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Abstract
Modern ground water characterization and remediation projects routinely require calibration and inverse anal-

ysis of large three-dimensional numerical models of complex hydrogeological systems. Hydrogeologic complex-
ity can be prompted by various aquifer characteristics including complicated spatial hydrostratigraphy and aquifer
recharge from infiltration through an unsaturated zone. To keep the numerical models computationally efficient,
compromises are frequently made in the model development, particularly, about resolution of the computational
grid and numerical representation of the governing flow equation. The compromise is required so that the model
can be used in calibration, parameter estimation, performance assessment, and analysis of sensitivity and uncer-
tainty in model predictions. However, grid properties and resolution as well as applied computational schemes
can have large effects on forward-model predictions and on inverse parameter estimates. We investigate these ef-
fects for a series of one- and two-dimensional synthetic cases representing saturated and variably saturated flow
problems. We show that ‘‘conformable’’ grids, despite neglecting terms in the numerical formulation, can lead to
accurate solutions of problems with complex hydrostratigraphy. Our analysis also demonstrates that, despite slow-
er computer run times and higher memory requirements for a given problem size, the control volume finite-
element method showed an advantage over finite-difference techniques in accuracy of parameter estimation for
a given grid resolution for most of the test problems.

Introduction
The motivation for this work is from the authors’

experience in the Yucca Mountain (Nevada) and Espanola
Basin (New Mexico) projects. Large three-dimensional
numerical models exist for ground water flow in both the
unsaturated and saturated zone at the Yucca Mountain
potential repository area (Zyvoloski et al. 2003; Liu et al.
2003). A large basin-scale numerical model also exists for
the Espanola Basin (Keating et al. 2003). These models
are used to provide quantitative estimates of water flow
and potential contaminant transport in the subsurface.
Computer models of similar complexity exist for the large

remediation efforts at the Savannah River (Flach et al.
1996), Hanford (Cole et al. 1997), Cape Cod (e.g., Barlow
1994), and the MADE site (e.g., Rehfeldt et al. 1992), to
name just a few. Though these sites may occur in differ-
ent hydrogeologic settings, the settings themselves
are complicated and may include many different hydro-
geologic units through which fluids and contaminates can
flow, and also the possibility of flow and transport
through different portions of the medium (double poros-
ity/double permeability) at different spatial and temporal
scales. The purpose of these models is to predict an
unknown state of the system in the past or the future,
e.g., time at which a contaminant will reach a compliance
boundary or contaminant concentrations will exceed the
EPA standard at some observation well. The quantitative
nature of this analysis requires the evaluation of errors
and uncertainties associated with the models.

There are various types of uncertainty associated
with the model predictions. The uncertainties can be
categorized into three groups related to three different as-
pects (steps) of model development: conceptual model,
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representation of the conceptual model in the numerical
model, and model parameters. There is a long list of pub-
lications related to the uncertainties associated with
model parameters (cf. McLaughlin and Townley 1996; de
Marsily et al. 2000; and references therein). Recently,
there have also been attempts to address the conceptual
model component in the uncertainty of model predictions
(e.g., Gaganis and Smith 2001; Neuman 2003). In this
study, we investigate the impact of numerical representa-
tion of the conceptual model, particularly the impact of
the grid properties and resolution. In advective-dispersive
transport simulations, numerical dispersion is pro-
portional, in simple upwinding schemes, to the size of
grid cells. Less intuitive are errors associated with the
flow solution and representation of permeability or topo-
graphic structure. Sinton (1998), for example, found con-
siderable differences in the numerical flow solutions
when a problem with dipping hydrostratigraphy is solved
using computational grids of different resolution. In con-
trast to the other sources of uncertainty, the model uncer-
tainty associated with numerical grid errors can often be
dealt with a priori.

The computational grid errors are associated with
numerical grid resolution, the representation of perme-
ability structure on a numerical grid, and differencing
method used. These errors can be interrelated. For exam-
ple, in an effort to represent a spatially varying perme-
ability structure on a relatively coarse grid (CG),
conformable (also called ‘‘deformable’’) layers can be
used (McDonald and Harbaugh 1988; Kautsky et al.
2001; Lemon and Jones 2001). This technique com-
promises the accuracy and convergence properties of the
applied numerical difference scheme because it employs
finite-difference (FD) cells with variable vertical thick-
ness to approximate the variable thickness of hydrostrati-
graphic units with structured grids (structured grids use
a constant number of cells in all the Cartesian coor-
dinates). The scheme assumes that the computational grid
is orthogonal and therefore it does not account for the
additional terms associated with nonorthogonal grids.
Although the conforming FD scheme allows for a better
representation of the model domain and properties, it in-
troduces numerical errors associated with the missing
(nonorthogonal) parts of the differencing scheme when
used with an FD code like MODFLOW (McDonald and
Harbaugh 1988). This limitation in MODFLOW is explic-
itly mentioned in the manual (McDonald and Harbaugh

1988, 2–31) but rarely taken into account. Thus, these
conformable schemes seem to improve the representational
error associated with the permeability structure while in-
troducing a numerical differencing error. This is different
from the truncation error associated with grid size and
contains a component proportional to the deviation of the
grid from being orthogonal. The errors induced by con-
forming grids were previously studied by Weiss (1985),
Harte (1994), Hoagland and Pollard (2003), and Bower
et al. (2004). They concluded that the appropriate grid
size could be determined a priori for a given problem. To
evaluate the usefulness of ‘‘conformable layers,’’ it is im-
portant to understand the errors associated with this emerg-
ing technology and how the grid angle affects the results.

