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The assumption that distributions of mass versus size interval for fragmented materials fit the log'
normal distribution is empirically based and has historical roots in the late 19th century. Other often
used distributions (e.g., Rosin-Rammler, Weibull) are also empirical and have the general form for
mass per size interval: n(l) = kl* exp (1), where n(l) represents the number of particles of diameter
1, 1 is the normalized particle diameter, and %, «, and B are constants. We describe and extend the
sequential fragmentation distribution to include transport effects upon observed volcanic ash size
distributions. The sequential fragmentation/transport (SFT) distribution is also of the above mathe-
matical form, but it has a physical basis rather than empirical. The SFT model applies to a
particle-mass distribution formed by a sequence of fragmentation (comminution) and transport (size
sorting) events acting upon an initial mass m’: n(x, m) = C [ n(x’', m")p(& dx' dm’, where x' denotes
spatial location along a linear axis, C is a constant, and integration is performed over distance from an
origin to the sample location and mass limits from 0 to m. We show that the probability function that
models the production of particles of different size from an initial mass and sorts that distribution, p(&),
is related to m#, where g (noted as vy for fragmentation processes) is a free parameter that determines
the location, breadth, and skewness of the distribution; g (y) must be greater than —1, and it increases
from that value as the distribution matures with greater number of sequential steps in the fragmenta-
tion or transport process; vy is expected to be near —1 for ‘‘sudden’’ fragmentation mechanisms such
as single-event explosions and transport mechanisms that are functionally dependent upon particle
mass. This free parameter will be more positive for evolved fragmentation mechanisms such as ball
milling and complex transport processes such as saltation. The SFT provides better fits to many types
of volcanic ash samples than does the log normal curve. Modeling of the SFT shows its similarity to
the log normal curve on size frequency histograms; it differs by-its variable skewness controlled by .
Skewed distributions are typical of many volcanic ash samples, and characterization of them by the

SFT allows interpretation of eruptive and transport mechanisms.

1. INTRODUCTION

Particle size-frequency distributions have been a topic of
considerable study not only in geophysical sciences but in
industrial-related work for nearly a century. This topic fits
into a category of general scientific studies of frequency
curves, a topic of statistical analysis [Elderton and Johnson,
1969]. In general, the study of size distributions in geophys-
ics has been based upon empirical mathematical character-
izations of mass or diameter distributions. In scientific
studies such as size distributions of stars, asteroids, and
sediments, workers seek to not only characterize distribu-
tions but interpret them as well. Application of empirical
distribution laws affords little fundamental physical interpre-
tation. Our recent research on the particle-size distributions
of volcanic ash has led us to develop an approach which we
believe provides a direct link to underlying physical pro-
cesses. o

Sheridan [1971] pointed out problems in characterization
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and interpretation of size-frequency distributions of tephra
by the lognormal distribution law. Other distributions such
as the Rosin-Rammler [Kittleman, 1964] and the Weibull
[Nakamura, 1984] have been proposed as alternatives in that
their forms better fit the distribution of the finer particle
sizes. More recently, Sheridan et al. [1987] discussed the
polymodal nature of tephra size distributions and a method
for decomposition of subpopulations prior to characteriza-
tion. Still, the underlying mathematical form of size subpop-
ulations was assumed to be log normal. This assumption of
an empirical mathematical form hampers even interpreta-
tions based upon newly proposed methods utilizing fractal
dimensions [Turcotte, 1986].

A newly developed method of understanding mass-
frequency distributions, called ‘‘sequential fragmentation
theory’’ [Brown, 1989] in application to processes of con-
tinuing comminution, offers perhaps the first approach that
allows development of a generalized physical model. Brown
[1986] shows how this theory works well for characterization
of the initial mass function of stars, and he later [Brown,
1989] shows that this theory well approximates measured
distributions for a number of different materials including
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high explosive aerosols, infalling extraterrestrial material,
black magnetic spherules from deep sea sediments, the
asteroids, volcanic ash and its experimental analog, and ball
mill products. As a result of the success of these initial
applications, we specifically develop the theory for applica-
tion to geologic materials, using volcanic ash as an example.

There are several important considerations in applying our
fragmentation theory to volcanic ash. Among those we
consider most important are bias introduced by sampling
technique, limitations of the size measurement system, and
generalization of the physical processes responsible for
production of volcanic ash and its transport to the sampling
point. The first two considerations have been topics resolved
by previous workers [Folk, 1974; Krumbein, 1938; Weni-
worth, 1922]. An implicit caveat is that samples represent a
statistically significant collection of particles from a single
deposit. Typically, particles sizes are measured by sieving,
which introduces a shape bias, as do settling velocity tech-
niques, Comparisons of optical measurements, utilizing
scanning electron microscopy and optical microscopes, with
sieve measurements show a general agreement between the
two methods for most volcanic ash samples. Typically, size
data are expressed by mass abundances in bins spaced by
logarithmic size intervals. This method minimizes the effect
of shape bias for all except particles of geologically extreme
shape. The final bias, that of generalization of fragmentation
physics and effect of transport on a population of particles,
incorporates the basic assumption that a size distribution of
volcanic ash is a unique signature of the process or processes
responsible for its formation. The validity of this assumption
has been demonstrated by numerous studies of field samples
[Walker, 1971; Sheridan, 1971; Sheridan and Updike, 1975;
Carey and Sigurdsson, 1982; Wohletz, 1983; Sheridan et i,
1987] as well as laboratory and theoretical arguments
lAnderson and Hallet, 1986; Kranck and Milligan, 1985;
Iversen and Whire, 1982].

The objectives of this paper are (1) io present a brsf
review of mathematical representations of particle size dis-
tributions; (2) to develop the sequential fragmentation/
transport (SFT) theory; (3) to demonstrate application of the
model with representative sets of volcanic ash data; (4) to
briefly interpret results of the SFT model. With respect to
the second objective, we do not intend to develop the
detailed physics, but we attempt to show how the SFT model
predicts the size-frequency distribution form that shouid be
produced by most physical processes of fragmentation and
subsequent geologic transport. Readers who are primarily
interested in the geologic application of the model may wish
to skip the mathematical derivations that follow and begin
with section 4. Throughout the manuscript, we nse a com-
mon notation for which important symbols are », which
represents the number or number distribution, {, which is a
particle diameter, and m, which is particle mass (see nota-
tion list after the appendix). In general, m and / are nondi-
mensionalized by division by a standard unit of mass and
length, respectively. Upper case forms of these symbols
represent their cumulative value over a specified interval,
and where these upper case symbols are subscripted with ¢
the total value of the population is meant. In several places
we have assumed that a spherical shape and constant density
are statistically appropriate for conversion of fragment mass
to a function of fragment diameter. Because this assumption
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is not always appropriate for geological materials, we show
how the SFT model accommodates these complexities.

2. History OF SiZE DISTRIBUTIONS

Most early researchers who were investigating distribu-
tions of particles sought to characterize their data using
empirical size distribution functions. These functions were
useful in correlating limited data sets, but they neither
revealed the physical phenomena that gave rise to the forms
seen in the data, nor did they allow extrapolation beyond the
range of data. Below, we summarize evolution of models
regarding size distributions from early analytical forms
through empirical models based upon industrial processes to
the well-known lognormal distribution.

