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Abstract Dynamic acoustoelastic testing is performed on a set of six rock samples (four sandstones,
one soapstone, and one granite). From these studies at 20 strain levels 10−7 <𝜖<10−5, four measures
characterizing the nonlinear elastic response of each sample are found. Additionally, each sample is tested
with nonlinear resonant ultrasonic spectroscopy and a fifth measure of nonlinear elastic response is found.
These five measures of the nonlinear elastic response of the samples (approximately 3 × 6 × 20 × 5 numbers
as each measurement is repeated 3 times) are subjected to careful analysis using model-independent
statistical methods, principal component analysis, and fuzzy clustering. This analysis reveals differences
among the samples and differences among the nonlinear measures. Four of the nonlinear measures are
sensing much the same physical mechanism in the samples. The fifth is seeing something different. This is
the case for all samples. Although the same physical mechanisms (two) are operating in all samples, there
are distinctive features in the way the physical mechanisms present themselves from sample to sample. This
suggests classification of the samples into two groups. The numbers in this study and the classification of
the measures/samples constitute an empirical characterization of rock nonlinear elastic properties that can
serve as a valuable testing ground for physically based theories that relate rock nonlinear elastic properties
to microscopic elastic features.

1. Introduction

Knowledge of the nonlinear elastic properties of a mechanical system makes it possible to assess the
behavior of the system as it is stressed [Guyer and Johnson, 2009]. Examples, for geophysical and civil
engineering applications, include the prediction of wellbore breakout [Bouchaala et al., 2011], monitoring
the integrity of formations used to sequester carbon [Bouchaala et al., 2011], assessing the mechanical
trajectory of a reservoir, monitoring thermal damage to rock in nuclear waste storage [Payan et al., 2007],
and probing concrete integrity [Van Den Abeele and De Visscher, 2000; Van Den Abeele et al., 2009]. Dynamic
acoustoelastic testing (DAET) allows one to determine the nonlinear elastic properties of a mechanical
system with accuracy and relative ease. DAET is a pump-probe scheme in which a high-frequency (HF)
elastic wave pulse probes the state of a mechanical system that is set by a low-frequency (LF) elastic wave,
the pump. For the pump P we use the fundamental compressional mode of a rod-shaped sample driven to
strain amplitudes 10−7 ≤𝜖P <10−5. The probe (p) is a HF pulse (of low strain amplitude, 𝜖p ≃10−7) that tests
the state of the sample at all phases of the pump strain field, i.e., in both compression and tension. From the
behavior of the probe a complete description of the nonlinear elastic properties of the sample is obtained,
e.g., hysteresis, tension/compression asymmetry, and nonlinear elastic constants.

DAET offers advantages over several existing methods. In contrast to static acoustoelastic testing, in
which the “pump” (a mechanical compression or tension press) sets an 𝜔→0 strain field in the sample
[Winkler and McGowan, 2004], DAET determines the response of the sample to both tension and
compression [Renaud et al., 2009, 2010, 2011, 2013a, 2013b, 2014]. Furthermore, dynamic acoustoelasticity
is of the sample at a finite pump frequency, 𝜔>0, where the important “conditioning” and “slow
dynamics” effects are present in the state which the pump sets [TenCate and Shankland, 1996; TenCate, 2011;
Renaud et al., 2013a]. In contrast to nonlinear resonant ultrasonic spectroscopy (NRUS) [Pasqualini et al.,
2007; Van Den Abeele et al., 2000a] and harmonic-based techniques [Van Den Abeele et al., 2000b], which
measure average responses over all phases, by testing the state of the sample at all phases, DAET allows us
to obtain a more complete picture of the nonlinear elastic behavior of the sample.
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Table 1. Sample Descriptiona

Longitudinal
Density Length, L Velocity, c Resonance

Name Composition (g/cm3) (cm) (km/s) Frequency (kHz)

Berea sandstone (USA) Fine-grained argillaceous micaceous sandstone 2.2 15 2.8 4.6
Red Meule sandstone (France) Fine-grained argillaceous micaceous sandstone 2.2 12 3.1 5.4
Sander sandstone (Germany) Subarkose sandstone 2.2 17 2.7 4.4
Pietra Serena sandstone (Italy) Graywacke sandstone 2.6 17 3.3 5.2
(Italy)
Grunnes Nidaros soapstone (Norway) Talc schist 2.9 17 4.8 6.3
(Norway)
Berkeley Blue Granite (USA) Medium-grained anorthosite 2.7 15.6 3.4 4.2

aAll samples are rod shaped with a diameter of 2.54 cm and length ranging from L = 12 to 17 cm.

This paper is the third in a series that develops DAET for geophysical applications. In the first paper of the
series the efficacy of the DAET procedure for a large set of geophysical samples was established [Renaud

et al., 2012]. In the second paper, a data analysis scheme was introduced that allows one to extract great
detail about the nonlinear behavior of a sample from DAET [Rivière et al., 2013]. (This data analysis scheme
has applications well beyond the geophysical example used to illustrate its workings.) Here we bring this
analysis scheme to data on a set of samples (six rock types) that are subject to 20 pump strain values. To
these data we add the results of NRUS testing. We look in detail at the nonlinear measures of the behavior
of each sample. Then to develop a description across samples we characterize the behavior of each sample
with five nonlinear measures, four describing aspects of the nonlinear elastic behavior gleaned from DAET
and the fifth describing the NRUS results. We subject this set of nonlinear measures to statistical analysis
using two tools, principal component analysis (PCA) and “fuzzy” clustering (FC). Upon using these tools we
can (a) establish the connection of the nonlinear measures to one another, (b) extract two primary nonlinear
measures to characterize all of the data, and (c) use these primary nonlinear measures to sort the samples
into clusters based on their nonlinear properties. The data analysis to this point has gone forward without
the need for a microscopic model of the elastic features responsible for what is observed. We complete the
analysis of the data with description of possible microscopic models for our observations.

In section 2, we describe the set of samples, the experimental system, the experimental protocol,
and application of the data analysis scheme. In section 3, we present DAET and NRUS results and the
organization of the data provided by a statistical analysis using PCA and FC. We discuss the results with an
eye toward physical insights in section 4.

2. Materials and Methods
2.1. Samples
The samples used in this study, part of the sample set used in [Renaud et al., 2012], consist of four sandstones
(Berea, Red Meule, Sander, and Pietra Serena), one soapstone (Grunnes Nidaros), and one granite (Berkeley
Blue). These samples, which include a crystalline rock (granite), a metamorphic rock (soapstone), and four
sedimentary rocks (sandstones), offer the opportunity to compare nonlinear behavior across a spectrum
of rock types. All samples are rod shaped with a diameter d = 2.54 cm. Their length, density, longitudinal
velocities as well as resonance frequencies of the first compressional mode are listed in Table 1.