Examples of structured grids are presented in
Figure 1. Figure 1a shows an orthogonal computational
grid applied to represent flow to a well through a layered
domain. Figure 1b shows a nonorthogonal grid represen-
tation applied to represent complex geometry of various
hydrostratigraphic units. Here, the grid cells lack the
orthogonality to support the standard 5-point FD stencil.
Note the steep slopes of the boundaries separating differ-
ent hydrostratigraphic units.

There are various techniques and software packages
for mapping the geological models on the computation
grids as done in Figure 1. For MODFLOW, popular pack-
ages are T-PROGS, HUF, GMS, and VisualMODFLOW.
Another approach is to use the code LaGriT (George et al.
1999), which uses various techniques to map the geologic
model on the computational grid. The geologic model is
constructed using StrataModel, EarthVision or other simi-
lar programs. The latter approach is commonly used in
numerical models based on finite-element heat and mass
(FEHM).

It is important to note that even though sometimes
ignored in regional ground water modeling studies, unsat-
urated flow and transport can be important to saturated
flow and transport. Ground water recharge and contami-
nant flowpaths are frequently associated with flow and
transport through an unsaturated zone. The errors dis-
cussed previously are important in large-scale problems
in the saturated zone largely because of the complexity,
on a basin scale, of the permeability. These errors may be
even more important in near–ground surface applications
where the topographic, unsaturated flow and phreatic
aquifer effects can lead to unreasonable compromises
being made in grid generation and numerical methods.

Figure 1. Examples of grids where resolution and discretization method are important: (a) radial flow to a well, (b) conforming
grid blocks (Lemon and Jones 2001).
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That is why in this study we also investigate the impact
of the computational grid on flow and transport through
variably saturated media as well. The analysis is per-
formed using two-phase flow simulations, but a similar
impact can be expected if the simulations were performed
for the saturated flow only but taking into account the
water table movement (as it can be performed in codes
such as FREESURF [Neuman and Witherspoon 1970;
Neuman 1976] and MODFLOW [using the wetting/
drying package]).

In this study, we demonstrate the impact of grid
properties and resolution on the inverse estimates of
model parameters and the respective model predictions.
We do this for a series of one- and two-dimensional syn-
thetic cases. We make conclusions about the grids that
should be preferred in the model development. We also
rank the errors associated with numerical grid resolution
and differencing method based on their impact on the
inverse estimates. The proposed methodology can be
used to test the impact of grid resolution on the inverse
model parameter estimates before the model is calibrated
to the real data.

To address the impact of grid effects on the model
results, it is also possible to analyze only what is the
impact of the differences in the grid resolution on the for-
ward-model solutions. However, in practice, it is much
more important to analyze how the errors associated with
the grid effects impact the respective inverse estimates.

Methodology
To investigate the grid effect, we perform a series of

inverse analyses (parameter estimation) estimating model
parameters. Different inverse analyses use different grid
resolution and computational schemes. We evaluate the
impact of grid effects by comparing estimated model pa-
rameters and the ‘‘true’’ parameter values. The calibration
targets for the inverse analyses are obtained using the
true parameter values in numerical models with very fine
grids (VFGs). We also compare respective forward-model
predictions based on the different calibrated models.
We analyze one- and two-dimensional problems for fully
saturated and variably saturated (saturated/unsaturated)
flow. The computer codes used in the study are the con-
trol volume FEHM transfer code (Zyvoloski et al. 1997)

and the automated parameter estimation code PEST
(Doherty 2000). The code FEHM uses finite-volume and
finite-element computational techniques with general
unstructured grids. The finite-volume capability allows
the code to be used to solve FD and conforming finite-
difference (CFD) grids as well. In these cases, the major
difference between MODFLOW and FEHM is that
FEHM does not account for the structured nature of the
grid and solves the problem as if the grid is unstructured.
This increases the computational time and memory re-
quirements when compared to MODFLOW.