Early Analytical Forms

Many early forms were simple power laws, for example,
that of Mellor [1910) who proposed that the particle number
per size class is constant, or

ril)=c, (1)

where n(l) is the number of particles per size class between
fand ! + dl, and ¢, is a constant. Brown [1989] relates the
mass distributicn minirm) to the particle number distribution

by
mnim) = % I nil} (2)

where nim) is the particle number distribution in mass and
denotes the number of particles per unit mass m between m
and m + dm. Because !/ = m"> for spherical and equidimen-
sional blocky particles, Mellor's formula can also be stated

min(m) = com B (3

where ¢, is a constant. Although equation (1) is based on

assumption and not experiment, we will show later that it is

an adequate description of the *‘fines’’ in some distributions.
Another proposal [Vieweg, 1935] is that

{l) = esi™* @
which translates into the mass distribution
mulm) = cqm {5

Vieweg was apparently working with a sample containing
the heavier portion of a distribution, but over his range of
data, equation {(5) was an adequate approximation.

Martin et al. [1923] used another simple form when they
proposed that

al) = cse ™" (6
Equation (6) translates into
mn(m) = cgm™® exp [—m1?] (N

In fact, Pearson [1895] had earlier proposed two extreme
cases: that of equation {6}, and also that of

nll) = cqe ¥ ®)

mnim) = cgm'® exp [—m*¥?] )]

Between Pearson's two extremes we find that
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mn(m) = com"? exp [ — mP] (10)

where 1/3 = B < 2/3.

Later, Rietz [1922] also proposed a form similar to equa-
tion (10), built on the normal curve of error, equation (8),
that entailed replacing / with [”.

As we shall show later, although such forms as those of
Pearson [1895] and Martin et al. [1923] had no basis in
physical theory, they anticipated sequential fragmentation
theory [Brown, 1989] by decades. )

More Sophisticated Empirical Forms From Grinding,
Milling, and Fragmentation

In the 1930s, when the world was running largely on
coal-fed power, knowledge of the particle size distribution of
crushed coal was important in understanding its burning
characteristics. Rosin and Rammler [1933] and Rosin [1937]
proposed an empirical description of powdered coal. In our
present terminology their law is

M) [ (z)"]
=exp|—\|{—
M’ ag

where M(>)) is the cumulative mass of all particles in the
distribution of size greater than /, M, is the total mass of
particles in the distribution, o is a size related to the average
particle size in the distribution, and k is a free parameter.
Rosin and Rammiler [1934] also used equation (11) to inves-
tigate the grinding of other materials. Bennett [1936] offered
theoretical support for equation (11), and Kittleman [1964]
and Krumbein and Tisdel [1940] have commented on its
application for geological materials.

Brown [1989] points out that the Rosin-Rammler law is
identical to the empirical Weibull [1951] distribution, given

by
M(<]) [ (1)"}
=]1—-exp|—|—
M, o

The Weibull distribution has also been used extensively in
the field of fragmentation. Recalling that dM/dm = mn(m),
we translate equations (11) and (12) into the mass distribu-

(n

(12)

tion
Mk [ m)®-1 m\ K3
mn(m) = — = <—> exp [—(—-) ] (13)
ms 3 ms mj
where m/m; = (lo)®. In a wide variety of fragmentation

experiments, it has been found that 1 < k = 6 where the
exponent on the fines, @ = (k/3) — 1, can vary between
—2/3 = a = 1, while the exponent in the large-mass cutoff
function, B = k/3, can vary between 1/3 < 8 < 2 (see, for
example, Brown et al. [1983]). For coal, Geer and Yancey
[1938] found that the ‘‘distribution factor,”” k, could vary
over the range 0.5 < k < 1.3, indicating that —0.8 < a <
—-0.6, and that 0.17 < 8 < 0.4.

Another empirical distribution that has been successful in
the field of fragmentation is

N(>m)_ m\"’
el b

where N(>m) is the cumulative number of particles in the
distribution of mass greater than m, N, is the total number of

(14)
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particles in the distribution, p is a mass related to the
average mass, and v is a free parameter. The logarithmic
form of this equation has been extensively used for muni-
tions experiments, and in cases where » = 1/2, the plot of
experimental data is known as the ‘““Mott plot.”” Turcotte
[1986] cited this form in his fractal representation of frag-
mentation and gave an empirical power law size-frequency
distribution similar to equation (4). Recalling that n(m) =
—dN/dm, we find that

oo o)

Among the uses of equations (14) and (15) are characteriza-
tion of fragment mass distributions from the explosions of
munitions, where, typically, v = 1/2 or 1/3.

All of the above equations (equations (1)-(15)) have the
general form

m\*“ m\?#
mn(m)=cm<;;> exp [-—(;4) ]

where —1 = a <1 and 0.1 = 8 =< 2. Note that a and g8 are
linked in equations (13) and (15), although the link differs by
unity.

Roller [1937, 1941] proposed the use of an empirical
function with similarities to equation (16), but it is somewhat
more complicated and was not extensively used.

In the history of grinding, milling, and fragmentation,
equation (16) summarizes one of the two successful empiri-
cal descriptions; the second is the log normal distribution.

(15)

(16)

Log Normal Distribution

The log normal distribution was formulated on a theoret-
ical basis by McAlister [1879]. As is the case of Pearson’s
[1895] theoretical work, the applications were far in the
future. For example, Drinker [1925] analyzed the size distri-
bution of certain dusts by plotting M(l)/M, versus log [ on
probability paper (Drinker refers to ‘‘Hazen’s logarithmic
probability paper,’” but the reference is lacking). In another
example, Loveland and Trivelli [1927a, b] used the lognor-
mal distribution to characterize the particles in precipitates,
including silver bromide precipitations in the gelatin of
photographic films. In its general form, they used

1 2
n(l) = A exp [—m(ln <—> —b,) ]
2]

where their data generally fell on the right-hand (coarse) side
of the curve. In equation (17), Ay, a;, and b, are constants.
Converting equation (17) to a mass distribution results in

m 2
mn(m) = A, exp [—a2<ln (——) - bz> ] (18)
ms

The m'? term arising from equation (3) has been omitted,
resulting in a pure log normal distribution in mass. In any
event, we note that the right-hand side of equation (18) is
well approximated by the large-mass cutoff term (the expo-
nential term) in equation (16).

Sheridan et al. [1987] characterized subpopulations of
polymodal volcanic ash size distributions using

an
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Fig. 1. Illustration of physical model for sequential fragmenta-
tion mathematically represented by equation (20) in the text. Note
that each generation is an ensemble of fragments that may range in
size from the very finest particles to one that is nearly as large as its
parent from the previous generation. Such continued comminution
produces a fragmentation cascade resembling a chain reaction.

1 ’ 2
m?n(m) = A; exp [—a;(ln (l_> - b2> ] (19)
4

where m%n(m) expresses the mass distribution in terms of
mass per natural logarithmic interval in m in the distribution
[dM/d In (m) = m®n(m)]. Although this form proved to be an
adequate model by which to characterize ash data, we will
show through derivation of the sequential fragmentation/
transport model that it not only better characterizes the data
but also allows physical interpretation.

In general, previous workers have used the log normal
distribution empirically, which allows such otherwise con-
tradictory applications of equations (17)~(19). Although the
lognormal distribution has basis in statistical theory [McAl-
ister, 1879], it is not derived from a physical theory, nor is it
based on a physical model.

Fr —— i

3. SEQUENTIAL FRAGMENTATION/ TRANSPORT THEORY
(SFT) -

The present theory of sequential fragmentation/transport
describes the size characteristics of a distribution of particles
as they first undergo fragmentation and then attrition and
size sorting during transport within a liquid or gaseous
media. Because SFT is an outgrowth of sequential fragmen-
tation theory [Brown, 1989], we recapitulate the fragmenta-
tion model before presenting the transport aspect of SFT.