2.2. Experimental Details
2.2.1. DAET Setup
Each sample, cylindrical in shape and in room-dry conditions, is placed upright vertically on the pump, a
low-frequency (LF) compressional source, a piezoceramic disk (Figure 1). The probe source, a high-frequency
(HF) compressional source, and receiver straddle the sample at height h = 2 cm above the piezoceramic disk.
A light weight accelerometer, placed on the free surface at the top of the sample, is used to monitor the
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Figure 1. DAET setup. The low-frequency source resonates the
sample in its first compressional mode (kHz), fixed free boundary
conditions, at various strain amplitudes from 10−7 to 10−5.
High-frequency pulses at 1 MHz are launched into the sample
to probe the sample at a given strain level established by the
low-frequency source. An accelerometer placed on the top of the
sample allows us to measure the low-frequency strain field. An
ultrasonic transducer detects the HF pulses. The NRUS setup is
equivalent to the DAET setup, except that only the LF part is kept to
resonate the sample in its first compressional mode.

pump displacement/strain field. The
essential idea is to have a HF broadcast,
from source to receiver, probe the elastic
state that is set in the sample by the
LF source.

The LF source has a diameter greater than d
and creates a strain field 𝜖x(x, t) in the
sample that is primarily a function of x; x is
measured upward from the piezoceramic
disk. The frequency fLF is the frequency of
the lowest compressional resonant mode
of the cylinder for fixed free boundary
conditions, fLF =c∕(4L), i.e., wavelength
𝜆LF =4L. Here c is the nominal compressional
sound speed in the sample, e.g., in Berea
sandstone roughly 2800 m/s (Table 1).
Thus, for Berea sandstone fLF ≃4.6 kHz and
𝜆LF =60 cm. The strain field is sampled
at x=h by the HF broadcast that
crosses the sample in time, tHF, of order
d∕c≃10μs. During the HF wave travel
time the LF strain field changes very little,
tHF∕TLF =d∕(4L)=2.54∕60≃0.04, TLF =1∕fLF

(taking, for example, the Berea sandstone,
L = 15 cm, Table 1). In addition, the width

of the HF beam is approximately the diameter of the HF transducer (dHF = 6 mm). Thus, we can assume
that the strain established in the sample by the LF source is spatially constant over the HF beam width
(dHF∕𝜆=0.6∕60=0.01). This condition and the condition tHF <<TLF are required in order that the probe shall
have a simple experience of the pump as it crosses the sample.

For the case of fixed free boundary conditions, the strain is maximum at x=0 and can be estimated from
the acceleration measured at the top of the sample using the displacement/strain relation for the lowest
compressional mode

𝜖x(0, t) = −üx(L, t)∕(8𝜋Lf 2
LF). (1)

We take the strain at x = h to be the strain at the base, according to results found in Rivière et al. [2013].

The HF source is one period of a 1 MHz broadcast. The LF broadcast/detection and the HF
broadcast/detection, both sampled at 50 MHz, are controlled by a central clock.
2.2.2. NRUS Setup
A series of nonlinear resonant ultrasound spectroscopy [Van Den Abeele et al., 2000a; Haupert et al., 2011]
measurements is conducted on each sample. The apparatus for these measurements is the same as that for
the DAET measurements (Figure 1), using only the LF part of the setup. Similar to the DAET measurements,
the first compressional mode is used. The drive frequency is swept upward and downward to monitor
potential conditioning effects. Upward/downward frequency sweeps are repeated three times, giving a total
of six resonance frequency values for each level of LF source amplitude.

2.3. Measurement Protocol
The DAET measurement protocol involves the following steps. At time t= t0 =0, the HF source is turned on,
sending 1 MHz pulses at a sequence of times tj, j=1,…,. The time between successive pulses, ΔT , is chosen
such that the coda signal received in response to the jth pulse decays to zero before sending the ( j + 1)th

pulse. We use ΔT ≃ 1 ms. From the complete signal recorded at the HF receiver we extract the direct wave,
i.e., the first period of each received pulse s(t − tj).
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Figure 2. Example of projection procedure. (a) LF strain as a function of time obtained from equation (1). Positive (negative) strain corresponds to the tension
(compression) phase. (b) HF velocity change as a function of time extracted using equation (3). Projection result is in red. (c) Zoom of Figure 2b on a shorter time
window to observe the good agreement between experimental data and projection result.

The LF source, at frequency 𝜔 and amplitude A, is turned on at t0+ 5 ms, allowing several ultrasonic pulses
to propagate across the sample in the absence of LF strain field. The signal at the top of the sample is
recorded at times ti spaced by 0.02 𝜇s (corresponding to the 50 MHz sampling rate). The signal measured
at ti , an acceleration, is related to the displacement field at the top of the sample and to the nominal strain
field 𝜖x(h, ti) in the sample as described above.

For Berea sandstone, the steady state is reached after roughly 100 ms of LF vibration (Figure 2a). Each pulse
s(t− tj) propagating during the steady state time domain is to be compared to a reference pulse that crosses
the sample before the LF source is turned on, e.g., s(t−t0). The time between successive pulses, ΔT , is chosen
to be incommensurate with TLF so that over time the HF broadcasts at the times {tj} sample all phases of the
pump strain field.

The first step in the analysis of s(t − tj) from the steady state time domain is to compare it to the reference
pulse s(t − t0) by using the cross correlation:

C(𝜏, tj) = ∫
∞

0
s(t − t0)s(t + 𝜏 − tj)dt (2)

to determine 𝜏max(tj), the shift in the time of flight of the HF pulse as it crosses the sample at time tj [Renaud
et al., 2009, 2010]. (The shift 𝜏max(tj) is refined by interpolating the peak of the cross-correlation function with
a second-order polynomial function to obtain subsample time resolution [Cespedes et al., 1995]. Three points
are considered for this interpolation: the maximum of the cross-correlation function and the two adjacent
points.) Assuming that dynamic variations in the sample diameter (i.e., the probe path) due to Poisson effect
are negligible [Renaud et al., 2011], time of flight shift can be converted into a relative velocity change using
the following:

Δc
c

(
tj

)
= −

𝜏max(tj)
t0

HF

, (3)

where t0
HF is the time of flight of the reference pulse. Finally, the change in the relative sound speed is

associated with the strain field at x = h at the moment of the HF broadcast, i.e., Δc
c
(tj) ⇔ 𝜖x(h, tj) where