The computational (differencing) schemes analyzed
in our study are presented in Figure 2. The standard FD
method is shown in a context of sloping hydrostrati-
graphic units (Figure 2a). Also shown is an example for
application of the conforming CFD formulation to repre-
sent the sloping layer (Figures 2b). Even though the
method allows for tracking on complex spatial hydro-
stratigraphy (as also shown in Figure 1b), it is mathemati-
cally inaccurate. It introduces a systematic error
proportional to the grid angle, and this error persists
regardless of the grid resolution. CFD formulations are
available in many FD ground water flow computer codes,
including MODFLOW. The control volume finite-element
(CVFE) method for a sloping layer is shown in Figure 2c.
This method can accurately represent complex stratig-
raphy and is mathematically convergent and does not
introduce systematic errors due to missing connections
(Forsyth 1989). The drawback for the CVFE method is
that it contains more connections, ~50% more for the
examples given here, and thus uses more computer mem-
ory and time to complete the simulations. For unsaturated
zone simulations, the nonlinearities of the relative perme-
ability require a positive connection term for numerical
stability of the upwinding scheme. In a vertical plane with
a slanted grid following a sloping geologic contact, the
easiest way to ensure positive connection terms is to use
the CFD stencil and thus simply ignore any additional
terms that would arise from the nonorthogonal nature
of the grid. The numerical truncation error in this ap-
proach is proportional to the grid angle and would appear
to be small only for gently sloping units. The CVFE
scheme adds the necessary connections while ensuring
positive connection terms assuming certain grid con-
straints are met.

(a) (b) (c)

Figure 2. Difference stencils used for representation of layered hydrostratigraphy: (a) FD, (b) CFD in case of sloping layers,
and (c) CVFE.
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The discrete equations that describe the material
balance equations are the same for FD, CVFE, and CFD
formulations (shown here for water):
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Where V is the control volume, A is the facet area,
d is the internodal distance, and z is the elevation. The
symbols i and j refer to the grid block and neighbor
nodes, respectively. Additionally, g is the acceleration due
to gravity, q is density, / is porosity, P is pressure, l is
viscosity, �t is the time step size, and n refers to the time
step level. Source or sink terms and boundary conditions
will modify the previous equation.

Forsyth (1989) compares the FD and CVFE equa-
tions formulation. Each method requires a control volume
with consistent and positive areas. For FD methods, con-
trol volumes are orthogonal rectangles or hexahedrals; all
interface areas are well defined. The CVFE method,
besides the FD control volumes, allows for triangular,
tetrahedral, parallelogram, and nonorthogonal hexahedral
control volumes. These control volumes have rules (e.g.,
the Voronoi or Delauney conditions) governing the facet
angles in order to produce positive area coefficients. In
particular, Young (1999) showed that a relationship exists
between grid size in the coordinate directions and the grid
slope to maintain positive face areas for corner terms.
Rozon (1989) showed that the CVFE method produced the
standard FD difference equations when applied to orthog-
onal grids. The corner terms in the analysis given by
Young (1999) are missing in the CFD formulation. The
size of these terms and indeed their sign is a function
of grid angle. We note here that the traditional Finite
Element scheme, with nodal connection terms computed
from interpolation functions, have no inherent control on
the sign of the connection terms. We note also that the
flux continuous FD formulation of Lee et al. (1999) will
automatically produce the additional connections for non-
orthogonal dipping grids. The method, however, is not
easily implemented in standard FD computer codes.

Test Models, Results, and Dicussion

One-Dimensional Saturated Radial Flow
To investigate the grid resolution effects, we analyze

well test data using an inverse flow model. The numerical
flow domain represents one-dimensional radial flow in
the vicinity of an injection well. The model parameters
are given in Table 1. The aquifer is confined with unknown
permeability. The specific storage is assumed to be known.
The transient changes in the hydraulic pressures are re-
corded at the injection well. The transient calibration targets
are computed assuming permeability equal to 10212 m2,
specific storage equivalent to water compressibility

(5.7 3 1026 m21), and using a numerical model with
a very fine one-dimensional radial grid. Eleven synthetic
observation data points are generated representing tran-
sient pressures at radial position 0.05 m and times equal
to 0.01, 0.02, 0.03, 0.05, 0.1, 0.2, 0.3, 0.4, 0.6, 0.8, and 1
d. Since we have used VFG, we do not expect to intro-
duce numerical errors in the calibration targets. This
numerical solution is within 1% of the equivalent Theis
solution. The maximum drawdown at the well is 0.01 m;
the imposed gradients are very small.

To examine the effect of grid resolution on perme-
ability estimates, eight one-dimensional grids are studied.
For all the grids the first grid block where the producing
well is located equals 0.0005 m. The number of grid
blocks range from 35 to 10,000 in the radial direction
(Table 1). Four of the grids are geometrically spaced from
0.005 m spacing to large spacing and four are kept at con-
stant spacing (except for the first grid block as explained
previously). While it may seem obvious to use geo-
metrical spacing for better accuracy in this example, the
analysis here helps in the understanding of transient anal-
ysis and calibration in the context of a large model where
it is difficult to use geometrical grid spacing near wells.
In these cases, uniform grid spacing is commonly em-
ployed near the wells.