Sequential Fragmentation

Brown [1986] sets forth the following equation to describe
the sequential fragmentation process, which is an expression
for conservation of mass:

n(m) = C; fw n(m')f(m' — m) dm’ 20)

where the function f(m’ — m) describes the single-event
mass distribution resulting from the fragmentation of a
particle of mass m’ (>m). C, is a constant. Equation (20)
represents a summing of contributions from fragmenting
particles of mass m’ to the population of mass m below,
shown schematically in Figure 1. Because mass is con-
served, no assumptions concerning particle shape and den-
sity are required. One can picture a fragment of mass m’
breaking up into an ensemble of smaller particles of various
masses whose sum equals m'; then in succession each of the
smaller particles breaking again forming numerous new
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ensembles. Integrated over many steps of dm’, the process is
a cascading mechanism analogous to a chain reaction.
For f(m' — m), Brown [1988] chose

m Y
fim' — m)= (—)
my

where m; is a mass related to the average mass and yis a free
parameter and y = —1. While equation (21) is not specific in
the manner by which fragmentation occurs, Brown [1989]
supports the choice of equation (21) with experimental data.
Inserting equation (21) into equation (20) and normalizing by
C 1 = 1/ my,

m Y
my

where (m/m,)” has been removed from the integral because
it is a function of m, not m’. Browr [1989] finds the solution
of equation (22) to be

N,(m)" [ (m/m1)7“] ,
n(m) = — m_ exp| ——m—— 23)

@n

f © nm') dim'imy) @2)
mim;

my 1 y+1

where the distribution has been normalized so that

N,=f°° n(m) dm
0

The mass distribution per logarithmic mass interval is given

by
m\7+? (mimy)? *1
m*n(m) = N,m| — exp | - — 25)
: my y +1

It is interesting to note that Theimer [1952], in an attempt
to derive the Rosin-Rammler equation, studied the statistical
mechanics of grinding processes and produced an equation
similar to equation (23). Brown [1989] pointed out that
equation (25) is identical to equations (15) and (16), both of
which have successfully characterized data from hundreds
of experiments pertaining to various fragmentation mecha-
nisms. Brown [1989] further validated equation (25) by
successfully applying it to the data from several additional
experiments including the explosive aerosolization of pluto-
nium, the grinding of iron in a ball mill, and the production of
ash by simulated volcanic explosions. Finally, Brown [1989]
applies the sequential fragmentation theory to several astro-
nomical phenomena that are candidates for having under-
gone the sequential fragmentation process; these phenomena
include infalling extraterrestrial material, siderophile ele-
ment concentrations in black magnetic spherules of possible
meteoritic origin, the asteroids, the distribution of galactic
masses, and the initial mass function of stars. Because the
free parameter vy differs for different fragmentation mecha-
nisms and it is explicitly related to mass, y should be
theoretically predictable for given physical mechanisms of
fragmentation.

(29)

Sequential Transport

Because particle attrition, occurring during transport, is
covered by the fragmentation theory, the transport theory
includes the size distribution modification (sorting) caused
by the transport mechanism, which can be safely assumed to
be mass sensitive. Figure 2 shows a schematic drawing of the
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SEQUENTIAL TRANSPORT |

A A
=l e
dx’' dx
Generation 0 1 2
sample position

source —_—

Fig. 2. Illustration of physical model for sequential transport
mathematically represented by equation (36) in the text. Note that
each successive generation found at location x has as its parent the
ensemble of particles existing previously (and possibly transiently)
at location x’, which in turn might be a daughter ensemble from
some previous source location.

coordinate system adapted for the basis of the present
transport theory. Shown at the left of Figure 2 is the pristine
pile of material from which the carrier transports particles to
the right. We offer the following equation to describe the
transport process, which explicitly conserves mass and
implicitly conserves momentum.

n(x, m) = C, J-'m fo n(x', m')p(€) dx’ ;1m’ (26)
0 x—§

Here n(x, m) is the particle number distribution in terms of
the number of particles in the length interval between x and
x + dx and mass interval between m and m + dm. The
function p(¢) is the probability that a particle carried from
location x’ will be deposited at location x downstream. In
this way, ¢ is the possible range of a particle lifted from the
pile by the carrier. Equation (26) represents a summing of all
particles from the original pile contributing to the population
at x. This equation is exactly parallel to the sequential
fragmentation equation (20), although it is complicated by
the presence of two variables rather than one.

The probability, p(£), that a particle arrives at location x is
given by

© dx=2
14 X ¢

Because p(£) gives a distribution of particles arriving at x, it
may be removed from the inner integral in equation (26),
giving

@n

n(x, m) = C, f’" g*lfo n(x', m') dx' dm' (28)
0 x—¢

We set the range, ¢, to be generally related to the particle

mass m by
m\ &
£=¢o| —
my

where g (analogous to yin the fragmentation theory) is a free
parameter, m, is a mass related to the average mass, and £,
is a length that is a function of the carrier flux, pv, but not the
particle mass; p and » are the carrier bulk density and
velocity, respectively. Several dependencies are hypotheti-
cally summarized by equation (29), including the tendency of
the particle to fall back to the surface, the area that it
presents to the carrier fluid, and possibly its rolling and

(29)
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Fig. 3. Plot of the logarithm of total mass of fragments (log m?n)
versus logarithmic interval in normalized mass (log m/m,). These
curves, representing equation (32) in the text, show that for increas-
ing transport distance (x/¢, = 0.1, 0.2, 0.5, 1, 2, 5, 10), the shape of
the distribution does not change for a given transport of constant
value of g (see Appendix B).

bouncing ability. For each type of transport, the physical
description can be shown to be mass sensitive, thus support-
ing equation (29).

Substituting equation (29) into equation (28) and normal-
izing by Cy = 1/m,,

mimz [ m'\ % (o x' m'
o [ (3 [ o) 43
0 M2} Jix- ek §/ \m

30

A suggested approximate solution to equation (30), derived
in Appendix A, is analogous to equation (23): '

(x, m) =K (x) (mimy)8*1
n(x, m) =K exp i Py
and

*n(x, m) K’<m | (x e e
s = — X — — —
m°n(x, m - exp & e+ 1

We emphasize that equation (31) is only an approximate
solution and does not fully satisfy equation (30). The nor-
malization (Figure 3) and distribution characteristics of
equation (31) are given in Appendix B.

(31

4. VOLCANIC ASH ANALYSIS BY SFT

We illustrate application of SFT to volcanic ash data by
characterization of samples from four well-known tephra
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Fig. 4. Tilustration of the transport distribution of the SFT. Curves show distributions for various values of g (y) on
a size-frequency histogram. For g near —1, the distribution is relatively coarser and flatter, but with increasing g values,
which in general model increased processing and sorting, the distribution becomes finer and more peaked.

deposits: Mount St. Helens’ 1980 debris avalanche [Glicken,
1986] and proximal bedded deposits, described by Criswell
[1987], the Vesuvius AD 79 pumice fall [Sigurdsson et al.,
1985], Bishop Tuff pumice fall [Sheridan, 1965], and Crater
Elegante pyroclastic-surge deposit [Wohletz and Sheridan,
1979]. These deposits represent a range of eruptive fragmen-
tation mechanisms from magmatic [Sparks, 1978] to
phreatomagmatic (hydrovolcanic) [Wohletz, 1983] and a
variety of tephra transport modes, including fallout [Carey
and Sparks, 1986], flow [Sheridan, 1979], and surge [Wohletz
and Sheridan, 1979]. An important procedure in application
of SFT is prior decomposition of polymodal distributions.
The resulting data fit provided by SFT is shown to be
generally superior to that afforded by the log normal distri-
bution. In addition, characterization by SFT reveals funda-
mental particle size differences in these tephra deposits.