𝜖x(h, tj) is the average of LF strain field at h over tj ≤ t ≤ tj + d∕c.
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We start the protocol with a pump excitation at amplitude A. We launch this excitation (and the
concomittant series of ultrasonic pulses) 10 times with a waiting time of 30 s between launches. This waiting
time is chosen long enough to ensure that most of the relaxation has taken place (slow dynamics [TenCate,
2011]) but short enough to perform measurements in stable environmental conditions (the slow dynamics
may continue for minutes or hours after the sample is perturbed; however, most of the relaxation takes
place very rapidly, within the first 10–20 s). The data recorded during the 10 launches is averaged and the
averaged data (both pump and probe) are the data we analyze. This protocol, at amplitude A, is repeated
3 times by replacing the HF transducer pair and the coupling gel in order to ensure reproducibility. These
three runs (each of 10 launches) are averaged and the error bars presented in section 3 represent 1 standard
deviation over the three runs. After completing this measurement protocol at amplitude A, we repeat it for
the next pump amplitude. For both the DAET measurements and the NRUS measurements (section 2.2.2),
strain space, 10−7 < 𝜖 < 10−5, was scanned logarithmically giving equal weight to all strain values. Finally,
we note that part of the data related to the Berea sandstone was presented previously [Rivière et al., 2013].
For Berea the sequence of 10 launches was repeated 2 times only and the time between two successive HF
pulses was 10 times shorter, ΔT ≃ 0.1 ms instead of 1 ms.

2.4. Signal Analysis: Projection Procedure
The dynamic acoustoelastic experiment allows one to obtain the relative change in the speed of sound
Δc
c
(tj) as a function of time (Figure 2b) or LF strain (Figure 3). This signal is a down-sampled signal (at the

frequency of the HF pulse repetition rate, cf. Figure 2c) that is analyzed with a projection procedure [Rivière
et al., 2013]. The method is a dedicated Fourier analysis which consists in projecting the signals onto a series
of sine and cosine functions, at frequencies related to the LF drive frequency 𝜔, which have support at the
time points tj , 1 ≤ j ≤ M, M is the total number of time points in the steady state time domain at which Δc∕c
is calculated (Figure 2b):

Sn

(
tj

)
= qn sin

(
n𝜔tj

)
Cn

(
tj

)
= rn cos

(
n𝜔tj

) (4)

where n = 1, 2, ...,N and N is chosen according to the harmonic content of the signal, e.g., N = 11 for the
Berea sample. The amplitudes qn and rn are such that these functions are orthonormal:

⟨Sm|Sp⟩ = 𝛿m,p⟨Cm|Cp⟩ = 𝛿m,p⟨Sm|Cp⟩ = 0 ,

(5)

where 𝛿m,p is the Kronecker 𝛿 function (𝛿m,p = 1 if m = p, 0 otherwise), ⟨.|.⟩ stands for the scalar product,⟨Sm|Sp⟩ ≡ ∑M
j=1 Sm

(
tj

)
Sp

(
tj

)
, and qn and rn are found using a numerical Gram-Schmidt process [Rivière et al.,

2013]. This orthonormalization step is necessary because the initial base of sines and cosines (if one chooses
qn and rn = 1) is not fully orthonormal, due to the small number of time points M (≃ 350).

The analysis yields the representation of Δc∕c at tj , denoted Δc
c
|p(tj), given by

Δc
c

||||p
(tj) =

N∑
n=1

anSn

(
tj

)
+

N∑
n=1

bnCn

(
tj

)
, (6)

where coefficients an and bn are

an = ⟨Sn|Δc
c
⟩

bn = ⟨Cn|Δc
c
⟩. (7)

The coefficients An =anqn and Bn =bnrn determine how much of the nth harmonic, 𝜔n =n𝜔, is present in
the signal. Assuming that the response at the fundamental frequency is a sine function, the amplitude A1

determines how much of the signal remains in phase with the fundamental. Then, the amplitude B1

determines how much of the signal is in quadrature. The magnitude Δc
c
|n𝜔=

√
A2

n + B2
n is used as a measure

of harmonic content.

Note that magnitudes Δc
c
|n𝜔 average hysteretic behaviors, by summing up the in-phase component and

the component that is in quadrature. Performing the separation of both components (as shown for Berea
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Figure 3. Relative velocity change Δc
c

as a function of strain 𝜖1𝜔 for 20 increasing LF strain excitations ranging from 10−7 to 10−5. Some amplitudes are removed
at several strain levels for clarity. (a and b) Berea sandstone. (c and d) Red Meule sandstone. (e and f) Sander sandstone. (g and h) Pietra Serena sandstone.
(i and j) Grunnes Nidaros sandstone. (k and l) Berkeley Blue granite. Zooms are made for strain amplitudes ≤ 2.10−6 (Figures 3b, 3d, 3f, 3h, 3j, and 3l). Blue triangles
(red squares) correspond to increasing (decreasing) strains. Negative strains correspond to the compression phase (C), whereas positive strains correspond to the
tension phase (T). The black line shows the result of the Fourier analysis. On the right side, photomicrographs under plane polarized light. Width of the photo
is 2.35 mm for Berea sandstone, 3.85 mm for Berkeley blue granite, and 3.1 mm for other samples.
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in Figure 5 of Rivière et al. [2013]) at all strain amplitudes and for all samples in an automatic manner is not
straightforward because of the slight change in fLF (and related phase) at each larger excitation amplitude
due to nonlinearity. This could be addressed in future work.

The projection procedure also yields a representation of the pump source strain field at tj from equation (1):

𝜖1𝜔(tj) = eSS1(tj) + eC C1(tj), eS =< S1|𝜖x(0, tj) >, eC =< C1|𝜖x(0, tj) > . (8)

The amplitude of the pump source strain field is

𝜖1𝜔 =
√

(q1eS)2 + (r1eC)2. (9)

In section 3, Δc
c
|n𝜔 is plotted as a function of 𝜖1𝜔. In addition to Δc

c
|n𝜔, with n ≥ 1, the n = 0 component,

Δc
c
|0𝜔 (called the offset), is found as the average of Δc∕c in the steady state time domain (see Figure 2b).

Because the offset is negative the value −Δc
c
|0𝜔 is used in log-log plots.

3. Experimental Results
3.1. Nonlinear Signatures Obtained From DAET
In Figure 2 we show the basic features in the data/analysis. In Figure 2a the pump strain field found from
equation (1) is plotted as function of time, positive (negative) strain values correspond to the tension
(compression). In Figure 2b the velocity change, Δc∕c found from equation (3), is shown as a function of
time. We observe a reduction in c over about 0.03 s as the sample comes to steady state with the pump
drive on and a slow recovery of c from steady state after the pump drive is turned off (the phenomenon
known as “slow dynamics” [TenCate, 2011]). Representation of the Δc∕c data using the projection procedure
is shown in red in Figures 2b and 2c. In this paper we are concerned only with the behavior of the samples
in the steady state time domain. Each sample was brought to steady state at 20 values of the LF strain in
the interval 10−7 to 10−5 and Δc∕c measured. We show a sampling of all of the Δc∕c data in the form Δc∕c
versus 𝜖1𝜔 in Figures 3a–3l. Also shown in the figure, for each Δc∕c curve, is the representation of Δc∕c using
the projection procedure (black curves). The curves Δc∕c versus 𝜖1𝜔 are called the nonlinear signatures.

