
Decoupling Nonclassical Nonlinear Behavior of Elastic Wave Types

Marcel C. Remillieux,1,* Robert A. Guyer,1,2 Cédric Payan,3 and T. J. Ulrich1
1Geophysics Group (EES-17), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

2Department of Physics, University of Nevada, Reno, Nevada 89577, USA
3Laboratoire de Mécanique et d’Acoustique, LMA CNRS UPR 7051, Aix-Marseille Université, 13402 Marseille Cedex 20, France

(Received 23 December 2015; published 17 March 2016)

In this Letter, the tensorial nature of the nonequilibrium dynamics in nonlinear mesoscopic elastic
materials is evidenced via multimode resonance experiments. In these experiments the dynamic response,
including the spatial variations of velocities and strains, is carefully monitored while the sample is vibrated
in a purely longitudinal or a purely torsional mode. By analogy with the fact that such experiments can
decouple the elements of the linear elastic tensor, we demonstrate that the parameters quantifying the
nonequilibrium dynamics of the material differ substantially for a compressional wave and for a shear
wave. This result could lead to further understanding of the nonlinear mechanical phenomena that arise in
natural systems as well as to the design and engineering of nonlinear acoustic metamaterials.
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Nonlinear mesoscopic elastic materials [1] exhibit
unique and interesting properties related to nonlinear and
nonequilibrium dynamics that are relevant to various
natural and industrial processes ranging in scales and
applications, e.g., the onset of earthquakes and avalanches
in geophysics [2–4], the aging of infrastructures in civil
engineering [5,6], the failure of mechanical parts in
industrial settings [7–9], bone fragility in the medical field
[10–12], or the design of novel materials, including non-
linear metamaterials, for shock absorption, acoustic focus-
ing, and energy-harversting systems [13]. These properties
include the dependence of wave speed and damping
parameters on strain amplitude [5,14,15], slow relaxation
[16,17], and hysteresis with end-point memory [18–20].
Consolidated (see the work referenced previously) and
unconsolidated granular media [21–24] are of particular
interest for laboratory-scale experiments because they can
provide reference measurements to study or engineer these
properties. The latter, when consisting of disorded bead
pack or granular crystal lattices, serves as a simplified
paradigm for understanding the key mechanisms respon-
sible for nonequilibrium dynamics whereas the former
provides a more complex but faithful representation of
realistic systems.
In consolidated granular media, nonequilibrium dynam-

ics is thought to originate from the microscopic-sized
imperfections (e.g., microcracks, debonding at interfaces,
grain contacts, etc.) in the “soft” bond system that connects
together mesoscopic-sized “hard” elements (e.g., grains or
crystals) [25], with experimental evidence recently

presented for thermally damaged samples of concrete
[26]. These micro- and mesoscopic features are typically
distributed throughout the sample and affect its dynamic
response at a macroscopic scale through a process of
homogenization, thus offering a rich multiscale problem
in material physics. Nonequilibrium dynamics has been
quantified experimentally in nonlinear mesoscopic elastic
materials, through the nonclassical nonlinear elastic param-
eter α, by resonant experiments in which a slender bar with
free boundary conditions, representing a one-dimensional
unconstrained system, is vibrated with a harmonic signal at
one end while the elastic response is recorded at the
opposite end [27,28]. The source signal sweeps a frequency
range around a resonance frequency at a fixed drive level
and the experiment is repeated with signals of increasing
amplitudes so that the variation of the resonance frequency
can be tracked as a function of the maximum strain in the
sample. Typically, such experiments are conducted around
the frequency of the fundamental mode of longitudinal
vibration, thus limiting the analysis to a narrow frequency
range and one particular term of the elastic tensor. In other
words, it is not clear how nonequilibrium dynamics is
affected by the mode order (e.g., nth longitudinal mode)
and the mode type (e.g., longitudinal, torsional, and
bending modes). Payan et al. [29] recently tried to address
this question and demonstrated experimentally that the
parameter α was indeed dependent on the mode type.
However, the study did not link this parameter with the
terms of the elastic tensor because the resonant modes used
in the analysis included coupled contributions from com-
pressional and shear waves, as a result of the sample
geometry deviating too much from a 1D system. In a 1D
system made of an isotropic material, the longitudinal
mode of vibration is related to the Young modulus E and so
may be used to quantify the parameters of nonequilibrium
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dynamics, αE. Likewise, if one is able to vibrate the sample
in a pure torsional mode, the parameter αG corresponding
to the shear modulusG can be determined. The objective of
this Letter is to take a first step into extending the theory of
nonequilibrium dynamics in granular materials to the full
elastic tensor (as opposed to simply one term) and over a
wide frequency range.
A series of two resonance experiments was conducted

