the LANL site. While other pumping wells do exist on or near247

the LANL site, they are located at a sufficient distance that their influence is not observed248

at the monitoring wells evaluated here. The pressure and water-supply pumping records249

considered here are collected from 3 monitoring wells (R-11, R-15 and R-28) and 7 water-250

supply wells (PM-1, PM-2, PM-3, PM-4, PM-5, O-1, and O-4) located within the LANL251

site. Figure 1 displays a map of the spatial location of the wells and Table 1 tabulates the252

distances between monitoring and water-supply well pairs. Figure 2 presents the pressure253

and production records for the monitoring wells and water-supply wells, respectively.254

Implicit in the use of the Theis solution is that the groundwater flow is two-dimensional.255

We assume that this is a justifiable assumption here given the small magnitude of observed256

drawdowns (less than 2 m at the monitoring wells and less than 20 m at the water-supply257

11



wells), the relatively long distances between supply and monitoring wells (more than 1 km;258

Table 1) compared to the effective aquifer thickness (about 200-300 m). The water-supply259

wells are screened in the deep aquifer zones that are predominantly under confined conditions.260

The three observation wells are screened in the shallow aquifer zones, near the regional water-261

table. Therefore, the groundwater flow in the zones between the pumping and observation262

wells is expected to be predominantly under confined conditions. Even if there are some263

characteristics of unconfined flow, the small magnitude of the drawdowns compared to the264

aquifer thickness justifies the use of Theis equation in this case. Future analyses will address265

the three-dimensionality of the groundwater flow and complex hydrostratigraphy of this266

aquifer.267

Some of the groundwater pumped at the water-supply wells is derived from aquifer stor-268

age. However, due to seasonality of the water demands, there is substantial recovery in the269

low pumping periods (typically in January-February). When the water-supply wells are not270

used for significant periods of time, water-levels at the pumping wells recover to levels close271

to pre-pumping levels (Koch and Schmeer , 2009). The water-supply wells also capture some272

of the ambient flow that occurs in the regional aquifer between the zone of mountain-front273

recharge (approximately due west from the study area) and the zone of regional basin dis-274

charge (approximately due southeast of the study area) (Vesselinov , 2004b). The pressure275

fluctuations at the monitoring wells due to pumping are superposed on the ambient ground-276

water flow between these regional boundaries. The pressure fluctuations are not expected277

to be influenced by boundary effects due to aquifer properties and separation distances be-278

tween the wells (pumping and monitoring) and the recharge/discharge zones (on the order279

of several kilometers) (Vesselinov , 2004b). However, changes in the recharge and discharge280

conditions at these regional boundaries may be causing the observed long-term decline of the281

water-levels. Such a decline of the water-levels has been observed at monitoring wells that282

are far from pumping wells (Koch and Schmeer , 2009). As a result, the pumping influences283
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are superimposed on the ambient flow structure.284

The water-level observation data considered here span nearly five years, commencing285

on or shortly after the date of installation of pressure transducers (May 4, 2005 for R-11;286

December 23, 2004 for R-15; February 14, 2005 for R-28), including records up to October287

31, 2009. The barometric pressure fluctuations are removed using constant coefficient meth-288

ods with 100% barometric efficiency (LANL, 2008) for all monitoring wells. Although the289

pressure transducers collect observations every 15 minutes, this dataset is reduced to single290

daily observations by using the earliest recorded measurement for each day. A single daily291

measurement is used as opposed to a daily average as barometric corrections are more com-292

plicated for average values, especially when data are missing. Some daily observations have293

been excluded due to equipment failure. The barometric-corrected water levels fluctuate over294

the five year period approximately 1 meter for R-11 (1642 daily records), 2 meters for R-15295

(1774 daily records), and 1 meter for R-28 (1220 daily records). Seasonal trends are apparent296

in the water level data showing a general increase in the rate of decline during the summer297

months and recovery during the winter. The seasonal variations correlate well with seasonal298

variation in water-supply pumping, and, given the thickness of the unsaturated zone, are not299

expected to be caused by seasonal precipitation and/or evaporation. Similarities are evident300

for water-level observations at R-11 and R-28 providing an initial indication that there is a301

region of similar hydrogeological properties around these two monitoring wells.302

Considered pumping records for all pumping wells begin on October 8, 2004 and terminate303

on October 31, 2009. The pumping record precedes the water-level calibration data to include304

any pumping influences before the water-level data collection commenced. As mentioned305

above, inclusion of earlier pumping records did not significantly alter the pumping influence306

identification results. The number of pumping-rate changes for each well are: PM-1 – 3147;307