For all of the sandstones and the soapstone at intermediate strain amplitudes (10−6), we observe softening
maxima for strain extrema, i.e., the velocity is minimal when the sample reaches its maximal compression
and tension, while it is maximum when the strain is zero. On increasing the amplitude from 10−6 to 10−5, the
nonlinear signatures progressively evolve such that the velocity is maximum during the compression phase
and minimum during the tension phase (the curvature observed at intermediate amplitude disappears at
larger amplitudes). As opposed to soapstone and sandstones, the velocity for granite is always a maximum
during the compression phase and minimal during the tension phase, regardless of the strain amplitude.
Hysteresis also seems to be smaller for granite than for other samples.

3.2. Decomposing the Nonlinear Signatures
The projection representation of Δc∕c allows us to decompose the nonlinear signatures into components

having frequencies related to the pump frequency 𝜔. We show the amplitudes Δc
c
|n𝜔 =

√
A2

n + B2
n as

a function of 𝜖1𝜔 in Figure 4. We note that for all samples, the n = 0 component (the offset Δc
c
|0𝜔) is

largest. There are several qualitative properties of note. (1) The Δc
c
|2𝜔 components (red curves) are larger

than Δc
c
|1𝜔 components (blue curves) for several samples (Berea sandstone, Pietra Serena sandstone, and

Grunnes Nidaros Soapstone) at intermediate strain amplitudes (≃ 10−6). This observation is equivalent to
having a third harmonic larger than a second harmonic in wave mixing [Meegan et al., 1993]. (2) Higher har-
monic content (n ≥ 3) emerges from the noise for strains above about 10−6. For these harmonics we have
Δc
c
|4𝜔 >

Δc
c
|3𝜔 and Δc

c
|6𝜔 >

Δc
c
|5𝜔, i.e., preferential generation of odd harmonics (A5w > A4w , A7w > A6w)

[Meegan et al., 1993; Van Den Abeele et al., 1997, 2000a; McCall and Guyer, 1994]. (3) Berkeley blue Granite
can be adequately described with just three components, N = 2 only, i.e., the fit of the experimental results
using the projection representation is found to be best with N = 2 [Rivière et al., 2013].
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Figure 4. Amplitude dependence extracted from the projection procedure. Note that Δc
c
|0𝜔 corresponds to the offset,

i.e., the average change in velocity during the LF steady state excitation. Because the offset is negative, −Δc
c
|0𝜔 is actually

represented in the log-plot. (a) Berea sandstone. (b) Red Meule sandstone. (c) Sander sandstone. (d) Pietra Serena
sandstone. (e) Grunnes Nidaros sandstone. (f ) Berkeley Blue granite.

It is of interest to see how the results from the projection procedure vary across materials. To this end, in
Figures 5a–5c, we show the data that is in Figure 4 sorted by harmonic number for n = 0, 1, 2. In addition
to the harmonic content we show the hysteresis area in Figure 5d (see Appendix A). The four measures
of the probe response to the pump shown in Figures 5a–5d, Δc

c
versus 𝜖1𝜔, will be used extensively in the

discussion below. To facilitate this discussion we adopt the following language: Δc
c
|0𝜔 is the offset, Δc

c
|1𝜔 is

the slope, Δc
c
|2𝜔 is the curvature, and Δc

c
|H is the area. In Figures 5a–5d, we can observe (1) the amplitude

of these measures and (2) how these measures evolve with strain. Take the offset as an example. On using
the fitting function log(−(Δc∕c)0𝜔) = 𝜈 log(𝜖1𝜔) + log(a) we find a, the amplitude of the offset and 𝜈

which tells us how on average the offset scales with strain. As pointed out in previous studies [Xu et al., 1998;
Van Den Abeele et al., 2000b; Scalerandi et al., 2014], analyzing 𝜈 values among samples can help classify
different nonlinear mechanisms, while a values tell us how much of a mechanism is present in each sample.
For instance, it has been reported that the exponent 𝜈 increases from 1 up to 3 with mechanical or thermal
loadings in concrete, as the damage properties evolve from intrinsic damage (closed cracks, grain-grain
contacts, dislocations,...) to macrodamage (open cracks) Scalerandi et al. [2014].

In Figure 5a (n = 0), Berkeley blue granite and Berea sandstone exhibit the largest offset (large a values). In
Figure 5b (n = 1) the whole set of samples exhibit roughly a linear dependence of Δc

c
|1𝜔 on strain (𝜈 ≃ 1).

The measure Δc
c
|1𝜔 for Berkeley blue granite is almost 1 order of magnitude larger than for the other samples

(large a value). In Figure 5c, Δc
c
|2𝜔, the sandstones have a quadratic dependence on strain for strain below

10−6, while the granite and soapstone have a linear dependence on strain for strain below 10−6. All samples
show a decrease in the scaling of Δc

c
|2𝜔 with strain for strain above 10−6 (see dashed line in Figure 5c). The

Berea sandstone and granite exhibit the largest hysteresis in Figure 5d (large a values). This was not obvious
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Figure 5. (left column) Amplitude dependence extracted from the projection procedure and (right column) mean slopes
extracted from the amplitude dependence. BS is Berea Sandstone; MRS is Meule Red Sandstone; SS is Sander Sandstone;
PSS is Pietra Serena Sandstone; BBG is Berkeley Blue Granite; GNS is Grunnes Nidaros Soapstone. (a) Δc

c
|0𝜔 , which

corresponds to the offset in Figure 3 (averaged decrease in velocity). (b) Δc
c
|1𝜔 , which corresponds approximately to the

slope in Figure 3. (c) Δc
c
|2𝜔 , which corresponds approximately to the curvature in Figure 3. (d) Hysteresis area Δc

c
|H , to

estimate how different are decreasing and increasing branches of the signatures in Figure 3. (e) Mean slopes for Δc
c
|0𝜔 .

(f ) Mean slopes for Δc
c
|1𝜔 . (g) Mean slopes for Δc

c
|2𝜔 . (h) Mean slopes for the hysteresis area.

for granite on looking at the nonlinear signature in Figure 3k. The offset, curvature, and hysteresis area scale
less strongly with strain for soapstone and granite than they do for the sandstones.