The results are presented in Table 2. All the inverse
solutions produce good matches between observed and
simulated transient pressures; the sum of squared re-
siduals (SSR) for each of the calibrations is less than
1024 m2 (Table 2), i.e., smaller than the discrepancy
between numerical and analytic solutions. The differ-
ences between the inverse estimates of permeability show
the importance of grid resolution. If well-designed, geo-
metrically spaced grids were used, the exact true perme-
ability (10212 m2) could be reproduced within a few
percent even on a fairly CG (cases 1 to 4 in Table 2).
However, the evenly spaced grids produce estimates far
lower than the ‘‘true’’ permeability (cases 5 through 8 in
Table 2). It is important to note that in these cases, the
estimation uncertainty reported by the parameter estima-
tion code theoretically cannot account for the estimation
error associated with the grid resolution. Even for the
poorest estimate (case 5 in Table 2), the parameter esti-
mation code is calculating low estimation errors for the
parameters; the 95% confidence intervals on the estimate

Table 1
Input Parameters for Radial Flow Problem

Problem size in X direction
(radial geometry)

1000 m

Injection rate 2.2222 3 1023 kg/s/m
Simulation time 1.0 d
Temperature 20�C
Initial pressure 1.0 MPa
Porosity 0.2
Specific storage 5.7 3 1026 m21

Permeability (estimated) 1.0 3 10212 m22

Grid resolution Variable
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are within only 5% of the estimated parameter value
(Table 2). As it was suggested in the literature (e.g.,
Carrera 1984), a special care should be warranted when 95%
confidence intervals are used to represent uncertainty in
the model parameters. Commonly, the 95% confidence
intervals reported by the parameter estimation code
reflect only a particular source of uncertainty (in this case
the measurement errors in the calibration targets and the
quality of the obtained inverse matches). However, there
are other sources of uncertainty not reflected in the analy-
sis, and that is why often inverse results imply greater
certainty than is warranted.

Two-Dimensional Saturated Flow in Layered Medium
Parameters for the layered problem are presented in

Table 3. Figure 3 represents the flow domain, boundary
conditions, spatial extent of the zones associated with
different permeabilities, and location of the calibration
targets. The sloping of the layers is approximately 5� (note
the difference between horizontal and vertical scales in
Figure 3). There is a steady-state, fully saturated (con-
fined) flow from left to right through the model domain.
There are 14 calibration targets representing the steady-
state hydraulic pressure distributed through the domain.
The calibration targets are computed numerically using

a VFG resolution (12.5- by 10-m grid size) and standard
FD formulation. The problem is designed such that all
the tested grids have nodes in close vicinity to the calibra-
tion target locations. Of note is the fact that there are
two zones of relatively high permeability (zone 3 and
zone 5) and two of relatively low permeability (zones 2
and 4); zone 1 is a no-flow domain represented as a low-
permeability zone in the FD case. Permeabilities of zones
2, 3, and 4 are assumed to be unknown and estimated in
the inverse process. Permeabilities of zones 1 and 5 are
assumed to be known. The boundary conditions for this
model consist of a distributed flux on the left side and
a constant head on the right side. They are shown in
Figure 3. The alternating high and low permeability of
this model represents an idealization of a heterogeneous
permeability field that exists in many regional scale flow
systems.

Figure 4a shows a coarse orthogonal FD mesh with
the hydrogeologic zones shown in Figure 3 mapped to the
mesh. The grid depicted in Figure 4b represents the
respective CFD formulation. This type of grid is used

Table 2
Permeability Estimates and Grid Characteristics for Radial Flow Problem

Case
Number
of Nodes

Type of Node
Distribution

Horizontal Length
of Largest

Grid Block (m)
Estimated Permeability ± 95%

Confidence Intervals (m2) SSR (m2)

1 35 Geometric 333 0.9653 10212 ± 3.13 10216 4.3 3 1026

2 129 Geometric 91 1.0013 10212 ± 8.83 10217 1.2 3 1026

3 439 Geometric 24 1.0003 10212 ± 1.43 10217 1.8 3 1027

4 997 Geometric 10 1.0003 10212 ± 1.33 10220 1.33 10212

5 100 Even 10.0 0.2613 10212 ± 2.13 10214 9.5 3 1024

6 500 Even 2.0 0.3973 10212 ± 1.53 10214 4.9 3 1024

7 1000 Even 1.0 0.4543 10212 ± 1.43 10214 3.8 3 1024

8 10000 Even 0.1 0.7063 10212 ± 6.93 10214 1.3 3 1024

Table 3
Parameters for Two-Dimensional Problem of
Saturated Flow Through a Layered Medium

Problem size (m) X direction 10,000
Z direction 1700

Specified fluxes (inflow) (kg/s) 0.1 (inflow 1)
0.2 (inflow 2)

Outflow head condition (m) 700
Permeabilities (m2) 1.0 3 10214 (zone 2)
Very fine scale values 1.0 3 10211 (zone 3)

1.0 3 10214 (zone 4)
Fixed permeabilities (m2) 1.0 3 10218 (zone 1)

5.0 3 10213 (zone 5)
Grid resolution (m)
(very fine scale)

