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Abstract

Today’s large, high-speed computers provide the capability for the solution of the full set of two-phase,
compressible Navier—Stokes equations in two or three dimensions. We have adapted computer codes that
provide such solutions in order to study explosive volcanic phenomena. At present these fully non-linear
conservation equations are cast in two-dimensional cylindrical coordinates, which, with closure
equations, comprise 16 equations with 16 unknown variables. Solutions for several hundred seconds of
simulated eruption time require 2-3 h of Cray-1 computer time. Over 100 simulations have been run to
simulate the physics of highly unsteady blasts, sustained and steady Plinian eruptions, fountaining
column eruptions, and multiphase flow of magma in lithospheric conduits. The calculations of unsteady
flow show resemblance to shock-tube physics with propagation of shock waves into the atmosphere and
rarefaction waves down the volcanic conduit. Simulations of steady-flow eruption demonstrate the
importance of supersonic flow and overpressure of erupted jets of tephra and gases in determining
whether the jet will buoyantly rise or collapse back to the Earth as a fountain. Flow conditions within
conduits rising through the lithosphere determine eruptive conditions of overpressure, velocity, bulk
density and vent size. Such conditions within conduit systems are thought to be linked to low-frequency.
sustained seismicity known as volcanic tremor. These calculations demonstrate the validity of some
analytical eruption calculations under limited conditions. In general though, the simulations show that
consideration of non-linearities inherent in multiphase praperties, compressibility and multiple
dimensions lead to solutions that may greatly vary from simple, one-dimensional analytical approaches
and often produce results not available to intuitive reasoning.
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Notation

gas specific energy
solid specific energy
mass exchange rate
energy source of mass

exchange and phase change

momentum exchange,
particles to gas

momentum exchange, gas to

particles

ratio of exit pressure to
atmospheric pressure

Mach number

heat exchange, particles to
gas

heat exchange, gas to
particles

Richardson number

atmospheric temperature

Thermogravitational
parameter

shock speed

sound speed

atmospheric sound speed

gravitational acceleration

pressure

atmospheric pressure

chamber pressure

shocked pressure of
atmosphere

spatial coordinate in radial

direction
time
gas velocity vector
solid velocity vector
radial velocity
vertical velocity
linear spatial coordinate
shock strength

spatial coordinate in vertical

direction
ug — U
gas isentropic exponent
density
gas microscopic density
solid microscopic density
atmospheric density

limit of isentropic expansion

gas volume fraction
solids volume fraction -

Units

Jkg!
Jkg™!
kgm3s~!

Jm™3s7!

Nm™?

Nm™3

-3.-1

Jm3s7!

ms~!

ms™!
ms™!-
ms™?
Pa

Pa

Pa

Pa

ms™!

ms!

ms!

ms™!

kgm™3

kg m
kgm™3
kg m
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T . stress tensor
ve eddy viscosity m?s™!
Introduction

Computers have played an increasing role in geo-
sciences over the last several decades in a variety
of capacities, including managing data bases,
digital mapping, geophysical data inversion, stat-
istical analysis, and the modeling or simulation of
physical and chemical processes, to name but a
few. We discuss one of the newer applications,
simulation based upon the solution of sets of dif-
ferential equations that model the fundamental
physical relationships of fluid mechanics. His-
torically, computers, especially those now called
‘supercomputers’, were developed because of the
vision of John von Neumann (von Neumann and
Richtmeyer, 1949; Ulam, 1980), who believed that
all the necessary fundamental physical behavior
of fluids could be expressed accurately by mathe-
matical relationships. Von Neumann realized that
the intrinsic non-linearity of these systems of dif-
ferential equations and the large number of vari-
ables involved precluded analytical solution. He
showed that the mathematical techniques of finite
differences could provide very precise solutions to
individual equations, but that to perform such
calculations would be practically impossible
without the utilization of machines that could
rapidly process the billions of arithmetic steps
required. Today we have those fast, large-memory
machines, and the continued evolution of these
computers promises to achieve Von Neumann’s
vision.

Explosive volcanism plays an important role in
today’s understanding of . geodynamic relation-
ships. It represents the high-flux end member of
mass and energy transport through the Earth’s
lithosphere and is a major contributor to the
chemical budget of the atmosphere. There is a
growing understanding of the relationship of
explosive volcanism to the chemical and physical
character of the lithosphere and features of
mantle dynamics. All of these interact in a
strongly coupled system. ,

Our present capability of computer simulations
of explosive volcanic eruptions has developed
over the last decade through the stimuli of
research programs at Los Alamos focused on
understanding geothermal systems developed in
calderas, modest efforts at characterizing and pre-
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dicting volcanic hazards, and a large effort to
bring the power of computational physics into the
realm of earth sciences. This latter effort has fol-
lowed a general, whole-Earth approach in which
the large-scale behavior and character of the
Earth’s core and mantle, plate and atmospheric
dynamics, and fluid migration within the litho-
sphere are viewed as a coupled system. It is our
hope that by gaining an ability to confidently
simulate the visible aspects of explosive eruptions,
we can constrain some part of the lithospheric
system through which magma migration occurs.

The following description of our explosive
volcanism simulations will briefly review some
geologic phenomena we attempt to model, the
modeling approach we have adapted from other
fields of computational physics, and the results of
simulations for end-member types of explosive
behavior, including unsteady or ‘blast’ eruptions,
steady flows producing high standing tephra
columns, eruptive ‘fountains’, and finally our
ongoing research into the character of flow in
subsurface conduits.

