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A novel sampling approach to global uncertainty and sensitivity analyses of modeling results utilizing
concepts from agent-based modeling is presented (Agent-Based Analysis of Global Uncertainty and
Sensitivity (ABAGUS)). A plausible model parameter space is discretized and sampled by a particle
swarm where the particle locations represent unique model parameter sets. Particle locations are
optimized based on a model-performance metric using a standard particle swarm optimization (PSO)
algorithm. Locations producing a performance metric below a specified threshold are collected. In
subsequent visits to the location, a modified value of the performance metric, proportionally increased
above the acceptable threshold (i.e., convexities in the response surface become concavities), is
provided to the PSO algorithm. As a result, the methodology promotes a global exploration of a
plausible parameter space, and discourages, but does not prevent, reinvestigation of previously
explored regions. This effectively alters the strategy of the PSO algorithm from optimization to a
sampling approach providing global uncertainty and sensitivity analyses. The viability of the approach
is demonstrated on 2D Griewank and Rosenbrock functions. This also demonstrates the set-based
approach of ABAGUS as opposed to distribution-based approaches. The practical application of the
approach is demonstrated on a 3D synthetic contaminant transport case study. The evaluation of global
parametric uncertainty using ABAGUS is demonstrated on model parameters defining the source
location and transverse/longitudinal dispersivities. The evaluation of predictive uncertainties using

ABAGUS is demonstrated for contaminant concentrations at proposed monitoring wells.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Inverse approaches are routinely used to identify appropriate
values of model parameters that provide simulations with the
highest degree of consistency with existing observations. These
approaches can be considered to provide answers to the question,
“What do the observations and model tell us about the para-
meters?” An often neglected question is, “What do the observations
and model have the ability to tell us about the parameters?” An
answer to the second question is needed to properly evaluate the
significance and uncertainty of the answers to the first question.
Approaches that answer the second question explore the effect of
changes in parameter values on a performance metric and are
considered model-based uncertainty analysis (UA) approaches.

UA is often based on sensitivity analysis techniques. Local
sensitivity analyses evaluate the sensitivities surrounding a
solution by calculating derivatives of model simulations with
respect to model parameters (Vecchia and Cooley, 1987; Cooley,
1993) or adjoint solutions of the governing equation (Neuman,
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1980; Sykes et al., 1985; Li and Yeh, 1998). Local sensitivity
analysis approaches are computationally efficient, requiring rela-
tively few model calls operating under the assumption that
parameter probability distributions are normally distributed.
These techniques are commonly utilized in gradient-based
optimization strategies for parameter estimation. The information
provided by these techniques in a UA is limited to a region
surrounding the current parameter values, to models with a
continuous parameter space, and by the assumption of normally
distributed parameter uncertainty.

Null-space Monte Carlo (NSMC) combines concepts from error
variance analysis theory and Monte Carlo (MC) sampling to
perform UA on highly parameterized models (Tonkin and
Doherty, 2009). The null space is defined from local sensitivities
of a calibrated model. For a given set of best model parameter
estimates, the null space is a subspace of the parameter space
composed of parameter combinations that have negligible impact
on the performance metric. An MC sampling is utilized to produce
parameter realizations by modifying parameter values within the
calibration null space. If, in the process of MC sampling, a
parameter realization produces an uncalibrated model, para-
meters in the calibration solution space are reestimated to
recalibrate the model. This produces a local UA capable of
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reducing the computational burden imposed by a large numbers
of parameters.

Most global sensitivity analysis approaches are based on
evaluating the relative contribution of individual and combina-
tions of parameters to the variance of a performance metric (Sobol,
2001; van Werkhoven et al., 2008; Wagener et al., 2009). These
approaches provide scalar indices of global sensitivity. This infor-
mation indicates parameters of interest and correlated parameter
estimates. Such analyses do not provide specific information about
sensitivities at any specific point in the parameter space.