The coefficients 𝜈, which describe how on average the leading components of the nonlinear signatures
scale with strain, are shown in Figures 5e–5h. Before turning to an analysis which uses these average scaling
coefficients we look at the NRUS data.

3.3. NRUS
In Figure 6a, we show an example of the data obtained in the NRUS measurements. The data shown in the
figure is for the Grunnes Nidaros soapstone. The resonance curves for both upward sweep and downward
sweep are shown. As previously observed for such experiments, the small difference between upward
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Figure 6. Nonlinear resonance ultrasound spectroscopy (NRUS). Each sample is resonated at its first compressional
mode with strain amplitude ranging from 10−7 to 10−5. (a) Typical resonance curves: example of the Grunnes Nidaros
Soapstone. (b) Frequency change as a function of strain amplitude. The six runs (three upward and three downward
sweeps) are displayed for each sample. Note that because Δf

f
is negative, −Δf

f
is used for this log-log plot.

and downward sweeps is due to slow dynamics [TenCate and Shankland, 1996; TenCate, 2011]. The shift
in resonance frequency, −Δf∕f , is plotted in Figure 6b as a function of the strain at resonance, 𝜖r , for all
samples. The changes in frequency, Δf∕f , are negative in all cases, in qualitative accord with Δc∕c < 0 in the
DAET measurements. These NRUS assessments of the nonlinear behavior of the samples are to be combined
with the four DAET measures of nonlinear behavior from above. To capture the essentials of the NRUS data
for this purpose we use the average slope of log(−Δf∕f ) as a function of log(𝜖r).

Table 2. Nonlinear Measures of the Average Behavior of 17 Samples Extracted
From Figures 5e–5h for DAET and Figure 6b for NRUSa

Sample Offset, 1 Slope, 2 Curvature, 3 Area, 4 Shift, 5

BS 1, 1 1.75 1.13 1.22 1.35 2.07
BS 2, 2 1.85 1.08 1.16 1.35 2.03
GNS 1, 3 1.24 1.36 0.71 0.74 1.21
GNS 2, 4 1.25 1.26 0.74 0.76 1.19
GNS 3,5 1.21 1.25 0.72 0.75 1.19
MRS 1, 6 1.63 1.03 1.21 1.04 2.06
MRS 2, 7 1.61 1.05 1.16 0.94 1.80
MRS 3, 8 1.56 1.05 1.30 0.97 1.83
SS 1, 9 1.75 1.24 1.26 1.24 2.03
SS 2, 10 1.92 1.24 1.21 1.00 2.23
SS 3, 11 1.70 1.23 1.22 1.19 1.94
PSS 1, 12 1.73 1.34 1.21 1.16 1.77
PSS 2, 13 1.83 1.32 1.28 1.13 1.94
PSS 3, 14 1.78 1.33 1.21 1.07 1.95
BBG 1, 15 1.26 1.05 0.89 0.65 1.29
BBG 2, 16 1.22 1.03 0.86 0.69 1.35
BBG 3, 17 1.24 1.04 0.91 0.64 1.31

aThe entries, displayed in Figure 7, are the exponent 𝜈 that characterizes
the scaling of the log of the measured quantity with the log of the strain. For
instance, for the curvature, log((Δc∕c)2𝜔) = 𝜈 log(𝜖1𝜔) + log(a). BS is Berea
Sandstone; GNS is Grunnes Nidaros Soapstone; MRS is Meule Red Sandstone;
SS is Sander Sandstone; PSS is Pietra Serena Sandstone; BBG is Berkeley Blue
Granite. Column vectors i and row vectors j correspond to the notation
used in the text.
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Figure 7. Exponents 𝜈 corresponding to values shown in Table 2 and extracted from Figure 5 for DAET and Figure 6b for
NRUS. The entries 𝜈 characterize the scaling of the log of the measured quantity with the log of the strain. For instance,
for the curvature, log((Δc∕c)2𝜔) = 𝜈 log(𝜖1𝜔) + log(a). BS is Berea Sandstone; GNS is Grunnes Nidaros Soapstone; MRS is
Meule Red Sandstone; SS is Sander Sandstone; PSS is Pietra Serena Sandstone; BBG is Berkeley Blue Granite.

3.4. Principal Component Analysis and Fuzzy Clustering
The projection procedure representation of DAET data was used to obtain four measures of the nonlinear
behavior of each sample, offset, slope, curvature, and area. The frequency shift Δf∕f from NRUS data was
used to form a fifth measure of the nonlinear behavior of each sample (called shift hereafter). The average
strain dependence of these measures was captured with the scaling coefficients 𝜈, see Figures 5e–5h. Until
now (Figures 4 and 5) we have used averages over runs on each sample, e.g., two runs on Berea, three runs
on Granite, etc. From here forward we regard each run on a given sample as an independent measure. Thus,
we have five nonlinear measures for two Berea samples, five nonlinear measures for three Granite samples,
etc. We therefore speak of N = 17 measurements (2 × Berea, 3 × Granite, etc). The scaling coefficients 𝜈
for each individual measurement are shown in Table 2 and Figure 7; they form a 17 × 5 matrix denoted as
. The columns of this matrix carry information about a single measure of the nonlinear behavior across
all samples, e.g., column 1 is the offset measure of the nonlinear behavior of all samples. We denote the 17
component column vectors for a measure of the nonlinear behavior by i, i = 1,… , 5. The rows of the 
matrix carry information about the response of each sample to five measures of nonlinear behavior, e.g.,
row 1 describes the response of Berea sample 1 to five measures of nonlinear behavior. We denote the five
component row vector for the nonlinear response of a sample by j, j = 1,… ,N. The nonlinear response
of a sample is a point in the five-dimensional nonlinear response space of (offset, slope, curvature, area,
and shift).

We can use the data in  to compare measures of nonlinear behavior to one another, i.e., compare
columns. Or we can use the data in  to compare nonlinear response from sample to sample, i.e., compare
rows. There are tools available to undertake these comparisons, principal component analysis (PCA) and
fuzzy clustering (FC).