X direction 12.5
Z direction 10.0

Figure 3. Computational domain for two-dimensional satu-
rated flow through layered medium. The small black squares
show the location of calibration targets. Note the difference
between horizontal and vertical scales; the vertical axis is
exaggerated by a factor of ~5.
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with codes allowing for variable vertical cell thickness,
variable cell elevation, and nonorthogonal grid cells (e.g.,
MODFLOW). Even considering the exaggerated vertical
scale, it is easy to see the motivation for using the CFD
method. Figure 4b also represents the CVFE method.
The grid cell spacing is very close to that shown for the
CFD grid; small differences (not shown in Figure 4b)
exist along the domain boundaries only where addi-
tional grid cell rows/columns are required so that the
spacing of the CVFE and CFD grids can match accu-
rately. Defining low permeability in zone 1 or inactivat-
ing grid blocks is required in the FD case to represent
the no-flow domain. Zone 1 is not explicitly required or
represented in the CFD and CVFE formulations where
the bottom of zone 1 is defined as a no-flow boundary
(Figure 4b).

The inverse results obtained using different grid reso-
lutions and differencing techniques are given in Table 4
including the objective function (sum-squared of the re-
siduals) estimates. Also given are the number of grid
blocks and grid-block sizes. Based on resolution, the
applied grids are divided into four groups: VFG (used to
compute calibration targets), fine grid (FG), CG and very
coarse grid (VCG). Grid convergence study assured that
the solution changed with less than 1% when the grid res-
olution was changed by a factor of two. Therefore, we do
not expect to introduce numerical errors in the calibration
targets. The table presents the inverse permeability esti-
mates for zones 2, 3, and 4. A comparison of the inverse

estimates shows that all the test cases (using different grid
resolutions and differencing techniques) accurately iden-
tified the lower permeability at zones 2 and 4 and higher
permeability at zone 3. Further, all the methods did rela-
tively well in estimating the true permeability of zones 3
and 4, regardless of grid resolution. However, for the
coarser grid (CG and VCG) cases, the FD method per-
forms very poorly in estimation of the true permeability
of zone 2. In these cases, the flow area of zone 2 and zone
3 is not resolved accurately by the computational grid,
and as a result, the flow within zone 2 is substantially
affected by the model’s inability to flow in the high-
permeability zone 3. To compensate for this effect, the
estimated permeabilities are 20 to 80 times higher than
the ‘‘truth’’ in zone 2 in order to match the calibration tar-
gets. These causes the high residual for one of the targets,
located at (x, z) ¼ (1000 m,1000 m) in Figure 3. This tar-
get accounts for 50% to 80% of the objective function in
these two calibrations (Table 4). For reasons discussed
previously, we believe the true high head at this observa-
tion point could not be achieved because of the diversion
of fluid in zone 2.

It is important to note that for this problem, the accu-
racy of the inverse solution depends on the accurate rep-
resentation of the geometry of hydrostratigraphic units
rather than on the accurate mathematical formulation of
the differencing scheme. This is a result of moderate
sloping of the ‘‘conformable’’ layers, which is only 5%.
The steeper is the slope, the higher are the errors.

Figure 4. Grid representation for VCG case of the layered problem for (a) the FD and (b) CFD and CVFE formulations. Note
the difference between horizontal and vertical scales; the vertical axis is exaggerated by a factor of ~5.

Table 4
Permeability Estimates Obtained Using Different Grid Resolution and Differencing Techniques For a

Two-Dimensional Saturated Flow Through a Layered Medium

Case Grid Method
Number of
Grid Blocks (DX, DZ) (m) k (zone 2) (m2) k (zone 3) (m2) k (zone 4) (m2) SSR (m2)

1 VFG FD 136,000 (12.5, 10) 1.03 10214 (truth) 1.03 10211 (truth) 1.03 10214 (truth) N/A
2 FG FD 27,200 (25, 25) 1.13 10214 1.03 10211 0.993 10214 2.42
3 CG FD 1700 (100, 100) 20.3 10214 1.03 10211 0.973 10214 126.3
4 CG CFD 1700 (100, 100) 1.23 10214 0.983 10211 1.03 10214 0.193
5 CG CVFE 1938 (100, 100) 1.23 10214 0.963 10211 0.963 10214 3.61
6 VCG FD 850 (200, 100) 84.3 10214 0.923 10211 0.953 10214 193.9
7 VCG CFD 850 (200, 100) 1.83 10214 0.973 10211 0.953 10214 4.45
8 VCG CVFE 988 (200, 100) 1.63 10214 1.03 10211 0.923 10214 7.92
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Inaccurate estimation of permeability of the confining
units will produce inaccuracy in posterior predictions of
the contaminant transport through the confining layers to
the highly permeable layers.