PM-2 – 1727; PM-3 – 2001; PM-4 – 689; PM-5 – 2805; O-1 – 41; and O-4 – 3318. Daily308

volumetric production values are converted to time intervals of pumping using the constant309
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pumping rates for each well for use in the forward models.310

Drawing correlations between pressure and pumping transients from a visual comparison311

of the plots in Figure 2 is difficult, except perhaps an apparent influence of PM-4 pumping on312

monitoring well R-15 (indicating that point-to-point flow connectivity is likely an important313

characteristic of the aquifer). Therefore it is essential to fingerprint the water level transients314

to the pumping records in order to determine the hydraulic connections within the aquifer.315

In the applied computational framework, forward model run times for predicting water316

elevations at R-11, R-15, and R-28 are approximately 9 seconds on a 3.0 GHz Intel processor.317

Inversions initiated with uniform initial parameter values require approximately 600 model318

runs and, using a single processor, are performed for approximately 1 hour and 40 minutes.319

Results and Discussion320

The inversions for each monitoring well are performed separately so that the calibration can321

focus on identifying the pressure influences in the water-level transients for an individual322

monitoring location. Simultaneous inversion of the calibration data from all the monitor-323

ing wells is also possible, and would be the desired approach for the estimation of aquifer324

heterogeneity and effective aquifer properties; this will be the subject of future analyses.325

However, such analyses are expected to rely on more complicated methods for simulation of326

the pumping responses of the aquifer.327

Figures 3, 4, and 5 present the decomposed drawdown contributions from the water-328

supply wells for monitoring wells R-11, R-15, and R-28, respectively. The associated water-329

supply pumping record is plotted along with each drawdown contribution to illustrate the330

calibrated pressure influence at the monitoring wells attributed to each water-supply well.331

The observed and simulated pressure transients for the associated monitoring well are plotted332

along the top of Figures 3, 4, and 5 for reference. Pumping wells that are not included in333

14



the figures were assigned values by the calibration algorithm which resulted in negligible334

drawdown. In other words, these wells were effectively “shut off” by the calibration as335

parameter values resulting in drawdown that improved the matching of observations could336

not be identified for these wells. To further ensure that the pumping influences of these wells337

could not be fingerprinted at the monitoring location, additional calibrations were performed338

focusing on each “shut off” well individually using sets of alternative initial guesses for the339

optimized parameters. In all cases, the calibration adjusted the parameters of these wells340

to values resulting in negligible drawdown again (details of these analyses are not presented341

here), providing further indication that the calibration is unable to fingerprint the pressure342

influence of these pumping wells at the respective monitoring well.343

The model identifies a temporal trend of groundwater decline for wells R-11 and R-28344

(0.075m/a and 0.078m/a, respectively), but not for R-15 (i.e. the calibration assigned a345

negligible value to the slope parameter m in equation (3) for R-15; m < 10−6m/a). The346

declining trend is needed in addition to the drawdown contributions from the individual347

supply wells for R-11 and R-28 to adequately predict the overall drawdown. Note that R-11348

and R-28 water levels appear to be impacted by similar trends. The cause of this temporal349

trend has not been identified, but it may be related to factors not directly related to the350

water-supply pumping (e.g. reduction in aquifer recharge). The reason that a similar trend351

is not identified at R-15 is not well understood at the moment, but may be due to the352

differences in the local hydrogeologic conditions at these wells.353

It is apparent that the inversions identify, or fingerprint, the pumping records from PM-2,354

PM-3, and PM-4 as influencing the water-level observations at each of the monitoring wells,355

while PM-5 pumping is identified to influence R-15. This analysis also suggests that there356

is a lack of point-to-point flow connectivity between O-4 and the monitoring wells. This357

is somewhat surprising considering the well locations and the substantial water production358

at O-4. It appears that similar hydrogeologic conditions may exist to the east of PM-359
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3, given the lack of pressure influence attributed to PM-1. The aquifer features causing360

these differences in flow connectivity will be investigated further with more complex models361

capable of explicitly considering spatial aquifer heterogeneity and three-dimensionality of362

groundwater flow.363

Autocorrelation plots of the residuals are presented in Figure 6. The difference in the lag364

length evaluated for each monitoring well reflects the difference in continuous record lengths.365