Geologic Illustration of the Free Parameters vy and g

The typical representation of geologic sieve data are
histogram plots of size frequency, which show a general bell
shape of the log normal distribution. For this representation,
the sequential fragmentation/transport (SFT), m2n(m), dis-
tribution is similar to the log normal curve. It differs though
by a variable skewness, controlled by the free parameter, y
.or g, which in the range of interest for volcanic ash analyses
generally produces a greater abundance of fines than is
predicted by the log normal distribution. When vy (g) is very
close to —1 the distribution is very wide and essentially flat
where plotted on a size frequency histogram; the distribution
is undefined and unbounded for y = —1. An increase in y (g)
reflects increased comminution by a fragmentation mecha-
nism and/or increased sorting by a transport mechanism.
Figure 4 illustrates the form of the sequential transport
distribution as g increases from —0.97 to —0.50.

Figure 5 provides a comparison of the sequential transport
distribution to that of the log normal by three log normal
curves with different standard deviations and the corre-
sponding, best fitting sequential transport curves. Note that

the sequential transport distributions more closely approxi-
mate the log normal ones as g approaches —1, as evidenced
by the subtraction residuals of the two sets of curves.

The sequential’ fragmentation and sequential transport
distributions are nearly identical in form when plotted on a
size-frequency histogram (Figure 6). The only differences
are that the sequential fragmentation distribution has slightly
more of a skew in the fines (the coarse side of both
distributions is governed by the argument of the exponent in
equation (25), and the values of the free parameters y and g
vary by only a few percent for distribution with that param-
eter near —1.0). For more evolved (mature in a sedimento-
logical sense) distributions that have a free parameter greater
than about —0.2, the two distributions are nearly identical.

Application of SFT to Volcanic Ash

Geologic samples of volcanic ash do not generally repre-
sent the pristine distribution of particle sizes caused by the
eruptive fragmentation miechanism. Samples obtained in the
field have been processed by transport from the vent by one
or a combination of transport processes, which include
aerodynamically modified ballistic projection, atmospheric
fallout, turbulent suspension, saltation, and traction flow.
The size-sorting ability of these mechanisms modifies the
pristine distribution and dictates application of the sequential
transport formulation. As we shall discuss later, with applica-
tion of the SFT the free parameter g in transport (analogous to
v for fragmentation) will vary depending upon the dominant
transport mode. Because of the similarity of data fits between
the transport and fragmentation distributions, we feel that in
addition to learning about the transport history of individual
samples, one can also characterize the fragmentation history
by noting the nature of g for sample sets.

Volcanic ash particle size distribution data are usually
found in the form AM/A¢ where

1
e 1)

(33)
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] g = 0.95 g= -053 g = -0.88
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residual = 8.75% residual = 6.85% residual = 6.83%
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Fig. 5. Comparison on a size-frequency histogram of three log normal (Gaussian) distributions and corresponding,
best fit SFT distribution. The difference between the two distributions for each curve is shown as a subtraction residual
curve and areal difference in percent. Three log normal standard deviations and corresponding g (y) values show that
the two distributions become most similar for g near —1.

with [, = 1 mm. We note that
.

3@ —2 31 @m? 4
1 n ( )dln = n (Qmn(x, m)  (34)
From these relationships it is clear that dM/d¢ is a mass
distribution, although it is usually plotted versus a logarithm
scale in size. It is for this reason that in this and the previous
section, we have discussed only mass distributions, convert-
ing from size where necessary. The reason that we empha-
sized the quantity m?n(x, m) is now also clear from equation
(BS5), which cast in terms of particle diameter, assuming
spherical particles, is -

x l3(g +1)
(35)

M _ ks
dg P T 1

For this representation K, is unity (for size-frequency his-
togram data [Folk, 1966]), x/&, = 1, as justified in equation
(B9) and Figure 3, and particles are assumed to be of

constant shape and density. These assumptions are other
reasons why we have developed our model, based upon
mass distributions, to circumvent the problem that volcanic
ash is composed of crystal, rock, and glassy particles that
vary in density and shape. In geologic application, we
emphasize that one must consider the contributions of
particles of varying density (e.g., separate the size distribu-
tions of principal constituents where a density contrast is
significant). In light of these considerations, we show in
Appendix C how equation (34) can be modified to take into
account varying shape and density. The result of the modi-
fication upon the form of equation (35) is that dM/d¢
becomes the summation of three terms all of the same form
as the right-hand side of equation (35). This result demon-
strates that the total distribution is polymodal with contri-
butions of at least three subpopulations, all of the SFT form.

Because a change in the value for g in equation (35)
produces a shift of the distribution peak, we define the shift
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Fig. 6. Comparison showing the similarity of the sequential fragmentation and sequential transport distributions.
Note that the coarse sides of the distributions are similar, but that the sequential fragmentation curve is finer skewed
than the sequential transport curve even for larger v (g) values. ‘
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as a function of g to facilitate the analysis in fitting data for
which the peak location is known. The shift value is found by
differentiating equation (35) with respect to / and finding I,
(the particle diameter at the distribution peak) where dM/dl
= 0. The phi mode is the observed peak location (¢ units)
minus /,, where log, [, = [3(g + 1)]7! for sequential
transport, and [1.443 In (y + 2)1[3(y + 1)]"! for sequential
fragmentation, based upon differentiation of equation (25).

The standard deviation (in phi units) of this distribution

given by equations (B5) and (33) is approximately
FWHM 0.340

T2 @ \zrl

where FWHM means the distribution’s full width at its half
maximum amplitude. The standard deviation is also indepen-
dent of location x/&, (>0), and the above approximation is
good to = 1/4% (-1 < g < —0.2).

+ 0.006 (36)

Decomposition of Polymodal Distributions

Sheridan et al. [1987] demonstrated the polymodality of
size-frequency data for pyroclastic deposits, but an unbiased
decomposition of subpopulations from data sets cannot be
made with a distribution law, because the algorithm for
decomposition assumes a subpopulation distribution form.
Assuming that polymodal distributions are produced by
mixtures of two or more subpopulations and that subpopula-
tions exist in various proportions in all samples from a given
sample set, we attempt to find the number of subpopulations,
their individual forms, and the relative proportions of each
comprising a tephra sample. Accordingly, we use the unmix-
ing technique of Ehrlich and Full [1987], which provides a
decomposition that is relatively free of mathematical bias.
This technique employs a ‘‘vector analysis’ because a
correlation matrix is constructed in which sample data,
transformed to multidimensional vectors, are represented by
values in the matrix corresponding to the cosine of the angle
between various pairs of data vectors. The minimum number
of eigenvalues accounting for most of the variance (99% in
our analysis) equals the number of components responsible
for the original data set.

A set of 30 sample size analyses from Crater Elegante was
chosen for subpopulation identification. EXTENDED CAB-
FAC [Klovan and Miesch, 1976) was used for the vector
analysis, and a QMODEL algorithm [Full et al., 1982]
provided supopulation compositions and mixing proportions
for each sample of the set. This analysis, kindly provided by
J. Horkowitz and R. Ehrlich of the University of South
Carolina, is fundamentally different than that of factor anal-
ysis in that the data transformation used is completely
reversible and provides unique results.