Two-Dimensional Saturated/Unsaturated
Flow in Layered Medium

Parameters for the layered problem are presented in
Table 5. Figure 5 shows the flow domain, boundary con-
ditions, spatial extent of the zones associated with differ-
ent permeabilities, and location of the calibration targets.
As in the saturated zone section, the slope of the layers is
about 5�. The flow is assumed to be at steady state. The
steady-state calibration targets for hydraulic pressures are
computed numerically using FG resolution (25-m hori-
zontal spacing and 25-m vertical spacing) and standard
FD formulation. The calibration set includes 16 pressures
and 13 saturations (total number of targets is 29). The
location and type of calibration targets are shown in
Figure 5. The problem is designed in a way that all the
tested grids have nodes associated with the locations of
calibration targets. There are two zones of relatively high
permeability (zone 1 and zone 3) and one of relatively
low permeability (zone 2) separating the high-permeable
zones. The permeabilities of all three zones are assumed
unknown. The boundary conditions consist of fluid fluxes
at the left side boundary in the upper (inflow 1) and lower
(inflow 2) high-permeability zones and a seepage face
condition on the right side boundary. This simplified
model replicates regional flow in a deep aquifer, overlain
with a confining layer with recharge from a local perched
zone. If a contaminant source also exists in the perched
zone, it is imperative to estimate all of the permeabilities
accurately.

The inverse results obtained using different grid reso-
lutions and differencing techniques are given in Table 6.
Also given are the number of grid blocks and grid-block
sizes. Based on resolution, the applied grids are divided

into three groups: VFG, FG, and CG. The calibration
targets are estimates using the VFG FD solution. Differ-
ent inverse solutions produce close matches of calibration
targets; the objective function estimates (the SSR) are
also listed in Table 6. The table presents the inverse per-
meability estimates for zones 1, 2, and 3. Figure 6 shows
the distributions of water saturation (gray scale) and
hydraulic pressure (MPa, lines) within the model domain
for the calibrated solutions. The true ground water flow
system is defined by the VFG FD solution (Figure 6a).
Grid convergence study assured that the solution changed
with less than 5% when the grid resolution was changed
by a factor of 2. Therefore, we do not expect to introduce
numerical errors in the calibration targets. The simulated
water tables are defined by the 1-MPa contour line of
hydraulic pressure. Note that a capillary fringe zone is
simulated above the water table. In the right end of the
model, the capillary fringe zone becomes perched zone
(a shallow saturated zone separated by the deep saturated
zone by unsaturated zone). Note that the model setup al-
lows for ground water perching within zone 2. This is
controlled by the property contrasts between zone 1 and
zone 2 and between zone 2 and zone 3.

Table 6 demonstrates that for the same grid resolu-
tion (cases 3 to 5), we obtain different estimates using dif-
ferent differencing techniques. This is especially true for
zone 1. Its permeability is overestimated by about 1 order
of magnitude the FD method to allow for the unsaturated
flow in this zone. The CFD method underestimates
(~50%) the permeability of zone 1 to decrease the
perched flow, which is otherwise systematically over-
estimated due to numerical errors associated with this
method. The CVFE method produces an estimate, which
is close (12%) to the true value. Comparing just the VFG
and FG results (cases 1 and 2 in Table 6), we might
assume that the grid resolution does not substantially
impact the inverse estimates. However, including the CG
(case 3) result in this comparison, we conclude that the
grid resolution effect is very important.

Table 5
Parameters and Grid Characteristics for

Two-Dimensional Problem of Unsaturated Flow
through a Layered Medium

Problem size (m) X direction 10,000
Z direction 1700

Specified fluxes (inflow) (kg/s) 0.1 (inflow 1)
0.2 (inflow 2)

Outflow head condition (m) 700
Permeabilities (m2) 10212 (zone 1)
Very fine scale values 53 10216 (zone 2)

10213 (zone 3)
Porosity 0.2
Capillary pressure model Linear
Maximum capillary
pressure (MPa)

0.1 (zone 1)
1.0 (zone 2)
0.1 (zone 3)

Relative permeability model Linear with saturation
(all zones)

Grid resolution (m) X direction 25
(very fine scale) Z direction 25
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Figure 5. Computational domain for two-dimensional var-
iably saturated flow through layered medium. Boundaries of
the layers are shown with thick lines. The locations of pres-
sure and saturation calibration targets are shown with open
circles and crosses, respectively. Note the difference between
horizontal and vertical scales; the vertical axis is exagger-
ated by a factor of ~5.
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Table 6
Permeability Estimates Obtained Using Different Grid Resolution and Differencing Techniques for a

Two-Dimensional Variably Saturated Flow through a Layered Medium

Case Grid Method
Number of
Grid Blocks

(DX, DZ)
(m)

k (zone 1)
(m2)

k (zone 2)
(m2)

k (zone 3)
(m2)

SSR
(m2)