Explosive volcanic phenomena

Explosive eruptive phenomena are highly vari-
able, because of the large number of thermo-
dynamic, chemical, and physical behaviors of
magma and the solid rocks through which it
erupts. These phenomena have been classified by
volcanologists by their overall eruptive features
and their type-locality (MacDonald, 1972;
Walker, 1973). From a physical point of view, the
classification can be simplified further by a con-
sideration of the general fluid dynamical flow
regime within which various eruptions are thought
to behave (e.g., Wilson, 1980). The major con-
stituents of eruptive products are the solid
materials, called tephra (pumice, ash and rock
fragments) and gases (dominantly steam and
carbon dioxide).

Figure 1 shows the 22 July 1980 eruption cloud
of Mount St Helens. The mushroom-shaped top
of the cloud is convectively rising to a height of
about 15 km above the vent. Several features of
the eruptive phenomena portrayed are generally
common to most explosive eruptions. The cloud
shows bulbous, swirling eddies, which are evi-
dence of turbulence, and their average diameter of
about 10-100 m constrains the typical length-
scale of turbulence. Thick shrouds of ash obscure

the flow regime within the column, which as we
discuss below may be of a jet-like nature (Kieffer,
1984). From the base of the column a pyroclastic
flow moves down slope, and an ash cloud rises
above it.

Caldera evolution sequence

Silicic calderas are generally thought to form in
volcanoes that have demonstrated highly explo-
sive or very large mass-flux eruptions. Their long
histories of development involve extrusive
volumes of the order of several hundreds or thou-
sands of cubic kilometers. Eruptive behaviors
range from passive lava extrusions to short-lived
explosive blasts and the prolonged jetting of large
volumes of tephra and gases. Gradual chemical
differentiation of underlying, crustal magma
chambers may produce a volatile-rich layer at the
chamber roof (Hildreth, 1979). During the cata-
strophic release of overpressured volatiles from
the upper portion of such chambers, Smith (1979)
has estimated a 10vol.% drawdown of the
magma reservoir. Such a volume may amount to
several hundreds of cubic kilometers. Wohletz
et al. (1984) have simulated such an eruption and
have shown that the propagation of a rarefaction
wave from the vent down into the chamber
(pressurized to 100 MPa) stimulates the vesicula-
tion and fragmentation of the magma such that it
erupts as an overpressured jet of hot pumice, ash
and gases. Initially the flow from the vent is
unsteady, producing propagating shock waves in
the atmospheric flow field. Gradually the flow
becomes steady with the generation of a high
standing eruption column that may collapse in a
fountain-like manner. After the magma chamber
becomes largely depressurized, the buoyant rise of
viscous magma through the vent system may
produce lava domes and flows.

Plinian eruption columns and their collapse

Descriptions of the AD 79 explosive eruptions
of Vesuvius, published by Pliny the Younger,
have lead to the specific definition of Plinian
phenomena by Walker (1981), which includes

~ high standing (10-50 km) eruption columns that

sustain volume fluxes in excess of 10°m’s™'.

These eruption columns are multiphase mixtures
of pumice, ash and gases (mostly steam) that
show jet-like features at their bases and the rise of



Figure 1. 22 July 1980 eruptive column of Mount St Helens, showing several features common to many explosive

eruption phenomena: a vertically rising column of ash and gases with a mushroom-shaped top (the working surface),

a laterally moving pyroclastic flow emanating from the base of the column, turbulent eddies of ash, and obscurity
of the flow regime within the column. The vertical scale is about 15 km. Photograph by James Vallance



buoyant plumes near their tops (Sparks, Wilson
and Hulme, 1978; Wilson, Sparks and Walker,
1980). The flow is generally steady and displays
considerable turbulence, which is thought to
encourage the mixing of the cooler atmosphere
into the column. Heating of admixed atmosphere
by hot tephra can be sufficient to cause the
column to rise buoyantly. If the atmospheric
mixing is insufficient, such that the column
remains denser than the atmosphere, the column
may collapse, spilling erupted debris and gases to
the ground around the vent to produce ground-
hugging flows called ‘pyroclastic flows’.

Vulcanian and blast-type eruptions

Named after the classical eruptive behavior of
Vulcano in the Tyrrhenian Sea near Italy (Mercali
and Silvestri, 1891), Vulcanian eruptions are
generally described as repeated, cannon-like or
staccato bursts of tephra with relatively small
volume fluxes («<10°m3s ~!). They form both
hemispherically expanding clouds of tephra and
gases and buoyantly rising plumes of up to several
kilometers height. The highly unsteady flow
regime of these eruptions can be accompanied by
propagation of atmospheric shocks, temporary
development of supersonic, overpressured jets,
and the development of laterally moving density
currents of erupted ash called ‘pyroclastic surges’.
The unsteady and overpressured nature of such
eruptions have characteristics similar to the
phenomena initiating larger Plinian events.

Strombolian and fountaining eruptions

Stromboli, the ‘light-house of the Mediterranean’
is a volcano that ejects short to prolonged bursts
of tephra in ballistic trajectories from the vent.