Evaluation of the global uncertainty of a model is typically
based on global sampling approaches. Vrugt et al. (2008) intro-
duced a Markov chain Monte Carlo (MCMC) approach entitled
DiffeRential Evolution Adaptive Metropolis (DREAM). This
approach provides estimates of posterior density functions of
parameters in a formal Bayesian framework. An informal Bayesian
approach to global UA is the Generalized Likelihood Uncertainty
Analysis (GLUE) developed by Beven and Binley (1992). This
approach performs an MC analysis using a statistically informal
likelihood function to rank model performance. Recently, Harp
and Vesselinov (in press) developed a sampling approach to global
UA of stochastic models of flow medium heterogeneity, introdu-
cing the concept of an acceptance probability of a stochastic
parameter set. Sampling approaches have the ability to provide
detailed information directly addressing the UA. The drawback of
such approaches is that the number of model calls is often too
large for many practical applications involving process-based
models (Keating et al., 2010).

The approach presented here aims to provide an alternative to
existing UA approaches that will be useful for complex problems
for which a local UA is known to be incomplete and for which the
model runs are too computationally intensive for a rigorous
sampling-based inference approach. We refer to this approach
as Agent-Based Analysis of Global Uncertainty and Sensitivity
(ABAGUS). Concepts from agent-based modeling such as particle
swarm optimization (PSO) (Kennedy and Eberhart, 1995; Clerc,
2006) and ant colony optimization (Dorigo and Stiitzle, 2004)
have been utilized extensively in optimization algorithms. How-
ever, to our knowledge, their direct application to global UA has
not been explored. The ABAGUS computational framework is
based on integrating concepts of agent-based social simulation
with the Standard PSO 2006 (SPSO2006) algorithm (Particle
Swarm Central, 2006), effectively altering the strategy of
SPS02006 from optimization to global UA. SPSO2006 is chosen
here, as it implements a parsimonious and efficient version of
particle swarm optimization that is well-known and freely avail-
able for download.

The strategy of ABAGUS is to efficiently explore a discretized
parameter space by storing information about locations produ-
cing simulations consistent with observations. ABAGUS does not
require statistical convergence, and the computational expense of
the approach can be reduced for initial explorations by coarsening
the discretization. The algorithm alters the response surface at the
previously sampled locations by increasing the associated perfor-
mance metric (e.g., objective function, fitness function). As a
result, if points within a local area of attraction were already
visited by the algorithm, the region appears as a region of
concavity (repulsion), as opposed to a region of convexity (attrac-
tion), discouraging future exploration. Similarities can easily be
drawn between ABAGUS and the Sugarscape agent-based social
simulator (Epstein and Axtell, 1996), designed to model the
survival of a population on a regenerative resource; however, in
ABAGUS, the resource is not regenerative, encouraging global
exploration of the parameter space.

The ABAGUS approach differs from many existing sampling-
based UA approaches, as it is a set-based approach where all

locations below a certain level of consistency with observations
are collected without performance-based preference. Therefore,
outlying solutions that are marginally acceptable are represented
with equal weight with solutions within clustered locations. In a
statistical inference scheme, these marginally acceptable outlying
solutions can be underrepresented in the results, as the frequency
of sampling these isolated locations can be low. These outlying
locations can be particularly revealing in the case of long- and
heavy-tailed probabilistic distributions (such as nonnormal stable
distributions), where the collective probability of a large number
of extremely low-probability events is not negligible and cannot
be characterized by the second moment of the Gaussian
distribution—in other words, in cases where the probability of
an extreme event is not negligible, but where the magnitude of
the extreme event is uncertain. The set-based approach of
ABAGUS provides results in a form that can be utilized by set-
based analyses, such as info-gap theory (Ben-Haim, 2006), or
within a GLUE framework using a “limits of acceptability”
approach (Liu et al., 2009).