The results of the unmixing analysis show that six com-
ponent or ‘“‘endmember’’ subpopulations, combined in vary-
ing proportions, explain over 99% of the observed variance.
These endmembers, illustrated in Figure 7, have varying
skewness and are of no simple mathematical form. This
result suggests that the physical process giving rise to the
subpopulations is of complicated mathematical expression.
Still, the skewness, displayed by some of the endmembers,
supports an argument against fits, based upon a log normal
distribution. A comparison of mathematical fits (Figure 8) of
these empirical subpopulations demonstrates some advan-

WOHLETZ ET AL.: SEQUENTIAL FRAGMENTATION/ TRANSPORT THEORY

{ CRATER ELEGANTE ENDMEMBER SIZE
J COMPOSITION # EM-1
25+
0- L] L T T T L T T L] Ll T v L] T L al
] ENDMEMBER EM-2
254
1
0
4 ENDMEMBER EM-3
8 25+
':E .
g -
1 ENDMEMBER EM-4
25+
0] /\
o5] ENDMEMBER EM-5
25/ ENDMEMBER EM-6
o] /\ = y
54.3210123a5878610
PHI SIZE
Fig. 7. Ilustration of six endmember subpopulations derived

from the principal component analysis of a set of 30 pyroclastic
surge samples from crater Elegante, Mexico. Combination in vari-
ous proportions of these endmembers explains over 99% of the
observed variance in grain-size distribution. Note that the endmem-
bers are of no prescribed mathematical form, but they do resemble
both log normal and skewed SFT distributions.

tage of the SFT over the log normal to characterize the data.
Furthermore, the skewness of the endmembers resembles
that produced by the SFT. In general, the SFT provides
better fits to volcanic ash data than does the log normal
distribution as is illustrated by Figures 9 and 10, which
compare residuals obtained for the two alternatives.

Our conclusions from comparison of the SFT to the
unmixed component distributions is that the SFT is appro-
priate for decomposition of polymodal size frequency distri-
butions of volcanic ash. In order to analyze data, we have
constructed an algorithm, ‘“‘SEQUEN,’’ for computer appli-
cation, based upon an earlier log normal version, ‘““GAUSS,”
[Sheridan et al., 1987]. This algorithm allows user-interactive
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Fig. 8. Comparison of log normal and SFT fits to principal
component endmembers. The plot shows that four of the six
endmembers, the SFT explains more of the variance than does the
log normal fit.

identification and characterization of SFT subpopulations from
size-frequency data using equation (35). The characterization
provides the mode, gamma or g, and proportion of each
subpopulation, as well as the goodness-of-fit for the total
sample.
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Data Analysis

Figure 11 illustrates results of five example data fits using
SEQUEN. For each example, data points are compared to
the curve resulting from the SFT fit. Note the characteriza-
tion of the SFT subpopulations required to produce the fit.
Below each comparison plot, the decomposed subpopula-
tions are plotted with respect to the cubic spline curve
passing through each original data point. Besides the poly-
modal character of these various types of volcanic ash
samples and the goodness-of-fit shown by the SFT model,
the typical skewness of the original distributions is apparent.
Skewing of fines has been the reason previous workers were
dissatisfied by log normal characterizations. One example
though, the Bishop Tuff fall (Figure 115) shows an overall
coarse skewing that we modeled as a result of superposition
of two subpopulations. This fit is somewhat arbitrary in that
perhaps one coarsely skewed population might provide an
adequate characterization; however, we prefer the poly-
modal fit based upon consideration of the tephra fallout
mechanism to be discussed later.

A general application of the SFT model is comparison of
the results obtained for each of the four example tephra
sample sets. Figure 12 is a histogram of subpopulation mode
frequencies that contribute over 30% to their respective
sample distributions. Within the limited data set, the ava-
lanche deposits (MSH A) contain the coarsest subpopula-
tions and the phreatomagmatic deposits (CE) the finest. The
proximal bedded tephra (MSH PBD) is generally finer than
fallout tephra (FALL) but shows a smaller range of modes
than does the phreatomagmatic tephra. This comparison
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Fig. 9. Comparison of SFT and log normal fits to Crater Elegante samples. The SFT fits result in less than 5.5%
residual (calculated by least squares fit of data to the theoretical curve) and overall are better than the log normal data

fits.
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Fig. 10. Comparison of SFT and log normal fits to Mount St. Helens ash samples. SFT residuals are less than 4%,
again much better than those produced by the log normal.

supports our formulation that different fragmentation and
transport mechanisms develop different mass distributions.

Figures 13-15 are data plots for the four analyzed sample
sets, and they show comparison of subpopulation parame-
ters obtained from the analysis: (1) weight fraction versus
phi mode (Figure 13); (2) weight fraction versus g (Figure
14); (3) g versus phi mode (Figure 15). Although these figures
show a considerable scatter of data, we have fitted least
squares regression curves in order to establish data trends.
We believe that these trends would be much better defined
for data sets from controlled sampling (e.g., single sample
localities). Of greatest interest are plots showing behavior of
g. Inspection of Figures 14 and 15 shows several interesting
data trends: (1) for surge, avalanche, and flow deposits of
Crater Elegante and Mount St. Helens, the tendency shows
most sample modes having g values less than —0.75 and a
general exponential decrease in weight fraction of modes for
increasing g (Figure 14); (2) this same trend is noted for
Bishop fallout ash, but the opposite is shown for samples of
Vesuvius fall; (3) g values are most positive for coarse and
fine modes for all samples except the fall deposits (Figure
15), the variation of g fits a power law of phi mode, and again
there is a difference noted for the behaviors of the Bishop
and Vesuvius samples.

5. DiscussioN

We prefer the SFT model for applications to volcanic ash
data, because it is suitable for a physical analysis. The
theory is very basic and is expressed for fragmentation and
transport processes by equations (21) and (29), respectively.
These equations implicitly show the underlying dependence
of particle-mass distributions upon physical process. Al-

though different functional forms of mass dependency can be
postulated, the power law forms of equations (21) and (29)
produce good fits to observed data. Analyses of fragmenta-
tion and transport physics, based upon Newtonian mechan-
ics, can be developed from expressions of continuity, mo-
mentum, and energy, all of which require consideration of
mass. In simplified form such analyses allow prediction of
values of y and g for the above equations. More detailed
analysis relates these free parameters to recurrent phenom-
ena involved. With respect to this latter consideration, one
can think of the significance of these free parameters as
measures of sample processing, a concept easily visualized
for ball-milling or multiple stages of transport and deposi-
tion. The following discussion does not aim at developing the
detailed physics of fragmentation and transport. Using pre-
vious analyses of such processes, we show how the SFT
model can be incorporated.

Fragmentation

Volcanic ash can be formed in volcanoes by many dif-
ferent processes that transform large batches of magma and
country rock into smaller pieces. Two general mechanisms
are (1) magmatic fragmentation in which exsolution and
expansion of magmatic gases contribute to volcanic ash
production, and (2) hydrovolcanic fragmentation in which
physical contact and mixing of magma with external water
results in ash formation. In both cases, the number frag-
ments of a specified size range will be indirectly proportional
to the mass of those fragments, which in turn is governed by
the single-event fragmentation function (equation (21)) of the
fragmentation process.