The expelled tephra, in contrast to those produced

by the eruptions described above, generally are
" not supported by an envelope of erupted gases.
The rapid expansion of centimeter- to meter-sized
gas bubbles propels these tephra through the
atmosphere. Where such activity is prolonged, a
ballistic fountain is often observed. Because such
behavior results in the rapid segregation of tephra
from expanding gases, the expansion is nearly
adiabatic in contrast to the Plinian and Vulcanian
types in which gases remain in contact with the
hot tephra and can expand nearly isothermally.
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Modeling Approach

The mathematical formulation that we have used
has been applied to a wide variety of dispersed,
multiphase flows, and it is discussed at length in
the book by Ishii (1975). At the heart of the for-
mulation is the assumption that the different
materials involved in the flow-field can be treated
as individual continua. These continua are super-
imposed in space and are coupled by the inter-
phase transfer of mass, momentum and energy.
Because the different material components are
treated as individual continua, the full set of
conservation equations must be solved for each
material (or ‘field’). The interphase transfer of
transport quantities (mass, momentum and
energy) also requires that all equations for all
fields must be solved simultaneously. It is clear
that the comprehensiveness of a model forces an
approach to the limits of modern computational
speed and memory. For example, to model a two-
dimensional, time-dependent, high-speed flow of
gas and particles of three sizes would require the
solution of 16 non-linear partial differential
equations (a set of four equations for the gas and
for each particle size) and 20 additional algebraic
equations (equations of state and interphase coup-
ling) with 36 dependent variables. This example
does not include mass transfer terms and would
be capable only of including turbulent effects in
the form of an eddy viscosity; solving more
realistic turbulence transport equations, such as
those presented by Besnard and Harlow (1988),
would at a minimum double the number of depen-
dent variables.

One might thus ask: why undertake numerical
modeling if the models are simplified compared
with natural phenomena? The example described
above shows how complex a numerical solution
can be with only three particle sizes, one gas phase
and no mass transfer. We know, for example,
that volcanoes contain tephra particles ranging in
size over several orders of magnitude with vari-
able densities and shapes. There is, moreover,
more than one gas species involved in such flows.
Mass transfer, in addition, involves the exsolution
of volatiles from tephra and their subsequent
phase change. Although we can only model very
crude approximations of such complex natural
processes, the approximations obtained provide a
behavioral insight that simply could not be
obtained by intuition alone. The reason for this
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‘beyond intuition’ probe of natural processes
derives from the intrinsic non-linearity of the
governing equations; many non-linear processes
are too complicated for mental solution even at
an intuitive level; hence, the necessity of a
sophisticated computing approach. Overall, we
believe that gaining an understanding of relatively
simple analogs is a necessary prerequisite before
grasping the greater complexities of nature. This
reasoning is also the justification for laboratory
experimentation. Numerical simulation, however,
overcomes the problems of dynamic similarity
that often plague laboratory analogs.

Mathematical formulation

Our modeling effort has focused on solving the
following set of the complete Navier—Stokes
equations, which describe a two-phase flow of
compressible gas and incompressible solid par-
ticles:
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This formulation for two-phase flow (symbols are
defined in the notation listing), originally pre-
sented by Harlow and Amsden (1975), is very
general, and has been successfully applied to a
wide variety of flows. These flows range from the
bubbly flow past an obstacle to star formation
processes (Hunter efal., 1986). An important
aspect of equations (1) through (6) is that they are

cast in terms of volume-averaged quantities. The
elemental volumes over which the differential
equations are solved are necessarily much larger
than the size of individual solid particles carried
by the flow. This restriction is required for the
continuum approach to be valid (Travis, Harlow
and Amsden, 1975).

Equations (1) and (2) describe the conservation
of mass for the gas and the solid phases, respect-
ively. The left-hand side of these equations rep-
resents the sum of the temporal and spatial
changes of mass that are contained within a
representative elemental volume. The right-hand
sides represent the contribution to the gas phase
by mass diffusion out of the solid phase.

Momentum conservation for the gas and solid
phases is respectively expressed by equations (3)
and (4). They state that the transient momentum
changes within and through a volume element are
just balanced by the sum of the forces due to
the combined pressure gradient, the interphase
momentum transfer (drag), the gravitational
acceleration, the momentum exchanged by inter-
phase mass transfer, and the viscous and turbu-
lent stresses. Because explosive volcanic eruption
columns have high Reynolds numbers, turbulent
forces greatly dominate over viscous ones, such
that the last balancing term can then be repre-
sented by the divergence of the strain-rate tensor
using an eddy viscosity. The two-dimensional
stress tensor has the following form in cylindrical
coordinates, which crudely represents the
Reynolds stress tensor:
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The eddy viscosity, e, is constrained by observed
eddy length-scales and numerical considerations,
and it plays an important role in determining the
mixing of the atmosphere into the eruption
column (Valentine and Wohletz, 1989a). Although
this description of turbulence is very crude and a
more detailed calculation is being sought (e.g.,
Besnard and Harlow, 1988), we note that empiri-
cally derived turbulence representations have a
direct relationship with measurable physical
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features of flows, and that the theoretically
derived ones are only poorly coupled with obser-
vation. For two-dimensional solutions, the
momentum equations must be written for both
the axial and radial components of velocity of the
gas and solid phases.

The conservation of specific internal energy
within a volume element for the gas and solid
phases are given by equations (5) and (6), respect-
ively. The temporal and advected energy changes
are equated to the sum of pressure-volume work,
interphase heat transfer, heat exchanged by phase
changes, and energy dissipation by viscous
stresses and turbulence. The gas phase also expe-
riences changes in internal energy caused by
interphase drag-induced dissipation.