PCA. We use PCA to compare nonlinear measures across samples to one another. “Does area measure
something different from offset”? To answer this question we need to compare the area column vector to
the offset column vector or any other column. To remove the influence of absolute values, PCA is preceded
by a normalization step (see Appendix B). Thus, from each i we remove its average i and divide by its

standard deviation 𝜎i
to form 17 component-normalized vectors, ̂i =

i−i

𝜎i

. The set of normalized vectors

̂i are used to construct the 5 × 5 covariance matrix

kl =
N∑

j=1

̂ j
k̂ j

l (10)

RIVIÈRE ET AL. ©2015. American Geophysical Union. All Rights Reserved. 11



Journal of Geophysical Research: Solid Earth 10.1002/2014JB011718

with the upper index j running from 1 to N=17, i.e., the size of each  vector. The eigenvectors of the
covariance matrix are the principal component vectors. These eigenvectors are

PC1 PC2 PC3 PC4 PC5

PC =

⎡⎢⎢⎢⎢⎢⎣

0.51 0.08 −0.16 −0.44 0.72
0.07 0.97 −0.18 0.10 −0.14
0.49 −0.19 −0.44 0.73 0.02
0.48 0.10 0.84 0.21 −0.04
0.51 −0.12 −0.19 −0.47 −0.69

⎤⎥⎥⎥⎥⎥⎦
(11)

with the corresponding eigenvalues

E =
[

3.6720 1.0447 0.022 0.010 0.003
]
. (12)

From E, one can calculate a cumulative sum

E
i (%) =

∑i
j=1 Ej∑5
j=1 Ej

× 100 (13)

to find

E(%) =
[

72.0 94.7 98.0 99.6 100.0
]
. (14)

The principal component vectors PC1,… , PC5, five component vectors that are mutually orthonormal, lie in
the nonlinear response space. The eigenvalues determine the importance of a principal component vector
in describing the data in this space. We see that PC1, corresponding to the largest eigenvalue, has very
small component along the slope axis in nonlinear response space (0.07). It is built up of almost equal parts
(≃ 0.5) of the offset, curvature, area, and shift, i.e., it is approximately on the diagonal in the four-dimensional
subspace of offset, curvature, area, and shift. Consequently, these four measures are of essentially the
same thing. Any one of the attributes offset, curvature, area, and shift would perform equally well in
capturing important features in the nonlinear response of the samples. The principal component vector
PC2, corresponding to the second largest eigenvalue, is built up almost entirely of slope (0.97), it lies almost
parallel to the slope axis in the nonlinear response space. This is an indication that the nonlinear behavior
captured by the slope senses very little of the physical mechanism(s) responsible for offset, curvature,
area, and shift. From equation (14), we note that PC1 and PC2 together capture roughly 95% of variation in
the data.

We will use the perspective, associated with the PCA analysis of measures of nonlinearity, to sort the samples
into groups having approximately the same nonlinear response. Before doing so we call attention to a
simple conclusion of our findings. The fact that the measures offset, curvature, area, and shift behave very
similarly to one another across samples strongly suggests that they are due to the same physical processes
in each sample (a physical process that may differ in its details from sample to sample). This greatly simplifies
the construction of models for the behavior of the samples.

Fuzzy Clustering. Now let us turn to a comparison of samples according to their nonlinear response, i.e., the
set of i. From the PCA analysis we know that in leading approximation the nonlinear response data is well
described by the first two principal component vectors, PC1 and PC2. Thus, we can characterize the response
of sample i with the pair of numbers (Xi, Yi), the projection of the nonlinear response vector i onto the
principal component vectors PC1 and PC2, where Xi = i ⋅ PC1 and Yi = i ⋅ PC2. To compare the nonlinear
response of the samples we use fuzzy clustering on the 17 pairs (Xi, Yi) (see Appendix C). We choose fuzzy
clustering over k-means clustering in order to be prepared for the case that the samples are really not that
different from one another. The result of fuzzy clustering analysis are shown in Figure 8 for the case that we
ask for separation into two clusters.

In Figure 8 we necessarily see two clusters. What is not necessary, but is the case, is that all of the sandstone
samples are in one cluster well separated from the granite and the soapstone which form a second cluster.
We also see that the dots of a single color, corresponding to different runs on the same rock (2 Berea, 3
granite, etc.) overlap, suggesting the good reproducibility of the measurements. In the figure the cluster
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Figure 8. The results of fuzzy clustering applied to mean slopes
(𝜈 values) found in Figures 5e–5h for DAET and mean slopes extracted
from Figure 6b for NRUS. The set of data is projected on the two first
main components PC1 and PC2. The dot size is related to the member-
ship degree of each data point to its cluster. The two crosses represent
the centroids of each cluster.

centroids are shown as crosses. The
size of the point for each sample is
related to the membership degree of
that point. The membership degree, a
fuzzy clustering output, is a measure of
the “confidence” with which each sample
is associated with the cluster to which
it is assigned (Appendix C). For the 11
samples associated with the “sandstone”
cluster, the minimum membership
degree is 0.93. Thus, for the case at
hand fuzzy clustering suggests strong
confidence in the cluster assignments.

PCA on a values. From the result above,
we see that the offset, curvature, area,
and shift measures vary with strain in
much the same way for all samples.
Albeit these measures vary differently
with strain for the sandstones (the
right-hand cluster in Figure 8) and for
soapstone/granite (the left-hand cluster

in Figure 8). If one imagines that the mechanism responsible for the nonlinear behavior seen by these
measures has its source in a concentration of elastic features, e.g., defects, microcracks, etc., then it is
reasonable to ask how these elastic features make themselves known in the nonlinear measures. One way to
answer this question is to compare the “quantity” of elastic features in the nonlinear measures by comparing
the a values associated with each sample. For instance, if the offset for Berea has larger a than the offset
for Sander we might expect the curvature, the area, and the shift to have larger a values for Berea than for
Sander. The slope is deliberately taken out from this analysis since we take it to arise from a different physical
mechanism. Additionally, we confine ourselves to the samples in the sandstone cluster. For each of the 11
sandstone samples and for each of the four nonlinear measures we calculate a using (−Δc∕c)x = a × (𝜖1𝜔)𝜈x ,
where 𝜈x is the average of 𝜈 for the nonlinear measure x over the 11 samples. Table 3 displays these a val-
ues. They form an 11 × 4 matrix denoted as  . Our intent is to apply PCA to compare the sets of values of a
from sample to sample. As the bare values of a span many orders of magnitude we form the matrix  with
entries that are the log10 of the entries in the matrix  . Each row of  is normed in the same way as the
columns of  above. The matrix  , having an 11 × 11 covariance formed from ij (cf. equation (10)),

Table 3. Values a Recalculated for the Set of Sandstones Using 𝜈 Values Found for Each
Nonlinear Measurea

Offset (𝜈 = 1.74) Curvature (𝜈 = 1.23) Area (𝜈 = 1.13) Shift (𝜈 = 1.97)

Sample (×106) (×102) (×102) (×108)
BS 1 5.76 8.97 2.38 5.56
BS 2 4.47 11.35 2.74 5.56
MRS 1 1.80 3.95 1.28 1.92
MRS 2 1.88 4.20 1.38 1.90
MRS 3 2.00 3.80 1.39 1.66
SS 1 2.76 5.53 1.35 5.80
SS 2 2.50 5.78 1.49 4.75
SS 3 2.92 5.77 1.39 5.60
PSS 1 1.26 3.16 0.97 10.77
PSS 2 1.04 2.99 1.02 8.36
PSS 3 1.27 3.07 1.04 8.36

aBS is Berea Sandstone; MRS is Meule Red Sandstone; SS is Sander Sandstone; PSS is
Pietra Serena Sandstone.
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is subjected to PCA. We find that a single-principal component vector describes 95.6% of the data. The
eigenvalues (compare to E and E(%) above) are