Magmatic fragmentation is generally marked by the pres-
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Plots showing example data fits using the SFT. Each plot shows original data points, fit produced by SFT

analysis, subpopulation characteristics, and comparison of subpopulation distributions to the data spline distribution.
(a) Crater Elegante planar pyroclastic surge bed. (b) Bishop Tuff ash fall sample. (c) Vesuvius AD 79 gray pumice fall
sample. (d) Mount St. Helens proximal bedded deposit sample. (¢) Mount St. Helens debris avalanche sample.

ence of vesicles in volcanic ash and production of pumice.
Sparks [1978] models the growth of vesicles in magma and
shows that where their growth exceeds an estimated volume
limit for a magma, the magma breaks apart at vesicle
intersections. This model is complicated by the movement of
stress waves within the magma as it approaches the surface

of the Earth beneath a volcano. Expansion waves of suffi-
cient amplitude are expected to exceed the bulk modulus of
the magma causing its failure in tension [Wohletz et al.,
1984]. For stress wave propagation, the sizes of ash particles
formed by the magmatic mechanism are thought to be
functions of the initial size distribution of planes of weakness
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Fig. 12. Histogram of principal subpopulation modes for the
four sample sets: CE, Crater Elegante; MSH A, Mount St. Helens
debris avalanche; MSH PBD, Mount St. Helens proximal bedded
deposits; FALL, Bishop Tuff fallout and Vesuvius AD 79 fallout.

within the magma such as vesicle [Whitham and Sparks,
1986] and crystal surfaces [Cashman, 1986]. With respect to
vesicles, Sparks and Brazier [1982] document a polymodal
distribution of sizes, which might be reflected in polymodal
distribution after fragmentation. In addition, Heiken and
Wohletz [1985] illustrate the nucleation of vesicles on crystal
faces, which suggests that the two Kinds of structural weak-
nesses, crystal surfaces and vesicles, can be related. The
sizes of these features are directly proportional to mass to
the one-third power (volume limitation) and mass to the
two-thirds power (area dependence). In both cases the
number of particles formed of a given size range is indirectly
proportional to sizes as mentioned above; hence v is ex-
pected to be between —1/3 and —2/3 for fully developed
magmatic fragmentations. Note that if the fragmentation
mechanism does not fully evolve, y.will remain near —1.

Hydrovolcanic (phreatomagmatic) fragmentation occurs
where magma comes into contact with external water.
Several mechanisms can account for magma fragmentation
as outlined by Wohletz [1983, 1986]. As with the magmatic
case, propagation of stress waves through the magma,
caused by the magma’s unloading in the crater, is expected
to contribute to fragmentation. Also contributing to hydro-
volcanic ash production are instabilities that develop at
interfaces between magma and water and grow during ex-
pansion of vapor films. For growth of instabilities, Wohletz
[1986] shows that surface tension is an important limiting
parameter for instability wavelength and resulting fragment
size. In this case, fragment size is directly proportional to
mass to the 1/2 power. During vapor expansion and explo-
sion, Wohletz [1986] shows that final particle size is directly
related to surface tension (surface tension directly propor-
tional to mass) and indirectly related to magma-water rela-
tive velocities squared. Assuming the relative velocity varies
as a function of particle drag, fragment size is proportional to
mass to the —1/3 power. Hence vy is expected to be between
—1/2 and 1/3 for hydrovolcanic fragmentations.

To illustrate the above general applications of sequential
fragmentation to volcanic ash, we fit the distribution to
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Fig. 13. Plots of subpopulation weight fraction versus subpop-

ulation mode. (a) Crater Elegante, (b) Mount St. Helens, (¢) Plinian
fall deposits from Bishop Tuff and Vesuvius AD 79 fall.

samples that represent hydrovolcanic and magmatic frag-
mentations. Samples include those from Crater Elegante, a
predominantly phreatomagmatic maar volcano in Sonora,
Mexico, and samples of ash from Mount St. Helens recent
pumice eruptions, some of which are demonstrably mag-
matic [Eichelberger and Hayes, 1982). Figure 16 is a histo-
gram of y valugs for these two sample sets. It is apparent that
the phreatomagmatic samples have a much wider range in y
(—1.0to 1.1; average y = —0.50) than do the magmatic ones
(-1.0 < y < —0.3; average y = —0.72). This result is in
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[

general what we predict above. We note that the ranges in ¥,
however, are broadened by overprinting of transport pro-
cesses and that the Crater Elegante samples may have a
small magmatic component.

Interpretations of fragmentation mechanisms for these
samples from Crater Elegante and Mount St. Helens can be
extended to estimates of initial fragment sizes prior to
eruptive fragmentation. For the former samples, Figure 154
shows coarse population modes near —4¢ (16 mm). Because
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deposits from Bishop Tuff and Vesuvius AD 79 fall. Note fitted
curves shown only to highlight general data trend.

the lowest y values observed for those samples (y = —0.95)
reflect initial distribution locations, the Crater Elegante
coarse population modes experienced a fine shift of about 6.2
¢, such that initial fragment sizes were in the range of
meter-sized blocks prior to fragmentation. For the Mount St.
Helens samples (Figure 15b) the coarse modes have y values
that reflect fine shifts of only about 4.6 ¢ from initial peak
locations determined by lowest observed y at —0.94; initial
sizes determined by vesicle and crystal planes of weakness
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Fig. 16. Histogram of observed gamma values for samples of
hydrovolcanic (Crater Elegante) and magmatic (Mount St. Helens)
fragmentation origins, as interpreted from geologic relationships.
Hydrovolcanic sample gamma values show a much wider range than
do those of magmatic samples, as predicted.

would have been only in the range of centimeters. These
predictions are consistent with a hydrovolcanic origin for
Crater Elegante samples in contrast to a magmatic origin for
the pumiceous samples of Mount St. Helens.

Transport

Processes responsible for transport of volcanic ash from
the crater to sites of deposition and sampling are suspension
in and fallout from the atmosphere (water for submarine
eruptions), and lateral moving flows that interact with the
substrate. These processes are generalized, but in the fol-
lowing analysis, we assume the number of particles of a
given mass accumulating at some sample range is propor-
tional to the transport range, which is a function of mass
(equation (29)). For the fallout case, ballistic and suspension
processes operate, whereas in the case of lateral transport,
particle hopping (saltation) and rolling (traction) also must be
considered.

For ballistic transport, the aerodynamic drag affecting
particles increases with decreasing size, and it strongly
determines the range for particles smaller than several
centimeters [Schultz and Gault, 1979]. For large particles,
transport range is directly proportional to launch velocity,
which is in turn proportional to mass to the —1/2 power.
Because drag is a function of surface area, small particles are
expected to show a modified ballistic range indirectly pro-
portional to mass to the —1/3 power, as shown in the
solutions to the equations of motion derived by Wilson
[1972]. For very fine particles, suspended transport causes
range to be directly related to fallout times, which are
determined surface area such that range increases with mass
to the —2/3 power. Values of g (y) for fallout ash are
expected to vary from —2/3 to —1/3.