on a cylindrical sample of Berea sandstone (Cleveland
Quarries, Amherst, Ohio) with a diameter of 25.8 mm, a
length of 305.5 mm, a mass density of 2054 kg=m3, and a
nominal permeability ranging between 500 and 1000 mD.
The sample instrumented with transducers is shown in
Fig. 1. The linear elastic properties of this sample were
characterized in previous work using resonant ultrasound
spectroscopy [30]. It was found that, at the relatively low
frequencies considered in this study, the sample is well
described by a homogeneous and isotropic material with
E ¼ 9.9 GPa and G ¼ 4.6 GPa. Such an assumption is
valid because the variability of the mass density and
elastic properties at a mesoscopic scale is homogenized at
a macroscopic scale. In the first experiment, longitudinal
motion was induced in the sample with a compressional
piezoelectric disc (a PZT-5H ceramic with a diameter of
25.54 mm and a thickness of 6.35 mm) glued with epoxy
onto one flat end of the sample. Meanwhile, the longi-
tudinal (vx) component of the particle velocity was
recorded with an out-of-plane laser vibrometer (Polytec
OFV-303) on the opposite free end, where the spatial
maximum is expected to be reached for all modes. In the
second experiment, five shear piezoelectric plates (PZT-4

ceramic with dimensions of 15 × 15 × 1 mm3) were glued
on the round surface of the sample, near the end opposite
to the compressional transducer. In this particular con-
figuration and when driven in phase, these shear plates can
induce efficiently a torsional motion in the sample.
Meanwhile, the vertical (vy) component of the particle
velocity was recorded with an in-plane laser vibrometer
(Polytec OFV-552) on the round surface, close to the
opposite end. Note that, at the particular sensing position
indicated in Fig. 1, vy in Cartesian coordinates is equiv-
alent to vθ in cylindrical coordinates, which is the
coordinate system chosen to treat the torsional motion.
In both experiments, the transducers were driven with
harmonic voltage signals generated by a function gen-
erator (National Instrument PXI-5406) and amplified 50
times by a voltage amplifier (TEGAM 2350). The signals
were played for 40 ms at a given frequency, in frequency
steps of 5 Hz, until the desired frequency range of the
experiment was spanned. For each frequency, transient
vibrational responses were recorded during the last 30 ms
of the source signal, to ensure that steady state conditions
had been reached. Fast Fourier transforms of these
harmonic responses were then computed to construct
vibrational spectra for 19 different drive levels where
the voltage imposed to the transducers was varied from 10
to 400 V. In the first experiment, pure longitudinal modes
could be excited up to the seventh order, thereby covering
a frequency range of 2 to 24 kHz. The configuration of
transducers used in the second experiment broke the
symmetry of this system, and pure torsional modes could
not be excited beyond the third order.
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EXPERIMENT 1: Longitudinal Modes

EXPERIMENT 2: Torsional Modes
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FIG. 1. Measuring vibrational spectra on a resonant bar of Berea sandstone excited with a nearly pure longitudinal motion (top) and a
pure torsional motion (bottom). Experimental setup with sample and transducers (left), vibrational spectra up to the highest order mode
that could be excited in a pure manner (center), and vibrational spectra for one particular mode (right).
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As shown (in Fig. 1), the expected material softening is
observed in both experiments when the drive level becomes
sufficiently large. For a given drive level, such softening
can be quantified by plotting the relative frequency shift as
a function of maximum strain in the sample, the slope of
which is the parameter α. As described in the Supplemental
Material [31], additional experiments were conducted with
a 3D laser vibrometer (Polytec PSV-3D-500) to measure
the velocity and strain fields on the surface of the sample
and establish relationships between these quantities for all
modes. For the longitudinal mode, the strain component of
interest is ϵxx. It was found experimentally that the ratio
vmax
x =ϵmax

xx ranged between 1890 and 2060 m=s for the first
seven longitudinal modes. Theoretically, this ratio corre-
sponds to the speed of sound in the sample, expressed as
cL ¼ 2Lf1, where L is the length of the sample and f1 is
the frequency of the fundamental longitudinal mode. Based
on L ¼ 305.5 mm and f1 ¼ 3136 Hz (measured at the
lowest drive amplitude), it is found that cL ¼ 1916 m=s,
which falls within the values found experimentally. A
similar approach was followed for the torsional modes,
leading to experimental values of the vmax