When written in expanded form, these
equations comprise a system of eight, non-linear,
partial differential equations. Closure of the
equations is obtained by applying algebraic
relations that describe the equations of state for
the materials, the relationship between volume
fractions, and interphase coupling (see Valentine
and Wohletz (1989a) for a detailed presentation of
these terms), These algebraic closure equations
thus account for the volume-averaged effects of
processes that happen on a smaller scale than the
elemental volume used for differentiation; for
example, the drag of fluid on individual particles.
The very nature of this mathematical formulation
requires that the microphysics are treated in only
an averaged sense. Thus many small-scale
physical processes that are undoubtedly of impor-
tance in some volcanic phenomena are not
included. Examples of such microphysics include
particle—particle collisions, the particle-wake
interactions, and distributions of gas bubble sizes
in decompressing magmas. In principle the
volume-averaged effects of any such process can
be included in the governing equations. For
example, in detailed simulation of a dense
pyroclastic flow, one can introduce a pressure
term in the equations for the particle phase,
accounting for the normal stress produced by
shearing grain flows. To date our simulations
have focused on the large-scale processes where
most of the microphysical behavior is thought to
make negligible contributions. »

A comment is in order, relating the role of tur-
bulence in the governing equations and how
atmospheric entrainment is calculated. Previous
eruption column models have been limited to one-

dimensional, single-phase fluid approximations
(see Woods (1988) for a recent review and
improvement of previous model attempts). In
these approximations, a source term is required
on the right-hand side of the conservation of mass
equation in order to account for the relatively
cool atmosphere added to the flow by entrainment
(i.e., the entrained fluid is added to the one-
dimensional system). In our calculations, the
atmosphere is part of the computational domain,
and its entrainment naturally occurs as a result of
turbulent diffusion in the momentum equation. In
other words, the turbulent stress term in equations
(3) and (4) produces a ‘force’ that causes fluid
movement in the same manner as any of the other
terms in the momentum balance. As a result
where a velocity gradient is present, adjacent parts
of the flow-field will diffuse or interpenetrate into
each other; the amount of interpenetration is
proportional to the velocity gradient. Thus the
gross effects of entrainment are included in the
calculations. The details of this entrainment,
which involve a Kelvin—-Helmbholtz instability, are
not strictly calculated but are thus solved in an
averaged sense.

Although equations (1) through (6) are fairly
comprehensive in that they include no restricting
assumptions that might affect dynamic similarity,
caution is required in applying their solutions to
nature in the sense that they do not calculate ‘real’
volcanoes. Because of the turbulence simplifica-
tion and microphysical assumptions discussed
above, the calculations are only valid in showing
general eruption behaviors and relative variations
that result from changes in initial and boundary
conditions. We do not believe that it is realistic to
apply numbers calculated by our models directly
to natural systems, although that is a goal that
von Neumann believed is obtainable. Neverthe-
less, we can learn about the relative sensitivity of
physical parameters involved, which is valuable
for the interpretation of field observations.

Computer adaptations

Although mathematical solution techniques are
available for attempting to obtain analytical sol-
utions to the above equation set, it may be exceed-
ingly difficult or impossible to obtain meaningful
results after the required simplifications are made.
Hence we have applied a numerical solution tech-
nique by finite differences (Ferziger, 1981). We
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begin by expanding the equations above into
partial derivative form, using cylindrical coor-
dinates (r,z,0) with azimuthal symmetry about
the z axis, centered at the vent. The difference
scheme used to discretize the partial derivatives on
a spatially constant and temporally incremented
grid was chosen to balance the accuracy and stabil-
ity with considerations of economy and versatil-
ity (Harlow and Amsden, 1975). Although the sol-
ution scheme described below is mainly of an
Eulerian type of fixed cell locations, Lagrangian
marker particles following the flow allow resol-
ution of the intermixing of flow-fields.

Finite difference solution scheme

A mixed, implicit—explicit solution method, devel-
oped by Harlow and Amsden (1975), was chosen
because of its economy and because inherent
numerical instabilities are easily rectified. A
purely implicit differencing method of temporal
derivatives is generally more stable but can be
computationally slower. For example, the first
term on the left-hand side of the continuity
equation is written:

n+1 n

? =" —e ®)
t ot

where the approximation signifies that of the finite
differencing, and the index » represents the time-
step, such that there are n=1¢/6¢ time-steps of
duration &8¢ in a time period ¢. This forward
differencing scheme explicitly gives the new value
of p, pu, pv, or pI with a truncation error of the
order of é¢. Velocities are placed at cell edges for
differencing advective terms to best model fluxes
through the cell edges. In order to circumvent
stability problems in using cell-edge values of vec-
tors, a staggered grid is defined for which i and j
are the cell center indices, and the advective term
in the continuity equation is:

av) 1
a9z 6z

which holds for flow in the positive z direction.
Such a scheme is called ‘donor cell’ or ‘upwind’
differencing, which ensures that the value
advected into the specific cell originates ‘up-
stream’. This scheme suppresses numerical insta-
bility, but steep gradients tend to be smeared over
several cells, and the truncation error is kept to
first order. For this reason, shocks in supersonic

i, jvi,j+172 = pij-10ij-12]  (9)

flows are not uniquely defined, but their effects
can be distinguished easily in the solutions. Other
non-trivial finite differences are those for stress
tensors, which are solved for cell-edge values in
the momentum equation and cell center quantities
in the energy equation (Horn, 1986). For
momentum and heat exchange terms in the con-
servation equations, an implicit form was chosen,
because it is simple and unconditionally stable. In
general the calculational time-step proceeds by
obtaining advanced time values for all scalar vari-
ables in the mesh, followed by a second iteration,
during which new velocities are calculated, using
new densities.

Because the systematics for solving the equation
sets described above have been developed pre-
viously at Los Alamos for generalized application
to hydrodynamics (e.g. Harlow and Amsden,
1975), it has been convenient to borrow sections
of FORTRAN programs from other codes,
making adaptations necessary for the simulation
of geological processes. In all cases, stability has
been verified for the difference techniques (Hirt,
1968), such that we have a high confidence in their
application over a large range of flow velocities.
In most of our applications we have chosen a
spatial resolution of 100 m and a time step of
0.02s. This choice easily satisfies the Courant
condition while allowing us to simulate the two-
dimensional flow-fields of several tens of square
kilometers. We note, however, that for the high-
speed flow regime that may initially exist in the
vent, our codes can automatically adjust the tem-
poral and spatial step of differencing in order to
resolve steep pressure gradients and shock waves.