The ABAGUS approach is warranted in cases where normal
(Gaussian) probabilistic distributions are deemed inappropriate to
describe the statistical distribution of a property (e.g., fractal proper-
ties) as the statistical moments are ill-defined (stable probabilistic
distributions with o < 2 have divergent second moments and with
o < 1 divergent first moments; a Gaussian distribution is a special
stable distribution with « =2 (Zolotarev, 1986)). Such situations
occur more widely than is often acknowledged, particularly in
modeling complicated systems in environmental investigations
(Nolte et al., 1989; Neuman, 1990; Dimri, 2000). Therefore,
ABAGUS provides an alternative UA approach in cases where a
rigorous formal statistical inference scheme is inappropriate due to
ill-defined statistical moments. The application of an ABAGUS-type
approach in cases where statistical inference is deemed appropriate
is ill-advised and would provide an inferior level of detail.

Since the ABAGUS algorithm is based on SPS02006, a brief
discussion of this algorithm is presented in Section 2. The
ABAGUS algorithm is discussed in Section 3. Section 4 demon-
strates the performance of ABAGUS on 2D Griewank and Rosen-
brock functions. Section 5 presents a synthetic five-parameter
contaminant transport problem that is utilized to demonstrate
the use of ABAGUS on a practical application.

2. Standard PSO 2006 algorithm

SPS02006 modifies a population of solutions called particles
defined by their position and velocity in a D-dimensional para-
meter space. The position and velocity of the ith particle can be
represented as P;=[p;1,pi2,....Pip] and V;=[v;q,Vi2...,Vipl,
respectively. An empirical formula of S = 10++/D for determining
the swarm size S has been suggested (Particle Swarm Central,
2006). Particles retain a record of the best location they have
visited so far, denoted as B; =[b;1,b;>,...,bip]. Particles are also
informed of the best location that K other randomly chosen
particles have visited, denoted as G; =[g;1.,8;2, - - -.8ip]- A standard
value for K is 3 (Particle Swarm Central, 2006). These networks of
informers are reinitialized after iterations with no improvement
in the global best location of the swarm. The velocity of the ith
particle in the jth dimension is updated from swarm iteration step
ktok+1 as

k={1,...,D},
M

where w is a constant referred to as the inertia weight, ¢; and ¢,
are constants referred to as acceleration coefficients, and r; and r,
are independent uniform random numbers in [0,1]. The swarm

viji(k+1) =wv;j(k)+c1r1(bij—pi (k) + car2(gij—Dij(k)),



D.R. Harp, V.V. Vesselinov / Computers & Geosciences 40 (2012) 19-27 21

iteration steps are also referred to as time steps because they
represent the progress of swarm development in the parameter
space. The parameter w controls the level of influence of a
particle’s previous displacement on its current displacement;
c; and ¢, scale the random influence of the particle’s memory
and its network of informers, respectively. Values of w=0.72 and
c1 =¢; =1.2 have been demonstrated to perform well in many
problems (Clerc, 2006). A limitation Vy,,x on the magnitude of the
velocity is commonly employed. The particle position at each
iteration is updated as

pij(k+1) =p;j(k)+v;j(k+1), k={1,...,D}. (2)

Additional details on SPSO2006 are available in Clerc (2006)
and Cooren et al. (2009). The source code is available for down-
load at Particle Swarm Central (2006).

3. ABAGUS algorithm

Concepts from agent-based modeling have found significant
utility in global optimization. The following discusses the first, to
our knowledge, utilization of agent-based modeling to perform
global UA. A flow diagram of the ABAGUS algorithm is provided in
Fig. 1 and discussed below.

<>

As ABAGUS has been developed by modifying SPS02006, its
search algorithm is nearly identical to SPSO2006’s; except that
parameter space discretization is enforced on the particle move-
ments. This is accomplished by moving proposed particle loca-
tions (defined by Egs. (1) and (2)) to the nearest node of the
discretization. The parameter space discretization is based on
user-provided parameter-specific resolution (each parameter can
be assigned a distinct resolution). The resolution of the analysis
can therefore be controlled by the user, depending on computa-
tional constraints and/or the desired level of detail. ABAGUS runs
can also be nested, using the samples from previous coarser runs
as starting points for finer runs. The discretization of the para-
meter space does not hinder the UA, as the strategy is to identify
regions of the parameter space producing simulations indistin-
guishably consistent with observations, and is not an optimiza-
tion strategy intended to identify a single optimal solution.