It is apparent that the residuals are autocorrelated at some lags, indicating influences which366

cannot be attributed to pumping or linear temporal trends. Since the pumping records367

are the only reliable quantitative indications of stresses applied to the aquifer, we do not368

consider these residual autocorrelations easily reducible. Residuals between observed and369

model predicted water-levels might also be caused by systematic errors in the calibration370

data set; for example, barometric pressure effects might not have been entirely removed from371

the calibration data set. It should also be noted that the existence of these autocorrelations372

in residuals of relatively small magnitude (on the order of centimeters) does not indicate an373

inability to identify the pumping influences on the water-level transients.374

Table 2 contains interpreted cross-hole transmissivity and storativity parameters ob-375

tained from the calibrations presented in Figures 3, 4, and 5. The linear 95% confidence376

intervals for the log (base 10) transformed values are presented. These confidence intervals377

serve as an approximation based on an assumption that the applied model is linear and the378

residuals are unbiased and Gaussian (Doherty , 2004). As these assumptions are not valid379

here, the actual nonlinear 95% confidence intervals are expected to be slightly larger. As380

discussed previously, these parameters characterize the hydraulic response between pump-381

ing and monitoring wells within the context of the Theis solution, conceptually similar to382

estimates that would be obtained by analysis of dedicated cross-hole pumping tests using383

the Theis type curve approach. Unrealistic values for storativity are expected, and should384

not be considered as estimates of actual storativity. These interpreted storativities may pro-385
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vide indications of point-to-point flow connectivity (i.e. large/small S indicates low/high flow386

connectivity) (Meier et al., 1998; Sanchez-Vila et al., 1999; Trinchero et al., 2008), however,387

drawdown calculations performed outside of the Cooper-Jacob constraint are expected to388

cause additional variations in these values (Wu et al., 2005).389

Due to nonlinear effects not captured in the Theis solution (unconfined flow, leakance,390

aquifer heterogeneity), different values for these parameters may be obtained if pumping391

records with a substantially different regime are evaluated (e.g. higher or lower pumping392

rates, long recovery periods, etc.). For example, we performed analyses similar to those393

presented here, utilizing shorter data record periods. Using approximately two- and three-394

year data records produced different estimates for the parameters (within three-quarters of395

an order of magnitude difference for interpreted transmissivities); however, the identification396

of the pumping wells influencing a monitoring location remained the same despite the length397

of the record evaluated. Additional analyses will be performed in the future to evaluate the398

impact of data record length on the estimation of interpreted parameters.399

Conclusions400

The approach described in this paper allows the identification of pressure-influence sources at401

a monitoring location utilizing existing long-term pumping and water-elevation records. This402

type of dataset is often available from monitoring-well networks established near municipal403

water-supply well fields. The approach provides fingerprinting of pumping influences in404

pressure transients to identify drawdown contributions from individual water-supply wells405

and information about the zone of influence of individual pumping wells. The presented406

analysis is computationally efficient due to the utilization of a simple analytical model,407

which facilitates the processing of large amounts of data associated with long-term records.408

The same analysis will be computationally very demanding and potentially not effective409
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using more complex models representing details of the aquifer heterogeneity. Utilization410

of such datasets provides several advantages over conducting dedicated cross-hole pumping411

tests, including the ability to consider long-term records with multiple variable pumping412

regimes. Interpretation of the results can provide (1) indications of large-scale hydrogeologic413

structures within the aquifer inhibiting or promoting pressure propagation and (2) guidance414

for the development of more complicated models requiring detailed knowledge of aquifer415

heterogeneity.416

Utilizing this approach on a dataset from the LANL site has indicated that (1) relatively417

small magnitude water-level transients do not preclude our ability to identify the pumping418

wells influencing water levels at a monitoring location and (2) water-levels at some of the wells419

exhibit a declining temporal trend that cannot be directly attributed to any of the pumping420

wells. Future work will include more complicated analytical solutions that can account for421

partial penetration of pumping and observation wells, aquifer anisotropy, three-dimensional422

flow, and leakage from overlying strata. Future work will also include data from additional423

monitoring wells, coupled inversions (i.e. inversions including data from multiple monitoring424

wells simultaneously), spatial analysis of aquifer heterogeneity utilizing numerical models425

based on tomographic techniques, and characterization of the three-dimensional structure of426

aquifer heterogeneity and groundwater flow.427

The results also provide guidance for development of more complicated numerical models428

of the site. Our analyses suggest that numerical models characterizing the aquifer hetero-429

geneity will benefit substantially if the long-term pumping and water-level records are incor-430

porated in the calibration process. The spatial representation of the aquifer heterogeneity431

should be (1) capable to represent the identified large-scale aquifer structures and (2) with432

resolution sufficient to represent the differences in the water-level transients at R-15 and433

R-11/R-28. The model should also be capable of accounting for water-level declines that434

may not be directly associated with pumping transients. The results show that it is critical435
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to account for the three-dimensional structure of the groundwater flow.436
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Tables545

PM-1 PM-2 PM-3 PM-4 PM-5 O-1 O-4

R-11 2399.8 2902.7 803.6 1929.9 2439.5 3007.2 1367.7

R-15 3787.7 2434.7 2252.2 1081.0 986.0 4460.3 1566.7

R-28 2666.7 2522.4 1154.3 1506.3 2103.8 3384.8 1500.2

Table 1: Distances between pumping and monitoring well pairs in meters, where the row

headings indicate the monitoring wells and column headings indicate the pumping wells.