Volcanic ash transported in pyroclastic flows and surges

WOHLETZ ET AL.: SEQUENTIAL FRAGMENTATION/ TRANSPORT THEORY

can experience significant transport by saltation and traction
movement [Denlinger, 1987]. In cases of saltation and trac-
tion movement analysis of mass dependency is very compli-
cated. The threshold velocity between rolling and hopping is
shown by Bagnold [1941] to be proportional to mass to the
1/6 power, such that range is expected to increase with mass
to the —1/6 power. White [1979] extended the analysis and
computed saltation path length, as a function of lift-off
speeds, to be proportional to mass approximately taken to
the —1/2 to —2/3 power. Thus a range of g is approximated
for saltation transport as —2/3 < g < —1/6. In support of our
transport model, Anderson and Hallet [1986] in fact propose
a two-parameter gamma function fit to White and Schulz’s
[1977] experimental measurements of saltation lift-off
speeds. Where lateral transport velocities are too small to lift
particles, traction movement can be calculated as a function
of shear stress and rolling friction. Thus transport range for
constant shear velocity is indirectly proportional to the
square root of mass to the two-thirds power and indirectly
proportional to mass to the one-third power. Values of g are
then expected to be near —2/3 for these cases.

In consideration of transport effects upon g, we compare g
as a function of deposit types, including surge, debris
avalanche, fallout, and pyroclastic flow samples discussed
above (Figures 14 and 15). It is evident, as discussed above,
that correlation exists among these parameters, which is
support for interpretation that data trends can be related to
underlying physical processes. On the other hand, each
sample can be interpreted on an individual basis as to the
significance of g. Because the coarse and fine modes show
relatively higher gamma values in Figures 15a and 156, we
believe that these modes reflect fragmentation/transport
processes, interpreted as ballistic and suspension modes
[Sheridan et al., 1987], which are more evolved than those
responsible for the intermediate subpopulations (traction
and saltation modes).

Another test of the effect of transport process upon g is a
comparison of observed g values for sample subpopulations
in which the responsible process can be determined by
deposit characteristics. Sheridan et al. [1987] also show that
sample subpopulations can be assigned to a likely transport
process in pyroclastic surge deposits by considering exper-
imental wind tunnel data. In essence, coarse subpopulations
(! > 2 mm) are associated with samples from deposits whose
bedding features are characteristic of ash fall, finer subpop-
ulation from samples taken from planar-bedded and dune-
bedded deposits can be attributed to traction and saltation
transport processes respectively, while the finest subpopula-
tions (/! < 0.125 mm) are considered to be dominantly
transported by suspension. Figure 17 shows the ranges of g
values observed for Crater Elegante samples where bed
forms and textures constrain likely transport processes. We
note that average values of g for the transport processes
considered fall within the ranges predicted above, which
supports the hypothesis that g is a function of transport
mechanism. ‘ ’

Table 1 outlines various fragmentation and transport
mechanisms and possible expected ranges of y and g. The
ranges estimated for these various fragmentation/transport
processes show overlap, which rules out unique interpreta-
tions based upon model parameters. One must consider each
mechanism separately as to the number of sequential steps
likely to be involved in the process. We emphasize that
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Fig. 17. Histogram of g values observed for Crater Elegante
samples where subpopulations can be assigned to a specific trans-
port process using the analysis of Sheridan et al. [1987]. Average g
values for each transport process can be compared to predicted
values shown in Table 1.

values in this table are tentative, and that with detailed
analysis of physical processes involved with formation and
dispersal of volcanic ash, much more accurate ranges of g
and vy can be formulated.

6. CONCLUSIONS

In conclusion, we have found that the SFT particle-size
distribution provides better. fits to volcanic ash data than
does the log normal distribution. In deriving the SFT distri-
bution we have shown that it is physically related to pro-
cesses sensitive to mass. Because of this physical basis, we
believe the SFT model will allow much greater interpretation
of volcanic ash size-frequency distributions, especially with
respect to formative and transport processes. Although the
SFT appears to apply to wide range of geophysical and
astrophysical data sets concerning size distributions of frag-
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mental materials, the theory has not yet been tested on
well-known geological occurrences such as marine and flu-
vial sediments. Further development of this model with
respect to interpretation of data sets could benefit from
application to experimentally derived data sets.

APPENDIX A: AN APPROXIMATE SOLUTION
TO THE TRANSPORT EQUATION (30)

Equation (30), developed in the text of this article, is

mma [m'\ ¢ (o x' m'
n(x, m)=f (—) f n(x', m') d(———) d(—)
, 0 M2/ Jix- oo o/ \m2

(AD

We have found no exact solution to equation (A1) in terms of
ordinary functions. What follows is therefore an attempt to
derive an approximate solution that possesses qualities that
are useful in describing data.

The first difficulty that we recognize is that although n(x,
m) is assumed to be a continuous function in x, there is in
fact a discontinuity in n(x, m) at the edge of the source pile
(x = 0). This discontinuity is only finite at the initial stage of
transport and vanishes for late steps in sequential transport;
its effect is minimal for locations x > 0. Accordingly, we
ignore the initial discontinuity in order to find an approxi-
mate solution.

Differentiating equation (A1) with respect to m, we obtain

dn(x’m)—<m [ womdl) @2
dimimy) ~ \m; f(,,_m(, A v

We then differentiate with respect to x and find that

d’n(x, m) (m & x— & A3
A€ dimimy)  \m; AN 49

The second difficulty is now clear: there is a discrepancy in
the argument of x in the function n. Again, in the interest of
proceeding to an approximate solution, we ignore this incon-
sistency. Rearranging equation (A3), we obtain

w246

To simplify the left-hand side of this equation, we now note
that

(A4)

TABLE 1. Possible variation of y and ¢ With Fragmentation and Transport Processes

(8

Process -1.0 —0.80 —0.60

-0.40

—-0.20 0.0 0.20 0.40

Fragmentation
Magmatic X

Hydrovolcanic -X

Transport
Ballistic* X

Suspension

Saltation
Traction

Processes are generalized for range of physical mechanisms involved. Observed values of y and g are denoted by cross.

*Ballistic transport for fragments larger than 1 mm.
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5 3 (AS)

p dn\ nd*n—(dn)? d*n (dn)?
- n B n n

Because (dn)%/n? << d%n/n, we can neglect the squared
differential to obtain the following approximation.

d*n dn
—=d|— (A6)
n n
Using equation (A6), equation (A4) becomes
dn\ m\¢é¢ [m x
dl—|=-{—] d|— ) d| — (A7)
n ms my &o
Twice integrating equation (A7) gives
x [(mimye+1 ,
In (n) = — | ——errr— (A8)
éo [ g+1
Taking the exponential form of this equation,
(5, m)y= K x\ (mimy&+! A9
nx,mj=Kexp| —-|—) ——
éo g+1

where K is a constant of integration. We stress that we have
derived only an approximate solution to equation (Al), as
can be verified by substitution of equation (A9) back into
equation (Al); to the best of our knowledge, the general
transport equation (26) has no exact solution. We note that
n(x, m) grows exponentially large for x < 0, but the contri-
bution from the source pile at large negative x is minimal. In
any case, we will limit our attention to locations x > 0.