E =
[

3.3141 0.1260 0.0261 0.0000
]
, (15)

and

E (%) =
[

95.6 99.2 100.0 100.0
]
. (16)

The single-principal component vector necessary to describe the data has equal contributions from all
amplitude sets, i.e., it lies essentially on the diagonal in the 11 component space of samples. The amplitude
set from any sample captures the participation of the responsible elastic features in the nonlinear measures.
There are differences from sample to sample, a few percent of the logarithm, that amount to numerical
factors of order 2. In particular, the Pietra Serena sandstone has a different behavior from other sandstones
regarding its shift, suggesting that this sample is slightly inhomogeneous in terms of nonlinear sources,
giving different results for DAET (local measurement—where the sample is probed—giving the offset,
the curvature, and the area) and NRUS (bulk measurement giving the shift). Differences of this size are
within the domain of sensible variations that occur in the structure of the sandstones and are not regarded
as fundamental.

4. Discussion
Dynamic acoustoelasticity involves a probe strain field (a compressional strain field in the y direction, 𝜖y)
that is coupled to the pump strain field (a compressional strain field in the x direction 𝜖X ). The elastic energy
for the system has the form

 = p(𝜖y) + K0𝛽𝜖
2
y 𝜖X + P(𝜖X ), (17)

where p is the elastic energy of the probe system (a linear elastic system because the probe strain is
deliberately taken to be small), P is the linear plus nonlinear elastic energy of the pump system, and 𝛽 is the
strength of the pump-probe coupling. This coupling may be as simple as the cubic nonlinearity of traditional
nonlinear elasticity. The equation of motion for the probe field is

𝜌
𝜕2uy

𝜕t2
= 𝜕

𝜕y

(
K0(1 + 2𝛽𝜖X )

𝜕uy

𝜕y

)
. (18)

It follows that the velocity shift in the propagation of uy , at x = h at time t, is

Δc(t)
c

= 𝛽𝜖X (h, t), 𝜌c2 = K0. (19)

The probe field sees the dressed strain field, 𝜖X (h, t). The dressed strain field is built up from the bare strain
field, the pump source strain field in equation (9), by nonlinear processes in the samples. We know from
the measurements that in steady state, at pump frequency 𝜔 and bare strain field 𝜖1𝜔, the dressed strain
field comprises (1) an offset strain field (a time-independent strain field), (2) a slope strain field (a strain field
that moves in time with the frequency of the bare strain field), (3) a curvature strain field (a strain field that
moves in time at twice the frequency of the bare strain field), and (4) an area strain field (a strain field that
moves in time with the frequency of the bare strain field and is hysteretic). (We use the language developed
above.) The slope strain field, moving in time with the bare strain field and having amplitude that scales
approximately linearly with the amplitude of the bare strain field, is different from the offset, curvature,
and area strain fields. The offset, curvature, and area strain fields, moving in time differently from the bare
strain field, all have amplitudes that scales with the amplitude of the bare strain field similarly. This scaling
always tends to “saturate” at large strain (see Figures 5a, 5c, 5d, and 6). For instance, when it is approximately
quadratic at low strain, it becomes progressively linear at large strain. The amplitude/time dependence of
the offset, curvature, and area strain fields do not have explanation within the classical theory of nonlinear
elasticity, a Landau theory involving an elastic energy that is an analytic function of the strain [Guyer and
Johnson, 2009].

We seek explanation in the domain of nonclassical nonlinearity. Generally, nonclassical nonlinear elasticity
invokes the presence of unusual elastic features, e.g., hysteretic elastic elements, or the presence of elastic
feature that have complex time response, e.g., the time dependence of a soft ratchet. Models involving such
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features might also be expected to describe the results of an NRUS experiment and slow dynamics. We have
found offset, curvature, and area to be intimately connected to NRUS in the samples we have examined.
And we also see evidence of slow dynamics in all of the samples examined. The slow dynamics of the sam-
ples is to be the subject of the fourth paper in this series. Hysteretic behavior arises in models in which
elastic elements are described by a Preisach space bookkeeping space. The simplest example of such a
model is that of McCall and Guyer [Guyer and Johnson, 2009; McCall and Guyer, 1994]. In this model there is
hysteresis with the hysteresis loop area that is connected to the frequency shift seen in NRUS. There is also
a modulus shift (offset). However, this offset is caused by the dynamics of elastic wave motion which sees it
and is not a condition of the sample that would be felt by a probe. So we would say that the McCall-Guyer
model could describe some features that are in the nonclassical nonlinear response. But it would miss at
least one very important feature, the offset. Our results show that the NRUS shift and the offset are strongly
correlated, having very similar 𝜈 values as seen in Figure 7. This demonstrates that measuring the offset with
DAET is similar to measuring a frequency shift with NRUS (as previously observed for a sample of Lavoux
Limestone in Renaud et al. [2013a]). Future modeling efforts will have to account for the fact that these two
quantities are strongly related and most likely represent the same physical phenomenon. A recent model
by Lebedev and Ostrovsky [Lebedev and Ostrovsky, 2014] was deliberately constructed to tie slow dynamics
to hysteretic behavior. This model, involving the system being held in a nonequilibrium steady state by
the dynamics, has the possibility of offering a qualitative understanding of NRUS and slow dynamics. An
even more recent model [Favrie et al., 2014] builds on the soft ratchet ideas introduced by Vakhnenko et al.
[2005] and leads to qualitative results similar to those seen in these experiments, i.e., offset, curvature, area,
and slow dynamics. Models [Aleshin and Van Den Abeele, 2007; Lawn and Marshall, 1998; Nihei et al., 2000;
Pecorari, 2004] based on friction and/or adhesion in materials containing cracks (therefore, more physical
and less phenomenological) or inspired by dislocation theories in metals [Pecorari, 2014, 2015] can produce
hysteretic behavior similar to what we observe, although they do not connect hysteretic behaviors with slow
dynamics. Part of future modeling efforts will be to merge these models to achieve a fully physical-based
description. It is not our intention to fit the data described in this paper to any of these models. We do
suggest that they may be appropriate to the data. However, our intention is to make available data sets of
unprecedented quality to serve as a testing ground for these theories.