Hydrogeologic

Property

Monitoring

Well

Pumping well

PM-1 PM-2 PM-3 PM-4 PM-5 O-1 O-4

Interpreted

transmissivity

log10[m2/d]

R-11 - 4.25± 0.09 3.41± 0.03 3.14± 0.02 - - -

R-15 - 3.55± 0.04 3.40± 0.05 2.96± 0.01 3.52± 0.06 - -

R-28 - 4.43± 0.14 3.50± 0.04 3.44± 0.02 - - -

Interpreted

storativity

log10[−]

([−])

R-11 - −1.69± 0.18 −0.25± 0.02 −1.06± 0.01 - - -

- (0.020) (0.562) (0.087) - - -

R-15 - −2.09± 0.07 −1.41± 0.04 −1.66± 0.01 −1.07± 0.07 - -

- (0.008) (0.039) (0.022) (0.085) - -

R-28 - −1.72± 0.34 −0.70± 0.03 −1.23± 0.02 - - -

- (0.019) (0.200) (0.058) - - -

Table 2: Interpreted cross-hole parameters from model inversions. Log (base 10) transformed

values and their associated linear 95% confidence interval are presented. Non-transformed

storativities are presented in parenthesis for ease of interpretation. Dashes indicate in-

terpreted parameters that the calibration assigned values resulting in negligible drawdown

(T > 106 and S > 0.03), effectively eliminating the influence of the pumping well at the mon-

itoring well. The linear slope parameters describing the temporal trend (not attributable to

pumping) at R-11, R-15, and R-28 (not presented in the table) are -0.075 m/a, 0 m/a, and

-0.078 m/a, respectively.
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Figure Captions546

Figure 1. Map of observation wells (circles) and water-supply wells (stars) included in the

analysis.

Figure 2. Water elevations at monitoring wells and production records for water-supply

wells.

Figure 3. Top plot: simulated (black) and observed (gray) water elevations for R-11 model

inversion. Second plot: residuals between simulated and observed values. Bottom plots:

predicted drawdown contributions (black lines) from individual pumping wells, plotted with

their associated pumping record (gray bars), and temporal trend required to reproduce the

total predicted drawdown at R-11.

Figure 4. Top plot: simulated (black) and observed (gray) water elevations for R-15 model

inversion. Second plot: residuals between simulated and observed values. Bottom plots:

predicted drawdown contributions (black lines) from individual pumping wells, plotted with

their associated pumping record (gray bars), required to reproduce the total predicted draw-

down at R-15.

Figure 5. Top plot: simulated (black) and observed (gray) water elevations for R-28 model

inversion. Second plot: residuals between simulated and observed values. Bottom plots:

predicted drawdown contributions (black lines) from individual pumping wells, plotted with

their associated pumping record (gray bars), and temporal trend required to reproduce the

total predicted drawdown at R-28.
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Figure 6. Residual autocorrelations for the monitoring wells.
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Figures547
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Figure 1: Map of observation wells (circles) and water-supply wells (stars) included in the

analysis.
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Figure 2: Water elevations at monitoring wells and production records for water-supply

wells.
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Figure 3: Top plot: simulated (black) and observed (gray) water elevations for R-11 model

inversion. Second plot: residuals between simulated and observed values. Bottom plots:

predicted drawdown contributions (black lines) from individual pumping wells, plotted with

their associated pumping record (gray bars), and temporal trend required to reproduce the

total predicted drawdown at R-11.
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Figure 4: Top plot: simulated (black) and observed (gray) water elevations for R-15 model

inversion. Second plot: residuals between simulated and observed values. Bottom plots:

predicted drawdown contributions (black lines) from individual pumping wells, plotted with

their associated pumping record (gray bars), required to reproduce the total predicted draw-

down at R-15.
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Figure 5: Top plot: simulated (black) and observed (gray) water elevations for R-28 model

inversion. Second plot: residuals between simulated and observed values. Bottom plots:

predicted drawdown contributions (black lines) from individual pumping wells, plotted with

their associated pumping record (gray bars), and temporal trend required to reproduce the

total predicted drawdown at R-28.
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Figure 6: Residual autocorrelations for the monitoring wells.
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