θ =ϵmax
xθ ratios

ranging between 1202 and 1270 m=s. The experimental
values of the vmax=ϵmax ratios were used to infer the value of
the maximum strain in the sample at resonance and
quantify the material softening. As depicted in Fig. 2(a),
the relative frequency shift varies almost linearly with the
maximum strain beyond 4μϵ for all longitudinal modes but
the fundamental mode, for which the drive amplitude is not
sufficiently large. More importantly, it appears that material
softening converges to a single value (all curves super-
impose) of αE ¼ 3880� 150 for the modes L2 through L7.
The same convergence property is observed for torsional
modes [see Fig. 2(b)]. This first result demonstrates that in

a resonant bar experiment, any mode order can be selected
to quantify material softening as long as the mode type is
unchanged. There is also a practical advantage in using
higher order modes due to the fact that the relatively small
transducers used in the experiments can inject more energy
into the system at higher frequencies (see the vibrational
spectra in Fig. 1). Material softening in torsional modes is
much smaller, with αG ¼ 1530� 125 for the modes T2 and
T3. This value should be corrected to account for the fact
that the strain component ϵxθ is not uniform across the
diameter of the sample (unlike the strain component ϵxx in a
longitudinal mode). Theoretically, ϵxθ is maximum on the
surface (r ¼ R) and zero along the axis of symmetry of
the sample (r ¼ 0). Suppose that ϵxθ ¼ 1 at r ¼ R; then the
average strain over the cross-sectional area is 2=3. If
material softening in the torsional mode is corrected for
this strain distribution, we find that αcorrectedG ¼ 2290� 150,
which still deviates substantially from the value associated
with the longitudinal modes.
The above experimental observations reduce to two

independent 1D systems: a system of compressional modes
and a system of torsional modes, to which we can associate
an equation of motion of the bar and a corresponding
Preisach-Mayergoyz (PM) space. The PM-space formalism
[32] was first adapted to the problem of nonequilibrium
dynamics in geomaterials by Guyer and McCall [33] but
has been limited thus far to scalar (as opposed to tensorial)
applications. The equation of motion and boundary con-
ditions for the longitudinal modes of the bar of length L
(−L=2 ≤ x ≤ L=2) and mass density ρ can be expressed as

ρ
∂2ux
∂t2 ¼ ∂

∂x
�
EðxÞ ∂ux∂x

�
; ϵxxð�L=2Þ ¼ 0; ð1Þ

where ux is the displacement of the bar in the x direction
(the displacement is independent of y and z) and EðxÞ is the
Young modulus, which varies with x due to the presence of
hysteretic elastic elements that depend on the strain
ϵxx ¼ ∂ux=∂x. There is a PM space associated with elastic
elements that respond to compressional forces in the x
direction, the L-PM space. The modes of the system will be
found using the lumped element procedure sketched by
Guyer and Johnson [34]. In order to use this procedure it is
necessary to know EðxÞ. Supposing that the PM space has a
uniform density of hysteretic elastic elements at low strain,
this elastic modulus, at each point in the sample, can be
expressed in terms of the maximum strain at that point as

EðxÞ ¼ E0½1 − αEϵ
max
xx ðxÞ�; ð2Þ

where ϵmax
xx ðxÞ is the maximum strain at x and αE is the

constant characterizing the elastic element density in
the L-PM space. Here, for conciseness, we consider the
fundamental resonance modewith the displacement node at
the origin. Integrating Eq. (1) from 0 to L=2 yields

(a)

(b)

FIG. 2. Relative frequency shift as a function of strain.
(a) Longitudinal modes. (b) Torsional modes.
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ρ
∂2UxðtÞ
∂t2 ¼ −

2

L
E0½1 − αEϵ

max
xx ð0Þ�ϵxxð0; tÞ; ð3Þ

where Ux is the longitudinal displacement averaged over
the half length (0 to L=2) of the bar. This is an equation
for the motion of the right-hand side of the bar in terms of
the forces at the bar center. To find Ux and ϵxxð0Þ, we use
the analytical expression for the modal deformation of the
fundamental longitudinal mode with maximum displace-
ment amplitude A driven at angular frequency ω

uxðx; tÞ ¼ A sin
πx
L

e−iωt: ð4Þ

It follows that

UxðtÞ ¼
2

π
Ae−iωt; ð5Þ

ϵxxð0; tÞ ¼
π

L
Ae−iωt; ð6Þ

ϵ̄xx ¼
2

L

Z
L=2

0

ϵxxdx ¼ 2

L
umax
x ðþL=2Þ: ð7Þ

Substitution of these three equations into Eq. (3) gives

ω2 ¼ c2L½1 − α̂Eϵ̄xx�k2; ð8Þ

where α̂E ¼ αEðπ=2Þ, k ¼ π=L, and c2L ¼ E0=ρ. We have
introduced ϵ̄xx into this equation in order to express the
answer in terms of the average strain in the bar (which is not
uniformly strained) and in terms of measurable quantities.
Likewise, there is a PM space associated with elastic

elements that respond to torsional forces in the θ direction,
the T-PM space. The starting point is the equation of
motion and boundary conditions for the torsional modes of
the bar