1 VFG FD 27,336 (25, 25) 1.03 10212 (truth) 5.03 10216 (truth) 1.03 10213 (truth) .
2 FG FD 6868 (50, 50) 1.43 10212 5.43 10216 9.83 10214 0.125
3 CG FD 1734 (100, 100) 1.23 10211 6.43 10216 1.03 10213 1.29
4 CG CFD 1734 (100, 100) 5.13 10213 4.13 10216 8.83 10214 2.07
5 CG CVFE 1836 (100, 100) 8.83 10213 4.43 10216 8.53 10214 3.61
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Figure 6. Two-dimensional flow solutions of the layered variable-saturation problem for the different inverse models: (a) FD
VFG, (b) FD FG, (c) FD CG, (d) CVFE CG, and (e) CFD CG. The distributions of water saturation (gray scale) and hydraulic
pressure (MPa, lines) within the model domain are presented: Thick lines show the location of the slanted low-
permeable layer in the middle of the domain.
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Figure 6 represents the impact of differencing tech-
niques and grid resolution on the ground water flow.
Comparing the FD solutions, we note that the grid resolu-
tion affects the smoothness of the water table and top of the
saturated zone (stair-step behavior). Compared to the VFG
finite-difference case, the FG and CG finite-difference
solutions are not very accurate in the representation of
the saturation in the right end of layer 2. The coarse-grid
CFD and CVFE methods nicely represent the perching
associated with zone 2 though they are also (as coarse-
grid FD) overestimating the saturation in the right end
of layer 2. However, as we mentioned previously, CFD
achieves this introducing a substantial bias in the inverse
estimates.

As mentioned in the Introduction, a flow model is
often used for transport calculations once it is calibrated
with field data. One transport example is given for the
saturated/unsaturated zone example to illustrate the effect
of the differencing methods. Figure 7 shows the relative
concentrations of a contaminant introduced in the system
as a constant concentration source along the top right
boundary of the model domain (see Figure 5). The con-
tour plots shown are for the same simulated time 500
d after the introduction of the contaminant. Results are
similar overall for the CFD and CVFE methods.

However, model-predicted distributions of contaminants
based on the CFD and CVFE solutions are different.
Comparing Figures 7c and 7d, it can be seen that the CFD
solution has higher concentrations near the left side and is
more diffuse that the CVFE results. For example, the rela-
tive concentration of 0.6 is at x ’ 6000 m for the CFD
case and at x ’ 5200 m for the CVFE case. A substantial
grid effect (stair-step behavior) is produced by the FD,
method although the concentration front (say ~0.5) is
close to that of the CVFE method.

Summary, Conclusions, and Recommendations
We summarize the results as follows:

d The transient well problem shows that, based purely on

grid resolution, permeability estimates can be in error by

several hundred percent. A judicious choice of variable

grid spacing can easily minimize the error.
d For fully saturated ground water flow with sloping perme-

ability structure, it is more important, with the coarsest

grid resolution, to capture the permeability fields with

a conforming grid than using a standard orthogonal grid

and representing the permeability in a stair-step manner.

The coarse standard FD grid constricted flow in the

Figure 7. Two-dimensional transport solutions of the layered variable-saturation problem for the different inverse models:
(a) FD FG, (b) FD CG, (c) CVFE CG, and (d) CFD CG. The relative concentration of contaminants is presented using color-
coded contours. The figures represent concentration distribution 500 d after the release. The underlying flow solution is at
steady state.
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medium permeability unit where fluid was injected in the

test example. To compensate, estimated permeabilities are

20 to 80 times higher than actual values. The CFD method

cures this problem and incurs only small errors. The CFD

solution is equivalent in estimation accuracy to the CVFE

solution except on the coarsest grid where its estimate is

~20% poorer.
d For the unsaturated zone problems, CFD methods produce

solutions for the spatial distribution of saturation and hy-

draulic pressure that are qualitatively better than those ob-

tained by the standard differencing methods using the same

grid resolution. While the coarse standard FD solution

overestimates the permeability of one of the layers by

almost a factor of 10, the CFD solution underestimates

the permeability by a factor of 5. The CVFE solution was

the most accurate, and underestimated permeability for the

same unit by only 12%.
d Impact of the inaccurate inverse estimates based on the

inverse flow model might be very pronounced for the

ground water transport simulations based on the calibrated

model.

Grid resolution and differencing formulation were
found to be important to inverse estimates of model para-
meters. There are tradeoffs between errors in differencing
methods and crude representation of hydrostratigraphy.
These factors in turn affect the CPU requirements of each
method. The authors analyzed the CPU and memory re-
quirements of FD and CVFE methods on a large regular
grid test problem, which is described in Appendix 1. We
estimate the additional complexity of the CVFE results in
the method having CPU times ~1.5 times greater than FD
or CFD methods when run on the identical problem.
When off-diagonal terms arise because of a sloping grid,
the addition of 50% more connections (for the problems
herein) will lead to an estimated 1.5 3 1.1 ¼ 1.65 in-
crease in CPU time. An absolute performance measure
for each method is beyond the scope of this study.
Besides the usual CPU increase with problem size, the
nonlinear unsaturated zone problems also saw an increase,
with problem size, in the number of time steps necessary
to obtain a steady-state solution. Also, the number of
model runs to obtain a calibrated model varied with prob-
lem size. In terms of accuracy of parameter estimates, the
standard FD solution usually was the worst of the three
numerical schemes; however, its estimates improved dra-
matically with increasing grid resolution. CFD methods,
because of the systematic grid angle error, are not as ame-
nable to this type of study and were difficult to judge.
Nevertheless, conforming difference methods appear to
be useful in fully saturated flow simulations when the
slope of the boundaries between different hydrostrati-
graphic units is moderate (as the 5% slope analyzed in the
study). The authors suspect that the appropriate use of
CFD methods depends on the slope angle, the ratio of
vertical to horizontal ground water flux, and the perme-
ability contrast of the layers. We advise caution in the use
of conforming methods for unsaturated zone work or sim-
ulations involving an unsaturated zone or a movable
water table. Because of the accuracy and versatility of