APPENDIX B: NORMALIZATION AND INTEGRAL FORMS
of EquarTtioN (31)

To normalize the distribution of equation (31) and thus find

K, we take
N,=f°°ff n(x, m) dx dm
o Jo

Owing to the approximate nature of equation (31), we cannot
perform both of the integrations indicated in equation (B1).
Inserting equation (31) in equation (B1) and integrating only
with respect to m, we find that

1 x V(g+1)
Ni(x) = Kmy(g + 1) 8@+ | o | | — (B2)
g+1/\&

(B1)

where I'(¢) is the complete gamma function, defined by

1"(5)15_["° e le~t gt
0

Equation (B2) indicates that for any particular value of g, the
total number of transported particles (per unit length) de-

(B3)
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creases by a power law with increasing distance from the
edge of the source pile. N,(x) dx integrated from 0 to o is
undefined. Under these circumstances, we have chosen to
retain K as a constant. Then the mass distribution is given by

m x (m/mp)e* 1]
mn(x, m)=Kmy| — ) exp| - — ——— (B4
m) | & g+l
The-mass distribution per unit In (m) interval is
2, m) = K3 ) x m) T )
m*n(x, m) = Kmj -~ exph TS (

As we shall see, at any location x/£,, equation (B5) is quite
similar to a log normal distribution. In fact, it varies only
slightly from the fragmentation equation, which in analogous
form has a factor of yin the exponents for the masses in front
of the exponent [Brown, 1989]. Because the argument of the
exponent controls the coarse side of the distribution and is
identical for the fragmentation transport equations, the only
difference between the two is that the former has slightly
more skewing in the fine side of the distribution.

By differentiating equation (B5) with respect to the frag-
ment mass and setting the result equal to zero, one finds the
location of the distribution peak, m,, to be

-1/ (g+1)
Mo _quen( X
my €o

This equation gives the most probable mass of the distribu-
tion, which is also called the mode. It can be seen that for g
> ~—1, as the distance from the edge of the source pile
increases, the peak shifts toward lower masses.

The average mass, 7, is found by setting

(B6)

f * mn(x, m) d In (m)
0

fm n(x, m) dmv
0

Inserting equations (30) and (B5) into equation (B7), we find
that

M,
= — = B7)
" N, ¢

i TQ/(g+1) [x\ Ve+D
—=(g+ Ve ——— [ — B8
P A ) (@) B8)

From equation (B8) it can be seen that, as in the case of
the peak location, for g > —1 the average mass decreases
with increasing distance from the pile, and with the same
functional dependence. Thus the distance x/¢&, may be elim-
inated between equations (B6) and (B8) to give

m [g+1\VE*DTQ/(g+1)
T/ (g + 1)

> (B9)

my
which is a fixed ratio for any particular value of g. Equation
(B9) shows that the shape of the distribution curves is not a
function of x/&, but only of g. This relationship is easily
verified by choosing a value of g and plotting the distribution
of equations (31), (B4), or (BS) for various locations of x/&,
(Figure 3).
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The integral number distribution (at any location x/&;) is
given by

fm n(x, m) d(m)
N(C>m) _Im

N, o
f n(x, m) dm
0

To find this function for the transport distribution, one needs
the definition of the complementary, incomplete gamma
function, i.e.,

(B10)

r(s,z)Ef e le 7t dt (B11)
F4

This is a standard computer library resource, and it is often
called “GAMIC.” Defining

x\ (mimy)8 1
z=|l— )| —m
1) g+1
and substituting equation (31) in equation (B10), one finds
that

(B12)

N(>m) T(1/(g+1), 2)
N,  TU/(g+1)

(B13)

With definition of the incomplete gamma function
(66GAMI9’) .

Y(e, 2) = fz t# e dr (B14)
0

and noting that
Y(e, z) + T'(e, 2) = T'(e) (B15)
one obtains

T+ 1,2
I(1/(g+1)

T (g+1), 2

N(<m)_-1 N(>m)_
N, N,

= B16
T'(1/(g+1)) (B16)
The integral mass distribution is then given by
m
f m2n(x, m) d In (m)
M(<m) 0
= (B17)

M )
! f m?n(x;, m) d In (m)
0

Substituting equation (B5) into equation (B17), we find that
for our particle transport theory

M(<m) 3 Y(Q2/g + 1), 2)
M, T@Q/(g+1)

(B18)
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Also,
M(>m)_1 M(<m) — YQ/(g+1),2)
M, M, /(g + 1)
@2/ (g +1),
_T@/(g+1),2) ®B19)

T TQI(g+ 1)

APPENDIX C: EFFECTS OF VARYING PARTICLE SHAPE
AND DENSITY

The mass of a particle can be simply expressed as

4Sl3 i
m=zwSp| 3

for which S is a shape factor often defined as § = PZ/(417A,),
where P is the perimeter and A, is the area. Because most
volcanic ash size measurements are obtained by sieving, [ is
usually the smallest diameter of a particle passing through a
sieve screen, and S is generally greater than unity, such that the
true mass of a nonspherical particle is generally greater than
that calculated if it is assumed to be a sphere of diameter /.

Our approach to considering the effect of shape and
density variations upon the total mass per size interval,
dMld¢, is to formulate S and p as functions of ¢, as is
generally found by microscopic inspection of volcanic ash
samples [Walker, 1971]. Taking the logarithmic form of
equation (C1),

In (m) =In (47/3) + In (§) +1n (p) + 3[In () = In (2)] (C2)

(&)

and then differentiating with respect to In (/), we obtain

dm 3 mdIn ($) mdIn (p) 3 -
din(@) din()  dm@ " ©3
Because d In () = —In (2) d¢, we can write an equation

analogous to equation (34), except it includes the differential
effects of shape and density:
dp
] (C4)

M 31 2+ds+
= —m*n(x, m)[3 In (2) 5d% " ode

do
From inspection of ash constituent (e.g., rock fragments,
pumice, crystals) abundances versus ¢ [e.g., Walker, 1971]
the variations of particle shape and density with ¢ (d In (S)/d¢

and d In (p)/d¢) are approximately constant and consistent with
SFT, such that equation (C4) can be written as

M x [e*D
— = K;l® -
dp 0 TP T et

x 13(3.; +1)
+KJSexp | ——
§0 g+ 1
x 138t D)
+Kbexp | —— (C5)
§o gat1

In this form where the effects of shape and density have their
own normalization constants and SFT free parameters, K,
K,, g5, and g4, respectively, it is evident that the effects of
variable particle shape and density produce a distribution
that is the sum of three subpopulations, all of the SFT form.
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n(m)
n(x, m)

p(®
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NOTATION LIST

constants in the log normal distribution;
particle cross section area;

constant in analytical size distributions;
2.71828;

fragmentation function in the sequential frag-
mentation model;

free parameter in the sequential transport
model; ‘

free parameter for shape effects;

free parameter for density effects;

free parameter in Rosin-Rammler distribution;
normalization constant for SFT model;
normalization constant for shape effects;
normalization constant for density effects;
particle diameter;

cumulative mass in a specified interval;

total mass in a distribution;

particle mass;

initial fragment mass prior to a sequential step
of fragmentation;

average mass per particle;

mass of a particle at a distribution peak;
cumulative number of particles in a specified
interval;

the number of particles of diameter ! to ! + dI;
the number of particles of mass m to m + dm;
the number of particles occurring at distance
interval x to x + dx and of mass m to m +
dm;

particle perimeter;

the probability of a particle carried from
location x’ will be deposited at location x,
used in sequential transport model;

particle shape factor;

location coordinate of sequential transport
model;

initial location of a particle prior to a
sequential step of transport;

fine fraction exponent in generalized analytical
distribution; _

coarse fraction exponent in generalized
analytical distribution;

free parameter in the sequential fragmentation
model;

transport range function in sequential
fragmentation model;

particle diameter, e.g., um, mm, m;

complete gamma function;

complementary, incomplete gamma function;
incomplete gamma function;

nondimensional particle diameter;

size related to average particle size in Rosin-
Rammler equation;

standard deviation in phi units;

mass related to average mass in equations (14)
and (15);

free parameter distribution of equations (14)
and (15); for cases v is set to 1/2 the
distribution has been called the ‘‘“Mott plot.”’
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