ABAGUS collects parameter sets (locations within the discre-
tized space) with a performance metric ¢ below a defined thresh-
old &, and inverts the value of the performance metric as

&y =26—D, D<eg, 3)

where &;,, is the value of the inverted performance metric. @;,, is
provided to particles on subsequent visits to the location without
recomputation of the model run. The value of ¢ can be defined
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Fig. 1. ABAGUS flow diagram. N is a counter of the current number of function evaluations (model runs), N; is the total number of allowable function evaluations, S is the
number of particles, E is the swarm energy, Eo is the initial swarm energy, w is the inertia weight, c¢; and c; are acceleration coefficients, p is the exploration rate metric, P;
is the current location of the ith particle, ¢ is the performance metric threshold, ®; is the current performance metric for the ith particle, and @;,,(P;) is the inverted

performance metric associated with location P;.
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based on theoretical (e.g., confidence levels under certain assump-
tions (Vecchia and Cooley, 1987; Cooley, 1993)) or problem-
specific considerations (e.g., “limits of acceptability” (Liu et al.,
2009)). The potentially large number of locations that must be
collected are managed by a KD-tree, allowing the collected
locations to be efficiently searched in a binary fashion in a
K-dimensional space, where K can be any positive integer
(Tsiombikas, 2009). The value of @;,, associated with the accep-
table location is stored to provide to particles on future visits. In
the case of ABAGUS, K equals the dimension of the parameter
space (D). A nearest-neighbor search of the KD-tree is utilized to
identify if a location has been collected previously (Tsiombikas,
2009). If the location has been collected, ®;,, is provided; if not, a
forward model run is executed to compute @ for the location. The
details of this process are illustrated in Fig. 1. As a result, revisiting
collected locations has a relatively insignificant cost to the algo-
rithm, particularly in cases involving long model execution times.

Eq. (3) effectively adds the discrepancy between ¢ and @ to ¢
and assigns this value as the value of the performance metric
associated with the location. The larger the discrepancy, the less
attractive the position appears to future visits. As a result,
convexities in the response surface become concavities.

As the ABAGUS algorithm progressively identifies and collects
acceptable locations in the parameter space, the coefficients w, ¢y,
and ¢, are dynamically modified to maintain an appropriate
balance between exploration and intensification. An exploration
rate metric p quantifies the level of exploration at each iteration
of the ABAGUS run as

p =Ne/Nr, “)

where N, is the number of new locations visited this iteration and
N, is the number of revisits to previously collected positions this
iteration (therefore, Ne +N; =S at each iteration). One iteration of
ABAGUS involves updating and evaluating the population of
solutions (particles). The following rules are used to maintain a
reasonable value for p:

if p<py:w=wl+a),
c=ci(1+a),
2 =c(l+a)y;
if p>py:w=w(-d),
c1 =ci1(1-d),

2 =C(1-d),

where p, is set by the user to a value deemed to be reasonable
and a and d are constants greater than zero. In the cases
investigated here, values of p,=1 and a=d=10"" were found
to be effective. More complex strategies for controlling p by
modifying w, ¢, and ¢, are easily conceptualized, and will take
time and effort to evaluate on varied response surfaces.

ABAGUS is allowed to run to a maximum number of model
evaluations (N;) or until the swarm runs out of energy (E). The
initial energy of the swarm (Eg) is specified by the user, where
larger values of initial energy will allow more exploration of the
parameter space. Each particle move decrements the swarm
energy by one. Each identification of an acceptable location
increments the swarm'’s energy. The swarm energy is incremen-
ted by 10% of the initial energy for the cases investigated here
(E=E+Ep x 0.1). For an initial investigation of the parameter
space, an initial energy of 10,000 is reasonable for the test cases
presented here. These steps are illustrated in Fig. 1.