ρ
∂2uθ
∂t2 ¼ ∂

∂x
�
Gðr; xÞ ∂uθ∂x

�
; ϵxθð�L=2Þ ¼ 0; ð9Þ

where the displacement uθ in the θ direction now depends
on x and r and Gðr; xÞ is the shear modulus, which varies
also with x and r due to the presence of hysteretic elastic
elements that depend on the strain ϵxθ. The methodology is
essentially the same as above, with the difference that the
displacement now depends on both x and r. The shear
modulus can be written as

Gðr; xÞ ¼ G0½1 − αGϵ
max
xθ ðr; xÞ�; ð10Þ

where ϵmax
xθ ðr; xÞ is the maximum strain at ðr; xÞ and αG is

the constant characterizing the elastic element density in
the T-PM space. After carrying out the x-integration step,
we obtain a set of equations similar to Eqs. (3)–(7).
However, because of the difference in the strain as a

function of r in the present case, there are details involving
numerical factors of order 1. Eventually, the following
equation is derived for torsional modes:

ω2 ¼ c2T ½1 − α̂Gϵ̄xθ�k2; ð11Þ

where α̂G ¼ αGðπ=2Þð9=8Þ and c2T ¼ G0=ρ.
The two dispersion relations (8) and (11) are of the same

form. They involve the two sound velocities cL and cT , the
associated average strain fields ϵ̄xx and ϵ̄xθ, and the
associated PM space densities αE and αG. In addition
the average strain fields are related to measured quantities
quite simply.
In this Letter, we demonstrated, quantified, and

described mathematically the tensorial nature of the non-
equilibrium dynamics in nonlinear mesoscopic elastic
materials. Since the parameters quantifying nonequilibrium
dynamics increase in magnitude with the concentration of
microscopic imperfections in the soft bond system, this
important result leads to further questions. It would be
interesting, for instance, to determine if the parameters αE
and αG vary at different rates with environmental con-
ditions. We can also wonder about the sensitivity of these
parameters to the orientation of microfractures in a
material. If so, the ability to measure the tensorial compo-
nents of the nonequilibrium dynamics could lead to an
increased understanding of the relationship between the
evolution of the microscopic features, in particular the
imperfections, and the dynamic response of the material at
a macroscopic scale. Last, the tensorial features evidenced
in this Letter could be used to enhance the design of
nonlinear metamaterials with a wide range of applica-
tions [13].
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3Laboratoire de Mécanique et d’Acoustique, LMA CNRS UPR 7051, Aix-Marseille Université, 13402 Marseille Cedex 20, France

Experiments were conducted on the sample of Berea sandstone to measure the Cartesian components of the particle
velocity and components of the strain tensor, for the first seven longitudinal modes and first three torsional modes of
the sample with free boundary conditions. Measurement were performed using a 3D laser vibrometer (Polytec PSV-
3D-500), following the setup shown in Fig. 1. This device can measure the three Cartesian components of the velocity
vector over a predifined mesh and compute the resulting strain field on this mesh. Longitudinal modes were measured
on the sample using a mesh of 473 surface points spanning its entire length. Particle velocities plotted on the deformed
mesh and corresponding strain fields are depicted in Fig. 2. The velocity field is dominated by its x-component as
expected from a longitudinal mode. Note that the 7th order mode exhibits some loss of symmetry, most likely as a
result of the sample having one end instrumented with a transducer and one end free. Pure longitudinal modes could
not be generated in the sample beyond the 7th order. For each mode, the relationship between the x-component of
the particle velocity at the free end of the sample and the maximum strain εxx in the sample was established. A
similar approach was followed for the torsional modes. The number of measurement points was reduced to 301, due
to the presence of shear transducers on the round surface of the sample. Particle velocities plotted on the deformed
mesh and corresponding strain fields are depicted in Fig. 3. The deformed mesh indicates that pure torsional modes
are indeed generated in the sample. However, the transducer configuration required to induce a torsional motion in
the sample breaks the symmetry of the system even further and pure torsional modes could not be generated in the
sample beyond the 3rd order. The relationship between the θ-component of the particle velocity at the end of the
sample (where the compressional transducer is located) and the maximum strain εxθ in the sample was established
by looking at the y-component of the particle velocity and εxy component of the strain along the center line of the
mesh. Along this line, the aforementioned Cartesian and cylindrical components are equivalent.

FIG. 1: Photograph of the instrumented sample being scanned by the 3D laser vibrometer.
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FIG. 2: Particle velocities and strain fields measured over a mesh of 473 points on the surface of the sample, spanning its entire
length. In the figure, red and blue colors indicate that the quantities of interest haves reached maximum and minimum values,
respectively.

FIG. 3: Particle velocities and strain fields measured over a mesh of 301 points on the surface of the sample, spanning a portion
of its length. In the figure, red and blue colors indicate that the quantities of interest haves reached maximum and minimum
values, respectively.