Numerical output, graphical representation, and
analytical approach

In general, numerical results of each time-step are
dumped to disk storage for retrieval in the next
time-step, restarting the calculation, and gener-
ating tabular and graphical results. A typical cal-
culation of 200 s of eruption time produces over
20000 pages of tabulated numbers. A post-
processor code can be applied to the dump files
for various graphical outputs, including vector
and contour plots and movies thereof. We have
found that analysis of such voluminous results is
time consuming and difficult, such that a detailed
study of an eruption simulation with initial and
boundary conditions set to model a given volcano
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is analogous to a geological field study in which
numerous field locations are examined to describe
eruption effects and deposits.

It is instructive and useful to study the simu-
lation results for consistency with laboratory
analogs and predictions, based upon other an-
alytical solutions. As discussed below, aspects of
the physics of high-speed flows are known from
laboratory experiments, and thus our computer
results can be tested for their ability to reproduce
known experiments. Once credibility has been
established for a computer code, its results are
considered to be ‘data’ in that they are simply
mathematical representations of physical param-
eters, as are, for example, X-ray analyses of rock
chemical compositions, for which X-ray intensities
are converted by mathematical tools into numbers
of chemical significance.

Unsteady Discharge (Blast-type)
Eruptions

The concept of blast-type eruptions was recently
given a descriptive review by Kieffer (1982,1984),
and it includes eruptions that show highly

unsteady, supersonic flow with notable propa-
gations of shock waves, either as bow shocks that
precede expulsions of tephra or as standing (Mach
disk) shocks, that develop within supersonic jets
of tephra and gases. Such eruptions are short-
lived and in many places produce pyroclastic
surge deposits of tephra. By analogy to large
chemical or thermonuclear explosions, the pres-
ence of base surge deposits are often an earmark
of highly unsteady flow and shock propagation
(Glasstone and Dolan, 1977). As discussed above
such eruptive phenomena are associated with the
initial phases of Plinian eruption and Vulcanian
bursts.

Analysis of blast conditions

Wohletz etal. (1984) modeled large eruptive
blasts associated with Plinian eruptions that occur
during caldera-forming events. Assuming that an
overpressured magma chamber can be opened
nearly instantaneously to the atmosphere by large-
scale vent-rock failure, analogy to shock-tube
physics (Wright, 1967) is a convenient way to
predict flow phenomena and to test the ability of
our computer code to provide solutions that
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Figure 2. Plot of shock strength versus chamber overpressure for two shock-tube cases (Wright, 1967) and a volcano
model. Curve 1 shows results for compressed hydrogen expanding into air compared with those of compressed air
expanding into air (Curve 2). The crosses plot expansion of a hypothetical volcanic steam and ash mixture
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emulate those physics. These flows are described
from consideration of mass and momentum

conservation respectively written for one-
dimensional, inviscid flow:
dp ou dp
—_ —_— —_— l
ar  * ox +u ox (10)
du du 14p
— — +-==0 11
ar T Y ox T oox (1

Letting /= fedp/p, integrating from po to p where
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constant, the solution for fis, using the Riemann

invariant for free expansion (Courant and
Friedrichs, 1948):
f= ZCO [(}P_)ﬁ-n/h_ 1] (14)
v-1 0

Now, with Rankine—Hugoniot expressions for
mass, momentum and energy conservation across
a shock wave (e.g., Shapiro, 1953), the flow-field
of a shock tube can be described fully by the
following algebraic expressions:

c= [7(ap/ap)] 172" and substituting characteri§tic Us _ ve (2 +u\ 2 s
velocities, dxfdf=u*¢, the conservation w T \Uvs Ta
equations can be rewritten algebraically as:
. u__U-w-D 16)
% (f+u)+@+c) 53; (f+u)=0 (12) co [(1+p)(y+p)]
p_Lrt)Y a7n
s Umwra-a Eg-w=0 3 P L4my
T_ya+py) (18)
Using ideal equation of state where pp~" equals a T, pt+y
| ] 1
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8 1000} — 2000 &
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Figure 3. Plot of shock (ash and steam) and compressed air velocities and temperatures of the Bandelier Tuff eruption
from the analytical solutions (equations (15) through (18)) of the shock-tube physics
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for which Us is the shock speed, ¢o is atmospheric
sound speed, the Mach number is M = Uy/co, the
limit of isentropic expansionis p = (y — 1)/ (v + 1),
and the shock strength is y = ps/po, which is a
transcendental function of the atmospheric
pressure, po, and chamber pressure, p; (Wohletz
et al., 1984). The predictions of y and subsequent
flow-field variables are described in Wohletz et al.
(1984) and are summarized in Figures 2 and 3.

Blast calculation results

We have found that our numerical codes model
shock-tube physics for two dimensions well
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(Figure 4). An application of the KACHINA code
(Wohletz et al., 1984) simulated a blast-type erup-
tion from a magma chamber at po = 100 MPa,
To=1273 K, and being 8.7 wt.% oversaturated
with water. The resulting jet-like flow (from a
vent with a hydraulic radius of about 100 m)
showed a bow shock of 3 MPa overpressure,
propagating away from the vent at about
700 ms™!, followed by an expanding steam and
ash column. Unsteady flow within the column
continued for several minutes as a rarefaction
wave propagated down the conduit, decom-
pressing and accelerating the steam and ash from
300 to 500 ms™!. Because the rarefaction wave
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Figure 4. Distance—time plot for the computer simulat
Bandelier Tuff. The plot is analogous to an ideal one

ion of the blast thought to have initiated the eruption of the
for a shock tube with the propagation of a shock wave into

the atmosphere, while a rarefaction wave propagates down and reflects within the conduit and magma chamber. The

contact surface marks the front of tephra and steam

accelerated up and out of the vent. Both the vertical and

horizontal components are shown for these waves
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reflected off chamber walls, it caused surging flow
out of the vent and development of a fluctuating
Mach disk shock that added to the blast
phenomena. These results are shown in Figures 5
through 7.