4. Test functions

The performance of ABAGUS is demonstrated on 2D Griewank
and Rosenbrock test functions, defined as

_ x2+y? X y
zZ= 4000 —cos(\ﬁ)cos(ﬁ) +1 5)
and
z=(1-x)2+100(y—x%)?, (6)

respectively. The Griewank and Rosenbrock functions are bench-
mark problems presenting challenging response surfaces for
optimization strategies. The Griewank function contains numer-
ous local minima with a single global minimum of zero at (0,0).
The Rosenbrock function contains a large smooth valley with a
banana-shaped area of attraction surrounding an ill-defined
global minimum of zero at (1,1).

Parameter bounds for x and y are both [—-100,100] and the
parameter space is discretized to a 0.1 resolution for both
functions, resulting in 4 x 10° possible locations. The value of ¢
is set to 0.1 for the Griewank run and 20 for the Rosenbrock run.
The initial swarm energy is set to 10,000 and the number of
function evaluations is limited to 2 x10°. Initial values for w, c;,
and ¢, are set according to the constant values commonly utilized
by SPSO2006 (Particle Swarm Central, 2006) (w=0.72;
c=c1=c=1.2, and ¢; and ¢, will be referred to collectively as
¢ hereafter). To evaluate the performance of the ABAGUS algo-
rithm, one particle is initialized to the global minimum ((0,0) for
the Griewank function, (1,1) for the Rosenbrock function). This
eliminates the initial search from random locations prior to the
identification of an area of attraction, which, for the ABAGUS
algorithm, is identical to SPS02006 (Particle Swarm Central,
2006). The utilization of ABAGUS in this manner (i.e., beginning
the ABAGUS run from a known optimal location obtained by a
prior optimization) evaluates the capability of the algorithm to
perform UA; the identification of the global minimum can be a
separate task.

Fig. 2(a) and (b) presents maps of the response surfaces for the
parameter space considered in the ABAGUS runs for the Griewank
and Rosenbrock functions, respectively. Fig. 2(c) and (d) presents
3D plots of the structure of the response surfaces near the global
minimum for each case. The results of the ABAGUS runs are
presented in Fig. 2(e) and (f) as maps of the response surfaces at
identified locations. It is apparent that for both test functions,
ABAGUS is able to identify the local and global areas of attraction
containing acceptable solutions. The set-based nature of the
approach, and its lack of a need for distributional assumptions,
is evident in these results, as opposed to many UA approaches
(e.g., Bayesian approaches). This fundamental difference in
approach between ABAGUS and distribution-based approaches
makes direct comparison difficult, and is not attempted here.
However, it should be apparent that approaches that require
assumptions of probabilistic distributions of parameter uncer-
tainty will have difficulties with these types of response surfaces,
particularly for the Griewank function.

The Griewank run collected 1552 locations with @ <¢=0.1
from approximately 2.00 x 10® function evaluations with
approximately 2.08 x 10° revisits to collected locations. The
Rosenbrock run collected 324 locations with & <&=20 from
109,060 function evaluations with approximately 2.25 x 10°
revisits. The Griewank run took 15s with approximately 1.3 x
10° function evaluations per second and the Rosenbrock run took
1's with approximately 1.1 x 10° function evaluations per second
on a 2.8 GHz processor.
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Fig. 2. Griewank and Rosenbrock test function analyses. Maps of the response surface for the full parameter space considered in the search [ —-100,100] are presented in
(a) and (b). (c) and (d) present 3D surfaces of the objective function near the region of the parameter space with values below the cutoff. (e) and (f) present the results of
the ABAGUS runs identifying the solutions below predefined cutoffs equal to 0.1 and 20, respectively. A global minimum of 0 exists at (0,0) for the Griewank function and

(1,1) for the Rosenbrock function.