CVFE methods (noting the extra CPU and memory re-
quirements), we recommend their use in all problems.
In some cases such as the saturated zone example pre-
sented here, inaccurate representation of the geometry
of the hydrostratigraphic units in the model may have an
overwhelming effect compared to other numerical errors
introduced by the computational grid. In other cases, such
as the unsaturated zone example presented here, there was
an advantage in using conforming layers in the coarsest
grid; however, the errors were larger than might be ex-
pected on a mildly sloping grid. The errors were also
considerably higher than the CVFE solution. Inaccurate
inverse estimates based on the flow model may cause pro-
nounced effects on transport simulations.

Though we have not rigorously analyzed the satu-
rated zone transport case, we suspect errors similar to
those encountered when solving the unsaturated flow
equations. An upwinded (first-order accurate) formula-
tion was used to model the concentration front in much
the same way as the upwinded relative permeabilities are
used in the simulation on the saturation front. Detailed
analysis will have to wait for a subsequent paper.

The proposed methodology can be used to test the
impact of grid on the inverse model estimates before the
model is calibrated to the real data. A priori grid testing,
like that done by Bower et al. (2004), can suggest an
appropriate grid resolution for accurate inverse studies.
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Appendix 1

Discussion of Model Run Times and
Memory Requirements

Because this paper discusses the relative merits of
the CVFE, CFD, and FD methods, the CPU time and
memory requirements should be compared. However, the
authors did not have at their disposal a CVFE computer
code designed to solve isothermal ground water prob-
lems. Nevertheless, the authors used a test case based on
a problem from Mehl and Hill (2002; problem 1, case 1)
and compared run times from codes FEHM and MOD-
FLOW (version MF2K1.13, compiled in double pre-
cision) that implement these methods. The test problem is
simple and represents a producing well in a homogeneous
media. The problem consists of ~1.1 million grid blocks
and is run to steady state. The authors ran this problem
using FEHM and MODFLOW using comparable pre-
conditioner complexity and stopping criteria. Listed in
Table A1 are the run times. This problem took 125 s of
CPU time for MODFLOW and 130 s of CPU time for
FEHM when run on a Dell 650 Workstation with a 3-GHz
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Intel processor. It is unclear whether the speed difference
is due to the properties of solution matrices (nonsym-
metric vs. symmetric), solver method, or indirect address-
ing and unstructured connectivities in the case of CVFE
(FEHM).

Since this paper concerns a comparison on CVFE
and FD (CFD and FD have the same CPU and memory
requirements) methods in general rather than their code-
particular implementation, we have attempted to compare
the memory requirement of methods based on a theoreti-
cal basis as well as the actual memory required for
FEHM and MODFLOW. We note that FEHM solves the
test problem describing confined, fully saturated flow
using nonsymmetric solution matrices, while MOD-
FLOW uses a symmetric approach. FEHM uses nonsym-
metric solution matrices to accommodate requirements
from other physics packages built in the code that are
nonlinear. Compared to MODFLOW, FEHM also uses addi-
tional storage arrays, among other things, for temperature-
dependent density and viscosity, storage for Newton-
Raphson iterations, and sophisticated pressure-dependent
porosity models, and double/dual porosity capability. The
major memory requirements are also listed in Table A1.
For the problem listed previously, MODFLOW used
~0.17 gigabyte of memory, FEHM used ~1.4 gigabyte
of memory, about a factor of 8 difference in the memory
requirements. We also estimated theoretical memory re-
quirements based on only the ground water equations that
MODFLOW solves and restricted this estimate to a two-
dimensional problem. Here, the connectivity (9 point vs.
5 point) makes the solution array A (as in Ax ¼ b) about
twice as large. The interface area array (similar to the
finite-element stiffness matrix) adds computer storage
equal to the solution array. The grid block coordinates,
which must be explicitly entered for the CVFE method,
add storage equal to the solution array. The precondi-
tioner for the solution of the matrix equations is also
twice as large in the case of CVFE. Finally, due to the
unstructured nature of the CVFE method, two integer
pointer arrays (equal in size to the solution array) are
required: one for the grid block connectivity and one for
the solver preconditioner connectivity. Based on these
considerations, a ‘‘theoretical’’ CVFE code with capa-
bilities similar to MODFLOW is estimated to need ~3.5
times the MODFLOW memory.
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