One interesting aspect of these calculations for
blast eruptions is the ability of the KACHINA
code to calculate the temporally varying flow
regime within the conduit, and hence the bulk
density, velocities, pressures, and temperatures at
the vent plane. Figures 5 and 6 show a downward
propagating rarefaction wave within the conduit,
above which marker particles have accelerated
upward through the vent. The rarefaction wave
decompressed the magma to about 18 MPa at the

vent (Figure 6), during which the magma
expanded from a supercritical water and solids
mixture into a mixture of ‘fragmented’ steam and
ash before exiting through the vent. The spacing
of the marker particles is proportional to the
magma bulk density, such that below the rarefac-
tion, the magma moved slowly as a viscous liquid.
The cells surrounding the conduit simulated
incompressibie country rock, which could deform
as highly viscous Newtonian fluid (an end-member
state of the solid phase) where shear and normal
stresses were high. This feature of the KACHINA
model allowed a c¢rude simulation of vent
widening by erosion (Figure 5).
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Figure 5. Schematic representation and marker particle plots at 13 s of simulated blast eruption time, showing the
shock wave, ash contact and the rarefaction wave in the vent conduit
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Steady Discharge Eruptions

Many explosive eruptions, especially those
classified as Plinian, are thought to involve
relatively long periods of approximately steady
mass discharge once a vent has been opened
(Walker, 1981). Depending on vent flow condi-
tions, eruption columns may either rise as
buoyant plumes from which tephra is deposited
by fallout, or collapse in a fountaining manner
from which tephra is emplaced by laterally
flowing density currents (Sparks, Wilson and

Hulme, 1978; Wilson, Sparks and Walker, 1980;
Valentine and Wohletz, 1989a). Within the frame-
work of our simulations, the conditions that
determine whether an eruption column is posi-
tively buoyant or forms a negatively buoyant
fountain can be shown as a function of three
dimensionless numbers (Figure 8). These numbers
are:

_ pressure driving force
buoyancy force

DPe — Datm -
(Pm — Pam)ER.

Tgm =

(19)
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Figure 8. Plot of the collapse criterion for eruption columns in forming fountains. This plot is for a single tephra

particle size and shows the control by Tym, Rim, and K, as defined by the exit conditions. Exit conditions plot above

the surface for high standing Plinian columns, whereas those plotting below the surface produce collapsing columns

or negatively buoyant fountains that lead to pyroclastic flow phenomena. This criteria holds for eruptions of similar
particle size

2 . .
Riv = PmUe - inertial force 20
" (pm— pam)gRv buoyancy force (20)
% De _ exit pressure @)

*” Pam atmospheric pressure

for which Ty, the thermogravitational number, is
. a function of the exit (p.) and atmospheric ( paim)
pressures, erupted column density (pm) and
atmospheric density ( paim ), gravitational accelera-
tion (g), and vent radius (R,); Rim is the
Richardson number, including the square of the
exit velocity (v.); and K, is the pressure ratio. In
order to arrive at the collapse criterion in Figure
8, we have considered eruptions with the same
initial magma temperature (1200 K) and tephra
particle size (0.02 mm). A more comprehensive
treatment would also include systematic vari-

ations of these parameters. We note that our
simulations of steady flow eruptions, applying the
DASH code (Valentine and Wohletz, 1989a), were
performed with a computational domain of
7 km x 7 km, and it is possible that some columns
that rose out of the domain might have collapsed
from yet higher elevations. Nevertheless, the
dimensionless numbers given above have a strong
physical significance in determining the behavior
of erupted columns. It is their relative influence
that has been demonstrated by the numerical
experiments.

Plinian eruption columns

The term ‘Plinian column’, as discussed above,
refers to eruptive phenomena of high standing,
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Figure 9. Numerical eruption simulation of a Plinian column. Contour plots of log 8, with us, p, pg, and T are shown
for three times after the initiation of discharge (10, 80 and 110 s). The innermost log 85 contour corresponds to a solid
volume fraction of 1073, and each contour outward represents an order of magnitude decrease in that value.
Maximum flow speeds of about 400 ms~' are attained in the basal 2 km of the column. The exit pressure of this
eruption is 0.69 MPa, and the initial atmospheric pressure signal is shown in the pressure and gas-density plots at
t=10s as a perturbation in the ambient values. T, contours are drawn at 100 K intervals, starting at 1200 K at the
vent, so that the outermost contour corresponds to 400 K. Note that as with all calculations, the atmosphere s initially
density stratified and isothermal at 300 K
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Figure 10. Numerical eruption simulation of collapsing column or negatively buoyant fountain. Contour plots are
similar to those in Figure 9 and are shown for simulated eruption times of 10, 80 and 140 s. The exit pressure is
atmospheric and maximum speeds are about 300 ms™' at the exit plane. Note that the atmospheric pressure signal
at r=10s is better resolved than that shown in Figure 9, due to the lower pressure of this eruption, allowing the
drawing of more closely spaced pressure contours. High-pressure cells are located at the elevation of coilapse and
where the collapsing flow impinges upon the ground. The contour plot of p; at ¢ = 140 s shows how hot, relatively
low-density gas is dragged beneath the relatively high-density atmosphere, producing an unstable situation where the
hot gas tends to rise out of the basal flow. This situation in turn leads to development of an ash cloud that buoyantly
rises above the basal pyroclastic flow
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buoyant plumes of gas and tephra. Some results
of an example simulation, producing an eruption
column that exits the computational domain, are
shown in Figure 9. As the flow initially exits the
vent, it rapidly flares, owing to expansion from
overpressure and the resistance of the atmos-
phere. The top of the column develops vorticity
where it pushes against the atmosphere, and it is
termed the ‘working surface’, analogous to fea-
tures seen in laboratory simulations of supersonic
jets. As time progresses, the working surface rises
and, in the last snapshot, it is buoyantly rising out
of the computational domain. In the two late-time
snapshots, a flaring structure typical of labora-
tory overpressured, supersonic jets (Kieffer and
Sturtevant, 1984) is evident. It is a result of the
Prandtl-Meyer expansion of the jet as it exits the
vent. Because the governing equations are the full
Navier—Stokes equations with no restrictions on
compressibility and other flow properties, the
range of flow behaviors from subsonic to super-
sonic occur naturally in the calculations. Shock
discontinuities (e.g., Mach disks), as stated above,
are numerically diffused over several cells, and
their effects are observable from plots of pressure
and density contours and velocity vectors.