5. Contaminant transport case study

The ABAGUS approach is demonstrated on a synthetic contami-
nant transport problem to explore the model-based uncertainty of
distributed contaminant concentrations in an analytical contami-
nant transport model (Vesselinov and Harp, 2010) considering
uncertainty in the plume source location (xs, ¥s) and dispersivities
(ax ay, a;). Flow is in the x-direction. True concentrations are
collected from a simulation of the model given true parameter
values listed in Table 1. Information regarding the parameters

(e.g. value, min, max, and resolution) is presented in Table 2. The
collected concentrations have been rounded to values similar in
resolution to field-collected measurements. A concentration map of
the “truth” at t=49 years is presented in Fig. 3.

The performance metric for the contaminant transport case
study is a sum of the squared residuals (SSR) expressed as

N
P(0)= Y (Ci(0)—c),

i=1

)
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Table 1
Well coordinates, screen top (z;p) and bottom (z,,;) depths below the water table,
and year and value of observed contaminant concentrations.

Well x (m) y (m) Ztop (M) Zpor (M) t(y) ¢ (ppb)
w01 1296 2154 5.57 12.55 49 0.1
w02 1906 1679 36.73 55.14 49 1
w03 212 1150 0 15.04 49 0
w04 1170 1735 13.15 20.41 44 354
49 392
w05 3062 1274 26.73 33.71 49 0
w06 1906 2494 69.01 83.98 49 0
w07 1879 2484 11.15 18.19 49 0
w08 2563 2320 4.86 11.87 49 0
w09 769 1650 3.66 10.09 49 2140
w10 516 1799 3.32 9.63 49 5
23.2 26.24 49 2
wil 1644 1568 4.94 7.99 49 48
32.46 35.48 16 0
wi2 1554 1837 3.59 6.64 49 42
32.51 38.61 12 0
w13 1278 1349 3 6 50 18
36 42 50 4
do1 496 1579 3 6 - -
do2 986 1440 3 6 - -
do3 1236 1945 3 6 - -
do4 1858 1394 3 6 - -

Note: Year and concentration are omitted for proposal wells (“d” wells).

Table 2
Parameter values and resolution for the contaminant transport case study.

Xs (m) Ys (m) ay (m) ay (m) az (m)
(logyo ax) (logyo ay) (logyo az)
Value 810 1657 70 20 0.6
(1.845) (1.301) (-0.222)
Min 400 1000 30 5 0.1
(1.477) (0.699) (-1.0)
Max 1200 2000 200 30 5
(2.301) (1.477) (0.699)
Resolution 0.5 0.5 1.0 0.16 0.029
(0.005) (0.005) (0.01)

Note: Log-transformed dispersivities are presented in parenthesis as these are the
values provided to ABAGUS for the case study.
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Fig. 3. “True” contaminant concentration map at 49 years. Circles represent
monitoring well locations. A dashed-line rectangle indicates the parameter
bounds for x; and y. The “true” contaminant source is indicated.

where @ is the performance metric, 6 is a vector containing the
parameter values, ¢(0) is a vector of simulated concentrations
resulting from 6, ¢ is a vector containing the observed

concentrations, and N is the number of observations. Due to the
rounding of the collected concentrations, a value of ¢ =0.14 is
obtained from the true parameter values.

It is assumed that we are interested in collecting parameter
sets producing values of @ below 100 (¢ =100; refer to Eq. (3)).
Below the cutoff values, the discrepancies between the model-
predicted and observed concentrations are assumed to be due to
measurement errors and other factors not captured by the applied
model. As a result, all the realizations below the cutoff value are
assumed to be equally consistent. The true parameters are
provided to define the location of one of the initial particles in
the swarm, similarly to providing the optimal location from a
previous optimization run. The initial energy is set to 10,000
and the maximum number of model calls is 200,000. As in the
test functions, initial values for w and c are set according to values
commonly utilized by SPSO2006 (Particle Swarm Central, 2006)
(w=0.72; c=1.2).