5. Conclusion

Dynamic acoustoelasticity tests have been conducted on a set of six samples, four sandstones, one
soapstone, and one granite. These samples allow comparison of sedimentary and metamorphic rocks
(sandstones/soapstone) with a crystalline rock (granite). This paper is the third in a series that develops
DAET for geophysical applications [Renaud et al., 2012; Rivière et al., 2013]. Each sample is probed at 20 strain
amplitudes logarithmically distributed over 2 orders of magnitude, 10−7 <𝜖<10−5. A projection procedure
developed in [Rivière et al., 2013] allows us to decompose the complex signatures of nonlinear elasticity into
a set of four measures of nonlinearity. To these four measures of nonlinear behavior from DAET we add a
fifth from the results of NRUS measurements. We employ statistical tools to provide a systematic analysis
to these measures. For instance, it is found that the slope of the signatures is associated to physical
processes different from the ones associated with the offset, the curvature, and the area of the signatures.
The three latter features are essentially arising from the same physical mechanisms in each sample (not
necessarily the same physical processes in all samples). In addition, the frequency shift measured with NRUS
also correlates with these three last features. Using such result, we then apply the fuzzy clustering technique
to compare these features among samples. We found that the set of sandstones cluster together, whereas
granite and soapstone form the second cluster. In a second step, we try to see if, among the sandstones,
the same mechanism is responsible for the offset, the curvature, the area, and the shift. This second analysis
indeed suggests that the quantity of elastic features (a values) are consistent with the assumption of a single
mechanism explaining these four nonlinear measures.

Finally, DAET provides new insights on nonlinear elasticity that will ultimately contribute to the
development of physically based theories, enabling to link the nonlinear elastic response to damage
features. This work aims at starting a DAET database, and more samples with more diverse damage features
will have to be studied in order to reach a more complete view on physical processes associated with the
nonlinear elastic responses. In addition, nonlinear measures extracted from the relaxation curves (see
postpump excitation in Figure 2b) will also be added to the database in future work.
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Figure A1. Estimation of the hysteresis area Δc
c
|H . (a) Example of second-order polynomial applied to a nonlinear

signature. (b) “Bow tie” signature Δc
c
|R resulting from the subtraction between the original data and the second-order

polynomial fit. The area Δc
c
|H is then defined as the difference between averaged positive values and averaged negative

values: Δc
c
|H = Δc

c
|R > 0 − Δc

c
|R < 0.

Appendix A: Hysteresis Estimation

The hysteresis area is estimated using a polynomial representation. A second-order polynomial
(a𝜖2

1𝜔+b𝜖1𝜔+c) is fitted to each nonlinear signature in Figure 3. This fit is then subtracted from the nonlinear
signature to produce Δc

c
|R (see Figure A1). When hysteresis is present this subtraction results in a symmetric

“bow tie” centered at the Δc∕c−𝜖1𝜔 origin. We calculate the average of all of the positive values
Δc
c
|R > 0 and the average of all of the negative values Δc

c
|R < 0 and define the hysteresis area to be

Δc
c
|H =

Δc
c
|R > 0 − Δc

c
|R < 0. When high harmonic content is present in the nonlinear signatures (for instance,

at the largest strain amplitude in Figures 3a and 3i), a fourth-order polynomial is sometimes used in making
the estimate of Δc

c
|R.

Appendix B: Principal Component Analysis

PCA is an analysis used to reduce the dimension of a complex data matrix. Reducing the dimension is
to help accelerate further data processing steps or facilitate visualization. This is achieved by revealing
the redundancies (correlated attributes) in the data set, which may otherwise obscure the patterns and
structures of interest in the data. Mathematically speaking, PCA is an orthogonal linear transformation that
projects the data onto a new orthogonal base by minimizing the projection errors. As a consequence, the
variance in the data is maximum along the first projection direction (called the first principal component),
second greatest along the second direction or the second principal component (normal to the first principal
component), and so on. There can be as many principal components as there are attributes (or variables)
in the data set, ranked in the decreasing order based on the amount of variation they capture in the
data. However, only a relatively (with respect to the matrix original dimension) small number of principal
components is usually sufficient to reconstruct the data matrix, retaining 95–100% of the variation in the
data. To obtain the principal components, we can use the eigenvalue decomposition of the data covariance
(or cross-correlation) matrix or singular value decomposition of the data, usually after having properly
normalized the data. For example, by zero meaning, rescaling, or z transform. For a detailed discussion on
PCA, see, for instance, Jolliffe [2005]. Prior to performing PCA in this study, we have normalized the data by
zero meaning and rescaling (dividing by standard deviation) to a common range. This normalization allows
one to capture differences between the different samples rather than differences in mean slope for the
different measures.
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Appendix C: Clustering

Clustering is one of the most important unsupervised machine learning algorithms. This class of algorithms
attempt to learn and extract hidden structures in unlabeled data. Unlike supervised learning algorithms,
no training data set (i.e., labeled data) is needed. In simple terms, clustering algorithms divide the data
set into subsets called clusters by assigning similar data into one cluster. The data points grouped in one
cluster are most similar to each other and dissimilar to the data points in the neighboring clusters based
on a predefined similarity criterion. The similarity is typically measured in the form of a multidimensional
distance function.

C1. K-Means Clustering
K-means algorithm [MacQueen, 1967] is the simplest clustering approach. Consider a data set consisting
of N q-dimensional data points xi describing the values of q parameters measured for N samples. One
may use K-means clustering to see if the samples could be partitioned into K distinct subsets based on
the similarities between the corresponding measurements. This algorithm assigns the q-dimensional data
points xi to K distinct clusters with q-dimensional centroids Cj j=1,… , K such that the total sum of the
distances between the data points within each cluster and the corresponding cluster centroids is minimized:

min
K∑

j=1

N∑
i=1

dist(xi − Cj)2 (C1)

where dist is an appropriate distance function. One popular choice is the Euclidian distance. Please note that
the number of clusters K is chosen a priori.

C2. Fuzzy C-Means Clustering
Fuzzy clustering (aka soft K-means) is a variation of K-means clustering, where each piece of data can
simultaneously belong to two or more clusters. The degree of belonging of xi to cluster j is described by a
membership function mi( j). The Fuzzy c-means clustering algorithm was first proposed by Dunn [1973] and
later modified by Bezdek et al. [1981]. It is based on the minimization of the following objective function:

min
K∑

j=1

N∑
i=1

m𝛼

i( j)dist(xi − Cj)2 (C2)

where 𝛼 is a real number not smaller than 1. The optimization is achieved iteratively by updating the cluster
centroid Cj and the membership mi( j) as follows:

Cj =

∑N
i=1 m𝛼

i( j)xi∑N
i=1 m𝛼

i( j)

(C3)

mi( j) =
1∑K

k=1

dist(xi−Cj)
dist(xi−Ck )

2
𝛼−1

(C4)
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