Eruption fountains and column collapse.

When exit conditions of an eruption column plot
below the surface shown in Figure 8, the column
takes on a fountain-like character (Fig. 10) that
leads to formation of pyroclastic flows. In Figure
10 an example simulation is shown where the ash
column rises to an altitude of about 3.5-4.0 km
and then descends, forming both inward- and
outward-moving pyroclastic flows. A low tephra-
concentration cloud continuously rises off the
pyroclastic flows, and parts of it convectively flow
back and up into the rising ash plume above the
fountain. Figure 11 shows some of the properties
of the pyroclastic flow at three different times
during its evolution. The earliest of these times
corresponds to the first impact of the descending
flow on to the Earth’s surface. A parameter that
is interesting from a geologic point of view is the
dynamic pressure (Figure 11(b)), showing a com-
plicated time evolution. For example, based upon
effects of dynamic pressure, we predict that some
locations away from the vent may experience a
sequence of initial substrate erosion followed by
tephra deposition, while other locations experi-

ence the opposite sequence. Because the dynamic
pressure can be related directly to bottom shear
stress and hence erosion/deposition, we infer that
even a simple eruption, such as we have numer-
ically simulated, might lead to a very complex
stratigraphy of tephra deposits. Eruptions with
different exit conditions show widely varying
dynamic pressure histories in their pyroclastic
flows, indicating that the level of complexity inter-
preted from stratigraphic observations is essen-
tially unlimited (Valentine and Wohletz, 1989b).

Mount St Helens simulations

Because eruptive fountaining of tephra leads to
emplacement of pyroclastic flows, we have com-
pared simulations of the 1980 eruptions of Mount
St Helens to observed features. Kieffer (1981)
showed how the 18 May 1980 eruption initially
produced an unsteady lateral blast by catastrophic
decompression of magma with a reservoir
pressure and temperature of 12.5 MPa and 600 K,
respectively, a solid-to-vapor mass ratio of 23,
and 10-20s of flow from the vent at about
100 ms™!. Using these estimated blast conditions,
our simulations generally support Kieffer’s (1981)
jet model. Figure 12 depicts the computed flow-
field at 2, 10, 20 and 30 s by overlays of velocity
vectors and dust concentration. A supersonic jet
structure is evident with a Mach disk shock
located about 3.5 km away from the vent at 20 s.
In the region just down stream from the shock,
the flow speed was about 200 ms™', the over-
pressure was 0.0158 MPa, the solid volume frac-
tion was 0.0047, and the temperature was 550 K.
Our numbers vary from those of Kieffer (1981),
because our vent configuration (0.2 km wide by
0.3 km high) differs from the 1.0-km-wide and
0.25-km-high vent assumed by Kieffer (1981), and
our model included gravity effects. Because of the
changes required by our model to accommodate a
laterally directed vent, we emphasize that these
results are only preliminary.

Later steady eruption conditions that produced
pyroclastic flows were modeled using flow param-
eters of Carey and Sigurdsson (1985) for the
Plinian phase of the 18 May 1980 eruption. The
results of these calculations are discussed by
Valentine and Wohletz (1989b). Most notably,
calculated pyroclastic flows moved at speeds over
50 ms~! with solid volume fraction increasing at
the flow head from about 10™* near the vent to
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Figure 11. Simulated properties of a pyroclastic flow as functions of distance from the vent center: (a) horizontal

velocity; (b) horizontal component of dynamic pressure; (c) temperature; and (d) particle volume fraction. Each of

these parameters is shown for three times after the initiation of discharge (z = 109, 131 and 145 s), the earliest of which

coincides with the initiation of the pyroclastic flow. For this eruption the flow conditions at the vent (200 m radius)

are: velocity of 300 ms~!, 0.2 mm particle diameter, 0.1 NgPa (atlmospheric) gas pressure, and a mass discharge of
9.0x 107° kgs~

1073 after several kilometers of flow. The damage
potential of these flows, measured by their
dynamic pressure, reached 1.4 kPa (roughly
equivalent to a moderate hurricane) at distances
between 1 and 2 km from the vent.

Conduit Flow Calculations
The above simulations have used a wide variety of

vent exit conditions. In reality, the exit velocities
are strongly coupled to the gas mass fraction, the

temperature and pressure, as well as the vent
radius. All of these factors have been taken into
consideration by Wilson, Sparks and Walker
(1980) in a one-dimensional solution of flow
within volcanic conduits. Because our solution
technique is so very different to the analytical
approach used by Wilson, Sparks and Walker
(1980) (e.g., we consider two-dimensional sol-
utions, including non-linear and time-dependent
processes), we feel that the actual range of exit
parameters is still poorly constrained.