Fig. 4 presents histograms of the parameter values obtained by
the ABAGUS run. This information differs from posterior distribu-
tions of a Bayesian analysis in that the histograms are not
weighted by the performance metric (i.e., likelihood function).
It is also possible to rank the acceptable parameter sets by
some model-performance or statistical-interference metric. Each
collected discrete parameter set is represented equally within the
histogram (i.e., assumed to be equally consistent). The histograms
present a frequency analysis only within the context of the
samples collected by ABAGUS, which are discrete in nature. The
histograms are intended to summarize the results of the ABAGUS
run, but should not be considered to be a formal statistical
frequency analysis. Within set-based analyses (Ben-Haim, 2006)
this representation of parameter uncertainty is appropriate. It is
apparent that the histograms include the “true” values for all
parameters (Table 2).

Fig. 5 presents a map of the lowest @ value collected at each
source location (Xs,ys). Multiple @ values are possible at each
source location due to combinations of a,, a,, and a,. While the
histograms in Fig. 4 are not centered on the true parameter
values, Fig. 5 demonstrates that the lowest @ values are centered
on the true location. This is not apparent in the histograms of
Fig. 4, where all collected parameter sets are represented as
equally consistent with observations.

Fig. 6 presents histograms of log-transformed predicted
concentrations at the proposed well locations (d01, d02, dO3,
d04) associated with the histograms of collected parameter
values in Fig. 4. This constitutes a model-based predictive uncer-
tainty analysis. The histograms indicate varying degrees of pre-
dictive uncertainty, with concentrations varying over nine orders
of magnitude for d03, and around five orders of magnitude for
d02 and dO03. The predictive uncertainties are nonparametric,
allowing an empirical evaluation unconstrained by any prespeci-
fied probabilistic distribution.

The ABAGUS run collected 3590 parameter sets producing
@ < &=100 from 1 x 10> model evaluations. The total number of
plausible locations in the discretized parameter space is 4 x 10'°.
The ABAGUS run took approximately 23 min on a 2.8 GHz
processor, with approximately 117 model evaluations per second.
The resolution of x; and y, is 10 cm. This level of detail is not likely
significant in a practical application, but is used here for demonstra-
tion purposes. A coarser level of detail in x; and ys would require
fewer model calls.

Inspection of the results summarized by Fig. 4 provides
information answering the question discussed in the Introduc-
tion: “What do the observations and model have the ability to tell
us about the parameters?” The summary provided by the histo-
grams in Fig. 4 indicates the frequency of discrete parameter
values producing equally consistent simulations of the
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Fig. 4. Histograms of parameter values obtained from ABAGUS evaluation. “True” values are indicated by bold vertical lines.
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Fig. 5. Map of log-transformed minimum performance metric (log;,®) values at
identified source locations xs and y,. The location of the “true” source is indicated.

observations assuming a value of ¢ =100 indicating model para-
meter uncertainty and sensitivity. The histograms in Fig. 6 pro-
vide information about uncertainty and sensitivity related to
model predictions.

6. Conclusions

The utilization of concepts from agent-based modeling coupled
with the efficiency of KD-tree data storage provide a novel approach
to global UA. The efficiency of the approach can be tailored to the
computational constraints of a problem by specifying the resolution
of the search. ABAGUS does not produce formal posterior distribu-
tions of parameter probabilities consistent with Bayes’ rule, instead
focusing on identifying regions of the parameter space producing
simulations acceptably consistent with observations. The perfor-
mance of ABAGUS is evaluated on two test functions with known
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Fig. 6. Histograms of predicted concentrations at proposed monitoring well sites at t=51y. Refer to Fig. 3 for proposal locations.

response surfaces, demonstrating the viability of the approach. The
use of ABAGUS on a practical application is evaluated on a five-
parameter synthetic contaminant transport case study, demonstrat-
ing the approach’s ability to identify regions of the response surface
producing simulations acceptably consistent with observations sur-
rounding the “true” parameter values. ABAGUS provides a discretized
global UA approach filling the gap between local UA approaches and
rigorous sampling-based global UA approaches. ABAGUS will be an
attractive alternative for complex problems where it is recognized
that a local UA is inappropriate, but for which rigorous sampling-
based global UA is infeasible due to computational constraints and
inappropriate due to required assumptions. The ABAGUS algorithm is
included in the MADS toolbox (Vesselinov and Harp, 2010).
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