We have begun calculations of flow through the
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Figure 13. Sketch of the flow-field for multiphase flow in a lithospheric crack, which evolves into a flaring volcanic
conduit

lithosphere in conduits. This research was initially
followed in the KACHINA calculations of tran-
sient blast eruptions described above (Figure 6). It
requires more detailed work to fully constrain the
range of possible exit parameters for steady erup-
tion types. Included in our calculations are the
tracking of the rarefaction wave down the con-
duit and the effects of volatile mass fraction and
its phase change after exsolution from the
magma. This wave is followed by a fragmentation
surface where the gas phase becomes continuous.
Also, we calculate the effect of flow shear stress
upon deformable and erodible conduit walls.
Such processes can add country rock fragments to
the flow. Figure 13 is a sketch of the relevant flow-
field geometry.

A natural extension of the flow calculations in
lithospheric conduits is a study of source ‘triggers’
for volcanic tremor. Chouet (1986) describes the
frequency content of volcanic tremors by
modeling seismic waves that radiate from a fluid-
filled crack in the lithosphere. Although the crack
need not be connected to a voleanic conduit, there

is certainly the possibility that such a crack
represents part of a conduit system. The coupling
of wave propagation in the fluid with elastic waves
in the crack walls is non-linear and results in a
very slow wave called the ‘crack wave’ by Chouet
(1986). The source disturbance in the fluid is not
known, but preliminary consideration of the two-
phase flow of a bubbly fluid and the growth and
collapse of vapor bubbles in the fluid suggest that
they are strong candidates for such a source
trigger. This possibility is being investigated as a
part of the conduit flow calculations.

Summary

We have applied the separated, two-phase hydro-
dynamic equations, including all important
physical parameters, to modeling explosive vol-
canic eruptions. Two main types of eruption flow
regimes are modeled: (i) unsteady, blast-type
flows that involve highly transient effects, such as
shock/rarefaction propagations and reflections
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and time-dependent flow within the volcanic con-
duit; and (ii) steady discharge eruptions in which
vent exit conditions determine whether a high
standing, buoyant plume or a collapsing nega-
tively buoyant fountain are produced. The latter
leads to the development of pyroclastic flows. In
support of our calculations, we have recently suc-
cessfully reproduced some of the characteristics
of the Mount St Helens 18 May 1980 eruptions
(Valentine and Wohletz, 1989b) and have early
time (< 20s) calculations that qualitatively
support Kieffer’s (1981) jet model for the blast
phase of that eruption. It is interesting to note
that both vertical and lateral jet orientations
produce laterally moving pyroclastic surges,
which suggests that the presence of solid particles
in supersonic jets plays an important role in con-
version of thermodynamic to kinetic energy. Such
gravitational effects have traditionally hampered
application of classical compressible fluid
dynamics to dust-laden gases.

The numerical simulations are, in essence,
‘numerical experiments’ where the boundary and
initial conditions are set by the operator with the
results evolving continuously through time. These
experiments can provide much insight into various
related field observations, both of the activity of
explosive eruptions and the tephra deposits that
result. One example of this type of experimental
observation is the pyroclastic flow erosion and
depositional history mentioned above. Other
examples include the flow dynamics that lead to
depositional facies of pyroclastic flows, such as
proximal coignimbrite breccias, the ground surge
that is commonly found at the base of pyroclastic
flow deposits, the ash-cloud surge that is in many
places deposited over pyroclastic flows, and the
lateral depositional facies, determined by both
tephra size and volume concentration. The simu-
lations can also aid in the interpretation of active
eruption behavior. For example, simulations
show that the ash plume, convectively rising
above a fountain, can reach upward speeds much
greater than the actual exit velocity at the vent,
and that pyroclastic flow runout is affected
by eruption-induced atmospheric convection
(Valentine and Wohletz, 1989b). Although
numerical simulations can never completely sub-
stitute for observations of the natural processes,
they do have the advantage that one can see inside
the flow, whereas in nature most of the important
processes are hidden by veils of ash. Numerical

simulations cannot stand alone of course, but they
are absolutely necessary for an insightful under-
standing of most field observations of explosive
volcanic activity.

An important lesson learned from studying the
multiphase hydrodynamics of explosive eruptions
is that a rich complexity of processes is predicted
by the relatively straightforward set of governing
equations (equations (1) through (6)). This
diversity is the result of the inherent, non-linear
nature of these equations; small changes in the
parameters may produce very different solutions.
This complexity thus suggests that for a given field
observation, there may be several equally plaus-
ible physical explanations. Therefore extreme
caution should be taken in the interpretation of
field observations, such as the comparison of
several different eruptions, even at the same
volcano.

There are numerous directions that can be
followed in future computer studies of explosive
eruptions. One of these, the flow within volcanic
conduits through the lithosphere, is of current
interest. Eventually, we will combine the conduit
and external flow-fields into one calculation, using
a variable mesh size and time-step. We have here-
tofore constrained our calculations to single par-
ticle sizes and, because the effect of multiple sizes
is non-linear, we have not attempted to super-
impose solutions for simulations of different
sizes. However, Horn (1989) has developed the

‘DANIEL code at Los Alamos to calculate the

effects and trajectories of particles of various sizes
and densities in a multiphase hydrodynamic calcu-
lation. Additional collaboration with Susan W.
Kieffer of the US Geological Survey will involve
the study of the detailed physics of the atmos-
pheric flow-field in a search for flow singularities
and the effects of high particle concentrations,
topographic barriers, and various column (jet)

orientations.
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